
Manual | EN

CX7050
Embedded PC for CANopen commander (master)

2024-05-08 | Version: 1.0

Table of contents

CX7050 3Version: 1.0

Table of contents
1 Notes on the documentation.. 7

1.1 Representation and structure of warnings .. 8
1.2 Documentation issue status .. 9

2 For your safety .. 10
2.1 Intended use ... 10
2.2 Staff qualification... 10
2.3 Safety instructions... 10
2.4 Notes on information security.. 11

3 Transport and storage .. 12

4 Product overview .. 13
4.1 Structure.. 14
4.2 Name plate.. 15
4.3 Ethernet interface (X001) .. 16
4.4 USB interface (X002) .. 18
4.5 D-sub connector (X003) .. 18
4.6 MicroSD card .. 20
4.7 CANopen system overview ... 21

4.7.1 Network Management .. 22
4.7.2 Process Data Objects (PDO) ... 26
4.7.3 PDO Parameterization ... 33
4.7.4 Service Data Objects (SDO) .. 35
4.7.5 Objekt dictionary .. 38

5 Commissioning ... 81
5.1 Mounting ... 81

5.1.1 Note the permissible installation positions ... 81
5.1.2 Fastening to the DIN rail .. 83
5.1.3 Changing the MicroSD card ... 84
5.1.4 Installing passive EtherCAT Terminals .. 85

5.2 Power supply... 86
5.2.1 Connect Embedded PC ... 87
5.2.2 UL requirements... 88

5.3 CANopen: Connection and wiring ... 89
5.3.1 D-sub connector (X003) ... 92
5.3.2 Cable and shielding.. 93

6 Multifunction I/Os.. 95
6.1 Digital inputs.. 97
6.2 Digital outputs ... 98
6.3 Counter mode ... 100

6.3.1 Select operation mode ... 102
6.3.2 Switching outputs ... 103
6.3.3 Set counter value ... 104
6.3.4 Setting the limit value for counters ... 105

6.4 Incremental encoder mode ... 106

Table of contents

CX70504 Version: 1.0

6.4.1 Switching outputs ... 108
6.4.2 Latching the counter value ... 109
6.4.3 Setting the limit value for counters ... 110

6.5 Analog signal mode... 111
6.6 PWM signal mode ... 112

6.6.1 Setting the PWM clock frequency and duty cycle .. 114
6.6.2 Setting the channel synchronization .. 115

7 Configuration... 116
7.1 Starting the Beckhoff Device Manager.. 116
7.2 Persistent data .. 117
7.3 NOVRAM... 118

7.3.1 Creating a Retain Handler.. 119
7.3.2 Creating and linking variables .. 121
7.3.3 Deleting variables under the Retain Handler ... 123

7.4 Software configuration .. 124
7.4.1 User name and password .. 124
7.4.2 Setting the IP address.. 125
7.4.3 Update image... 126
7.4.4 Updating the firmware for multifunction I/Os .. 127
7.4.5 Updating the ESI device description .. 128

8 TwinCAT... 129
8.1 First Steps ... 129

8.1.1 Connect to the CX70x0 .. 129
8.1.2 Scan multifunction I/Os .. 131
8.1.3 Establishing ADS communication .. 133
8.1.4 Creating a PLC project... 135
8.1.5 Linking variables .. 137
8.1.6 Load configuration to CX.. 138

8.2 TwinCAT tabs.. 140
8.2.1 Tree view.. 140
8.2.2 CANopen master.. 142
8.2.3 CANopen slave .. 145

8.3 Creating CX7050 as master .. 148
8.3.1 SDO communication from the PLC.. 151
8.3.2 CAN interface... 151

8.4 Creating CX705x as slave... 153
8.4.1 Creating a virtual slave... 155
8.4.2 Setting the address .. 156
8.4.3 Creating further PDOs.. 157
8.4.4 Creating variables .. 158
8.4.5 Setting the transmission type ... 159
8.4.6 Receiving SDO data in the PLC... 160
8.4.7 Switching slave node to PreOp from the PLC.. 161

8.5 Reading the CAN baud rate .. 162
8.6 Sending arbitrary CAN telegrams ... 162

Table of contents

CX7050 5Version: 1.0

8.7 Reading the IP and MAC addresses... 163
8.8 Virtual Ethernet interface... 163
8.9 CoE access to multi-function I/Os ... 164
8.10 Power supply terminal ... 166
8.11 Cycle and processing times .. 168

8.11.1 Measuring processing time in the PLC program.. 168
8.11.2 Real-Time Clock (RTC).. 168
8.11.3 Cycle time of 250 μs .. 169

8.12 Function Blocks... 174
8.12.1 FB_CX70xx_RW_EEPROM .. 174
8.12.2 FB_CX70xx_ResetOnBoardIO .. 175

8.13 Important attribute pragmas .. 176
8.13.1 Attribute 'Tc2GvlVarNames' ... 176
8.13.2 Attribute 'pack_mode'... 176
8.13.3 Attribute 'TcCallAfterOutputUpdate' ... 177

9 Error handling and diagnostics ... 181
9.1 Diagnostic LEDs.. 181

9.1.1 K-bus.. 182
9.1.2 E-bus.. 185

9.2 CANopen diagnostics.. 186
9.2.1 Status messages.. 186
9.2.2 Communication .. 187
9.2.3 PDOs.. 189
9.2.4 Troubleshooting ... 190

9.3 Diagnosis of the multi-function I/Os .. 193
9.4 Memory usage .. 194
9.5 Real-time and CPU load ... 196

10 Technical data ... 198

11 Appendix.. 201
11.1 CAN Identifier list .. 201
11.2 Third-Party components.. 213
11.3 Accessories... 213
11.4 Certifications ... 214

List of tables .. 215

List of figures... 216

Table of contents

CX70506 Version: 1.0

Notes on the documentation

CX7050 7Version: 1.0

1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to comply with the
documentation and the following notes and explanations.
The qualified personnel is always obliged to use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all safety
requirements, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered by the following patent applications and patents, without this
constituting an exhaustive list:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document, as well as the use and communication of its contents
without express authorization, are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

Notes on the documentation

CX70508 Version: 1.0

1.1 Representation and structure of warnings
The following warnings are used in the documentation. Read and follow the warnings.

Warnings relating to personal injury:

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that can result in minor injury.

Warnings relating to damage to property or the environment:

NOTICE
There is a potential hazard to the environment and equipment.

Notes showing further information or tips:

This notice provides important information that will be of assistance in dealing with the product or
software. There is no immediate danger to product, people or environment.

Notes on the documentation

CX7050 9Version: 1.0

1.2 Documentation issue status
Version Comment
1.0 First version.

For your safety

CX705010 Version: 1.0

2 For your safety
Read the chapter on safety and follow the instructions in order to protect from personal injury and damage to
equipment.

Limitation of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Unauthorized modifications and changes to the hardware or software configuration, which go
beyond the documented options, are prohibited and nullify the liability of Beckhoff Automation GmbH & Co.
KG.
In addition, the following actions are excluded from the liability of Beckhoff Automation GmbH & Co. KG:

• Failure to comply with this documentation.
• Improper use.
• Use of untrained personnel.
• Use of unauthorized replacement parts.

2.1 Intended use
The embedded PC is a control system for use in machine and system engineering for automation,
visualization and communication. The embedded PC is designed for installation in a control cabinet or
terminal box and is used together with Bus or EtherCAT Terminals to receive digital and analog signals from
sensors and output them to actuators or forward them to higher-level controllers.

The Embedded PC is designed for a working environment that meets the requirements of protection class
IP20. This involves finger protection and protection against solid foreign objects up to 12.5 mm, but not
protection against water. Operation of the devices in wet and dusty environments is not permitted, unless
specified otherwise. The specified limits for electrical and technical data must be adhered to.

Improper use

The Embedded PC is not suitable for operation in the following areas:

• Potentially explosive atmospheres.
• Areas with an aggressive environment, e.g. aggressive gases or chemicals.
• Living areas. If the devices are to be used in living areas, the relevant standards and guidelines for

interference emissions must be adhered to, and the devices must be installed in housings or control
boxes with suitable shielding.

2.2 Staff qualification
All operations involving Beckhoff software and hardware may only be carried out by qualified personnel with
knowledge of control and automation engineering. The qualified personnel must have knowledge of the
administration of the Industrial PC and the associated network.

All interventions must be carried out with knowledge of control programming, and the qualified personnel
must be familiar with the current standards and guidelines for the automation environment.

2.3 Safety instructions
The following safety instructions must be followed during installation and working with networks and the
software.

Mounting
• Never work on live equipment. Always switch off the power supply for the device before installation,

troubleshooting or maintenance. Protect the device against unintentional switching on.

For your safety

CX7050 11Version: 1.0

• Observe the relevant accident prevention regulations for your machine (e.g. the BGV A 3, electrical
systems and equipment).

• Ensure standard-compliant connection and avoid risks to personnel. Ensure that data and supply
cables are laid in a standard-compliant manner and ensure correct connection.

• Observe the relevant EMC guidelines for your application.
• Avoid polarity reversal of the data and supply cables, as this may cause damage to the equipment.
• The devices contain electronic components, which may be destroyed by electrostatic discharge when

touched. Observe the safety precautions against electrostatic discharge according to DIN EN
61340-5-1/-3.

Working with networks
• Restrict access to all devices to an authorized circle of persons.
• Change the default passwords to reduce the risk of unauthorized access.
• Protect the devices with a firewall.
• Apply the IT security precautions according to IEC 62443, in order to limit access to and control of

devices and networks.

2.4 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Transport and storage

CX705012 Version: 1.0

3 Transport and storage
Transport

NOTICE
Short circuit due to moisture
Moisture can form during transport in cold weather or in the event of large temperature fluctuations.
Avoid moisture formation (condensation) in the embedded PC, and leave it to adjust to room temperature
slowly. If condensation has occurred, wait at least 12 hours before switching on the embedded PC.

Despite the robust design of the unit, the components are sensitive to strong vibrations and impacts. During
transport the embedded PC must be protected from

• high mechanical stress and
• use the original packaging for shipping.

Table 1: Dimensions and weight.

CX7050
Dimensions (W x H x D) 49 mm x 100 mm x 73 mm
Weight approx. 142 g

Storage
• Store the Embedded PC in the original packaging.

Product overview

CX7050 13Version: 1.0

4 Product overview
The CX7050 Embedded PC has an ARM Cortex™ M7 single-core processor running at 480 MHz and the
following basic configuration:

• a microSD card slot with integrated 512 MB microSD card,
• an Ethernet interface (10/100 Mbit/s, RJ45),
• a USB interface (max. 12 Mbit/s, max. 100 mA),
• integrated multi-function I/Os.

The CX7050 is programmed with TwinCAT 3 via the Ethernet interface. In addition, the Beckhoff Device
Manger is available as a web interface for configuring the CX7050.

The CANopen commander (master) interface of the CX7050 can also be used as a CAN or CANopen
responder (slave).

Multi-function I/Os

Special features of the CX7000 series are the eight integrated multifunction inputs and four integrated
multifunction outputs.

• 8 digital inputs, 24 V DC, filter 3 ms, type 3, 1-wire technique
• 4 digital outputs, 24 V DC, 0.5 A, 1-wire technique

The integrated multifunction I/Os of the CX7050 can be configured via TwinCAT 3 for other operation modes
in order to enable fast counting or the processing of analog values:

• Counter mode: 1 x digital counter input 100 kHz, 1 x digital input for up/down counter 20 kHz, 2 x digital
counter outputs

• Incremental encoder mode: 2 x digital inputs for 250 kHz encoder signal (A/B input), 2 x digital encoder
output

• Analog signal mode: 2 x digital inputs configured as analog inputs 0 to 10 V, 12-bit resolution with 16-
bit representation

• PWM signal mode: 2 x digital outputs configured for PWM signal, 15 Hz…100 kHz

Power supply terminal

EtherCAT Terminals (E-bus) or Bus Terminals (K-bus) can optionally be connected directly on the right-hand
side; the CX7050 automatically recognizes which system is connected during the start-up phase. If further
electrical signals are to be processed, the CX7050 can be extended as required and extremely flexibly by
EtherCAT Terminals or Bus Terminals in addition to the integrated I/Os.

Firmware

The real-time operating system TC/RTOS, which is based on FreeRTOS, is used as the operating system or
firmware. Note that TC/RTOS is a closed system and you cannot install your own software. This provides a
certain level of security, as third-party software such as viruses or similar cannot be installed and the
CX7050 can be connected to a network. The CX7050 can be used from TwinCAT 3.1 Build 4024.12. The
following TC 3 functions are included and licensed:

• TC1000 TC3 ADS
• TC1100 TC3 IO
• TC1200 TC3 PLC
• TF4100 TC3 Controller Toolbox
• TF4110 TC3 Temperature Controller
• TF6255 TC3 Modbus-RTU
• TF6340 TC3 Serial Communication
• TF6701 | TwinCAT 3 IoT Communication (MQTT)*)

• TF6730 | TwinCAT 3 IoT Communicator*)

Product overview

CX705014 Version: 1.0

*) Image version 114606 and TwinCAT 3 XAE 4024.47 or higher required.

The open source licenses can be viewed as a ZIP file on the microSD card.

4.1 Structure

Fig. 1: Sample configuration of a CX7050 Embedded PC.

Table 2: Legend for the configuration of the basic CPU module

No. Component Description
1 D-sub connector (X003). CANopen interface of the CX705x.
2 MicroSD card slot (under

the cover).
Slot for industrial MicroSD cards. Memory space for firmware and
TwinCAT 3 projects.

3 Ethernet interface (X001) For the connection to local networks. Serves as a programming
interface.

4 USB interface (X002) Interface for additional USB data storage device.
5 I/O Status LEDs Diagnosis of the power supply for the Embedded PC and the

terminal bus. Status of the E-bus or K-bus communication and
multifunction I/Os.

6 Diagnostic LEDs 1 x TwinCAT Status, 1 x Flash access, 1 x Error LED.
7 Spring-loaded terminals,

+24 V and 0 V
Power supply (Us) for Embedded PC.

8 Spring-loaded terminals,
+24 V and 0 V

Power supply (Up) for integrated multifunction I/Os and Bus
Terminals via the power contacts.

Product overview

CX7050 15Version: 1.0

4.2 Name plate

Fig. 2: Name plate example.

Table 3: Information on the name plate.

No. Description
1 Power supply 24 V DC.
2 MAC addresses of the built-in Ethernet interface.
3 Hardware version and date of manufacture.
4 Product designation for identification of the Embedded PC.
5 Serial number/ Beckhoff Traceability Number (BTN) for the unambiguous identification of

the product. The host name is formed from BTN and the serial number/ Beckhoff
Traceability Number (BTN). Example: the BTN 00004xrr results in the host name
BTN-00004xrr.

6 CE marking
7 EAC marking
8 Machine-readable information in the form of a Data Matrix Code (DMC, code scheme

ECC200) that can be used for better identification and management.
9 UL marking with prescribed information on power supply, fuse, temperature and cable

cross-sections.

Product overview

CX705016 Version: 1.0

4.3 Ethernet interface (X001)
You can program and commission the CX7050 Embedded PC via the X001 Ethernet interface. The Ethernet
interface achieves speeds of 10 / 100 Mbit/s.

Fig. 3: Ethernet interface X001.

The LEDs on the left of the interface indicate the connection status. The upper LED (LINK/ACT) indicates
whether the interface is connected to a network. If this is the case, the LED lights up green. The LED flashes
when data transfer on the interface is in progress.

The lower LED (SPEED) indicates the connection speed. The LED is not lit if the speed is 10 Mbit/s. At
100 Mbit/s the LED lights up orange.

Table 4: Ethernet interface X001, pin assignment.

PIN Signal Description
1 TD + Transmit +
2 TD - Transmit -
3 RD + Receive +
4 connected reserved
5
6 RD - Receive -
7 connected reserved
8

Transmission standards

10Base5

The transmission medium for 10Base5 consists of a thick coaxial cable ("yellow cable") with a max. data
transfer rate of 10 Mbaud arranged in a line topology with branches (drops) each of which is connected to
one network device. Because all the devices are in this case connected to a common transmission medium,
it is inevitable that collisions occur often in 10Base5.

10Base2

10Base2 (Cheaper net) is a further development of 10Base5, and has the advantage that the coaxial cable is
cheaper and, being more flexible, is easier to lay. It is possible for several devices to be connected to one
10Base2 cable. It is frequent for branches from a 10Base5 backbone to be implemented in 10Base2.

10BaseT

Describes a twisted pair cable for 10 Mbaud. The network here is constructed as a star. It is no longer the
case that every device is attached to the same medium. This means that a broken cable no longer results in
failure of the entire network. The use of switches as star couplers enables collisions to be reduced. Using
full-duplex connections they can even be entirely avoided.

Product overview

CX7050 17Version: 1.0

100BaseT

Twisted pair cable for 100 Mbaud. It is necessary to use a higher cable quality and to employ appropriate
hubs or switches in order to achieve the higher data rate.

10BaseF

The 10BaseF standard describes several optical fiber versions.

Short description of the 10BaseT and 100BaseT cable types

Twisted-pair copper cable for star topologies, where the distance between two devices may not exceed
100 meters.

UTP

Unshielded twisted-pair
This type of cable belongs to category 3, and is not recommended for use in an industrial environment.

S/UTP

Screened/unshielded twisted-pair (shielded with copper braid)
Has an overall shield of copper braid to reduce influence of external interference. This cable is
recommended for use with Bus Couplers.

FTP

Foiled shielded twisted-pair (shielded with aluminum foil)
This cable has an outer shield of laminated aluminum and plastic foil.

S/FTP

Screened/foiled shielded twisted-pair (shielded with copper braid and aluminum foil)
Has a laminated aluminum shield with a copper braid on top. Such cables can provide up to 70 dB reduction
in interference power.

STP

Shielded twisted-pair
Describes a cable with overall shielding without further specification of the type of shielding.

S/STP

Screened/shielded twisted-pair (wires are individually shielded)
This identification refers to a cable with a shield for each of the two wires as well as an outer shield.

ITP

Industrial Twisted-Pair
The structure is similar to that of S/STP, but, in contrast to S/STP, it has only two pairs of conductors.

Product overview

CX705018 Version: 1.0

4.4 USB interface (X002)
A USB flash drive can be connected to the USB interface and used as an additional memory. The USB
interface supports transfer speeds of up to 12 Mbit/s and no more than 100 mA. The file is accessed from
TwinCAT or the PLC program with the help of the associated function blocks. No other devices can be
connected to the USB interface and used.

The same functional mode can be used for accessing files on the MicroSD card. Use C:\ as the drive letter
for accessing the MicroSD card and D:\ for accessing the USB flash drive.

Function blocks for data access

The function blocks can be used to process files from the PLC locally on the PC. The TwinCAT target system
is identified by the AMS network address. This mechanism makes it possible, amongst other things, to store
or to edit files on other TwinCAT systems in the network. Access to files consists of three sequential phases:

1. Opening the file.
2. Read or write access to the opened file.
3. Closing the file.

Opening the file has the purpose of establishing a temporary connection between the external file, whose
name is all that initially is known, and the running program. Closing the file has the purpose of indicating the
end of the processing and placing it in a defined output state for processing by other programs.

Name Description
FB_EOF Check the end of file
FB_FileOpen Open a file
FB_FileClose Close a file
FB_FileGets Get string from a file
FB_FilePuts Put string to a file
FB_FileRead Read from a file
FB_FileWrite Write to a file
FB_FileSeek Move the file pointer
FB_FileTell Get the file pointer position
FB_FileDelete Delete a file
FB_FileRename Rename a file
FB_CreateDir Create new directory
FB_RemoveDir Remove directory

Requirements

Development environment Target system type PLC libraries to include (Cate-
gory group)

TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_System (System)

4.5 D-sub connector (X003)

Fig. 4: CANopen interface X003.

Product overview

CX7050 19Version: 1.0

The CAN bus line is connected via a 9-pin D-sub connector with the following pin assignment:

Pin Connection
1 not used
2 CAN low (CAN-)
3 CAN Ground (internally connected to pin 6)
4 not used
5 Shield
6 CAN Ground (internally connected to pin 3)
7 CAN high (CAN+)
8 not used
9 not used

The DIN rail contact spring and the connector shield are connected together. An auxiliary voltage of up to
30 VDC may be connected to pin 9, which is used by some CAN devices to supply the transceivers.

Product overview

CX705020 Version: 1.0

4.6 MicroSD card
The basic equipment of the CX7050 includes a 512 MB microSD card. You can optionally order the
embedded PC with a larger microSD card (1 GB, 2 GB, 4 GB, 8 GB or 16 GB).

The cards employed are SLC memory with extended temperature range for industrial applications. Use
exclusively microSD cards approved by Beckhoff.

Order identifier Capacity Description
CX1900-0123 1 GB microSD card (SLC memory) with

extended temperature range for
industrial applications instead of
the 512 MB card (ordering option)

CX1900-0125 2 GB
CX1900-0127 4 GB
CX1900-0129 8 GB
CX1900-0131 16 GB

Order identifier Capacity Description
CX1900-0122 512 MB microSD card (SLC memory) with

extended temperature range for
industrial applications as spare
part.

CX1900-0124 1 GB
CX1900-0126 2 GB
CX1900-0128 4 GB
CX1900-0130 8 GB
CX1900-0132 16 GB

Product overview

CX7050 21Version: 1.0

4.7 CANopen system overview
CANopen is a widely used CAN application layer, developed by the CAN-in-Automation association (CiA,
http://www.can-cia.org), and which has meanwhile been adopted for international standardization.

Device Model

CANopen consists of the protocol definitions (communication profile) and of the device profiles that
standardize the data contents for the various device classes. Process data objects (PDO) [} 26] are used for
fast communication of input and output data. The CANopen device parameters and process data are stored
in a structured object directory. Any data in this object directory is accessed via service data objects (SDO).
There are, additionally, a few special objects (such as telegram types) for network management (NMT),
synchronization, error messages and so on.

Fig. 5: CANopen Device Model

Communication Types

CANopen defines a number of communication classes for the input and output data (process data objects):

• Event driven [} 29]: Telegrams are sent as soon as their contents have changed. This means that the
process image as a whole is not continuously transmitted, only its changes.

• Cyclic synchronous [} 29]: A SYNC telegram causes the modules to accept the output data that was
previously received, and to send new input data.

• Requested (polled) [} 26]: A CAN data request telegram causes the modules to send their input data.

The desired communication type is set by the Transmission Type [} 26] parameter.

Device Profile

The BECKHOFF CANopen devices support all types of I/O communication, and correspond to the device
profile for digital and analog input/output modules (DS401 Version 1). For reasons of backwards
compatibility, the default mapping was not adapted to the DS401 V2 profile version.

Data transfer rates

Nine transmission rates from 10 kbit/s up to 1 Mbit/s are available for different bus lengths. The effective
utilization of the bus bandwidth allows CANopen to achieve short system reaction times at relatively low data
rates.

http://www.can-cia.org

Product overview

CX705022 Version: 1.0

Topology

CAN is based on a linear topology. The number of devices participating in each network is logically limited by
CANopen to 128, but physically the present generation of drivers allows up to 64 nodes in one network
segment. The maximum possible size of the network for any particular data rate is limited by the signal
propagation delay required on the bus medium. For 1 Mbit/s, for instance, the network may extend 25 m,
whereas at 50 kbit/s the network may reach up to 1000 m. At low data rates the size of the network can be
increased by repeaters, which also allow the construction of tree structures.

Bus access procedures

CAN utilizes the Carrier Sense Multiple Access (CSMA) procedure, i.e. all participating devices have the
same right of access to the bus and may access it as soon as it is free (multi-master bus access). The
exchange of messages is thus not device-oriented but message-oriented. This means that every message is
unambiguously marked with a prioritized identifier. In order to avoid collisions on the bus when messages
are sent by different devices, a bit-wise bus arbitration is carried out at the start of the data transmission. The
bus arbitration assigns bus bandwidth to the messages in the sequence of their priority. At the end of the
arbitration phase only one bus device occupies the bus, collisions are avoided and the bandwidth is optimally
exploited.

Configuration and parameterization

The TwinCAT System Manager allows all the CANopen parameters to be set conveniently. An "eds" file (an
electronic data sheet) is available on the Beckhoff website (http://www.beckhoff.de) for the parameterization
of Beckhoff CANopen devices using configuration tools from other manufacturers.

Certification

The Beckhoff CANopen devices have a powerful implementation of the protocol, and are certified by the
CAN in Automation Association (http://www.can-cia.org).

4.7.1 Network Management

Simple Boot-Up

CANopen allows the distributed network to boot in a very simple way. After initialization, the modules are
automatically in the Pre-Operational state. In this state it is already possible to access the object directory
using service data objects (SDOs) with default identifiers, so that the modules can be configured. Since
default settings exist for all the entries in the object directory, it is in most cases possible to omit any explicit
configuration.

Only one CAN message is then required to start the module: Start_Remote_Node: Identifier 0, two data
bytes: 0x01, 0x00. It switches the node into the Operational state.

Network Status

The states and the state transitions involved as CANopen boots up can be seen from the state diagram:

http://www.beckhoff.de
http://www.can-cia.org

Product overview

CX7050 23Version: 1.0

Fig. 6: CANopen bootup state diagram

Pre-Operational

After initialization the Bus Coupler goes automatically (i.e. without the need for any external command) into
the Pre-Operational state. In this state it can be configured, since the service data objects (SDOs) are
already active. The process data objects, on the other hand, are still locked.

Operational

In the Operational state the process data objects are also active.

If external influences (such as a CAN error, or absence of output voltage) or internal influences (such as a K-
Bus error) mean that it is no longer possible for the Bus Coupler to set outputs, to read inputs or to
communicate, it attempts to send an appropriate emergency message, goes into the error state, and thus
returns to the Pre-Operational state. In this way the NMT status machine in the network master can also
immediately detect fatal errors.

Stopped

In the Stopped state (formerly: Prepared) data communication with the Coupler is no longer possible - only
NMT messages are received. The outputs go into the fault state.

State Transitions

The network management messages have a very simple structure: CAN identifier 0, with two bytes of data
content. The first data byte contains what is known as the command specifier (cs), and the second data byte
contains the node address, the node address 0 applying to all nodes (broadcast).

11 bit identifier 2 byte user data
0x00 cs Node ID

The following table gives an overview of all the CANopen state transitions and the associated commands
(command specifier in the NMT master telegram):

Status transition Command Specifier cs Explanation
(1) - The initialization state is reached automatically at power-up
(2) - After initialization the pre-operational state is reached

automatically - this involves sending the boot-up message.
(3), (6) cs = 1 = 0x01 Start_Remote_Node.

Starts the module, enables outputs, starts transmission of
PDOs.

Product overview

CX705024 Version: 1.0

Status transition Command Specifier cs Explanation
(4), (7) cs = 128 = 0x80 Enter_Pre-Operational. Stops PDO transmission, SDO still

active.
(5), (8) cs = 2 = 0x02 Stop_Remote_Node.

Outputs go into the fault state, SDO and PDO switched off.
(9), (10), (11) cs = 129 = 0x81 Reset_Node. Carries out a reset. All objects are reset to their

power-on defaults.
(12), (13), (14) cs = 130 = 0x82 Reset_Communication. Carries out a reset of the

communication functions. Objects 0x1000 - 0x1FFF are reset to
their power-on defaults.

Sample 1

The following telegram puts all the modules in the network into the error state (outputs in a safe state):

11 bit identifier 2 byte of user data
0x00 0x02 0x00

Sample 2

The following telegram resets node 17:

11 bit identifier 2 byte of user data
0x00 0x81 0x11

Boot-up message

After the initialization phase and the self-test the Bus Coupler sends the boot-up message, which is a CAN
message with a data byte (0) on the identifier of the guarding or heartbeat message: CAN-ID = 0x700 + node
ID. In this way temporary failure of a module during operation (e.g. due to a voltage drop), or a module that is
switched on at a later stage, can be reliably detected, even without Node Guarding. The sender can be
determined from the message identifier (see default identifier allocation).

It is also possible, with the aid of the boot-up message, to recognize the nodes present in the network at
start-up with a simple CAN monitor, without having to make write access to the bus (such as a scan of the
network by reading out parameter 0x1000).

Finally, the boot-up message communicates the end of the initialization phase; the Bus Coupler signals that
it can now be configured or started.

Firmware version BA
Up to firmware version BA the emergency identifier was used for the boot up message.

Format of the Boot-up message

11 bit identifier 1 byte of user data
0x700 (=1792)+ node ID 0x00

Node Monitoring

Heartbeat and guarding mechanisms are available to monitor failures in the CANopen network. These are of
particular importance for CANopen, since modules do not regularly speak in the event-driven mode of
operation. In the case of "guarding", the devices are cyclically interrogated about their status by means of a
data request telegram (remote frame), whereas with "heartbeat" the nodes transmit their status on their own
initiative.

Product overview

CX7050 25Version: 1.0

Guarding: Node Guarding and Life Guarding

Node Guarding is used to monitor the non-central peripheral modules, while they themselves can use Life
Guarding to detect the failure of the guarding master. Guarding involves the master sending remote frames
(remote transmit requests) to the guarding identifier of the slaves that are to be monitored. These reply with
the guarding message. This contains the slave’s status code and a toggle bit that has to change after every
message. If either the status or the toggle bit do not agree with that expected by the NMT master, or if there
is no answer at all, the master assumes that there is a slave fault.

Guarding procedure

Fig. 7: Schematic diagram: "Guarding procedure"

Protocol

The toggle bit (t) transmitted in the first guarding telegram has the value 0. After this, the bit must change
(toggle) in every guarding telegram so that the loss of a telegram can be detected. The node uses the
remaining seven bits to transmit its network status (s):

s Status
4 = 0x04 Stopped (previously: Prepared)
5 = 0x05 Operational
127 = 0x7F Pre-Operational

Sample

The guarding message for node 27 (0x1B) must be requested by a remote frame having identifier 0x71B
(1819dec). If the node is Operational, the first data byte of the answer message alternates between 0x05 and
0x85, whereas in the Pre-Operational state it alternates between 0x7F and 0xFF.

Guard time and life time factor

If the master requests the guard messages in a strict cycle, the slave can detect the failure of the master. In
this case, if the slave fails to receive a message request from the master within the set Node Life Time (a
guarding error), it assumes that the master has failed (the watchdog function). It then puts its outputs into the
error state, sends an emergency telegram, and returns to the pre-operational state. After a guarding time-out
the procedure can be re-started by transmitting a guarding telegram again.

Product overview

CX705026 Version: 1.0

The node life time is calculated from the guard time (object 0x100C) and life time factor (object 0x100D)
parameters:

Life time = guard time x life time factor

If either of these two parameters is "0" (the default setting), the master will not be monitored (no life
guarding).

Heartbeat: Node Monitoring without Remote Frame

In the heart beat procedure, each node transmits its status message cyclically on its own initiative. There is
therefore no need to use remote frames, and the bus is less heavily loaded than under the guarding
procedure.

The master also regularly transmits its heartbeat telegram, so that the slaves are also able to detect failure of
the master.

Heartbeat procedure

Fig. 8: Schematic diagram: "Heartbeat procedure"

Protocol

The toggle bit is not used in the heart beat procedure. The nodes send their status cyclically (s). See
Guarding [} 25].

4.7.2 Process Data Objects (PDO)

Introduction

In many fieldbus systems the entire process image is continuously transferred - usually in a more or less
cyclic manner. CANopen is not limited to this communication principle, since the multi-master bus access
protocol allows CAN to offer other methods. Under CANopen the process data is not transferred in a master/
slave procedure, but follows instead the producer-consumer model. In this model, a bus node transmits its
data, as a producer, on its own accord. This might, for example, be triggered by an event. All the other nodes
listen, and use the identifier to decide whether they are interested in this telegram, and handle it accordingly.
These are the consumers.

Product overview

CX7050 27Version: 1.0

The process data in CANopen is divided into segments with a maximum of 8 bytes. These segments are
known as process data objects (PDOs). The PDOs each correspond to a CAN telegram, whose specific CAN
identifier is used to allocate them and to determine their priority. Receive PDOs (RxPDOs) and transmit
PDOs (TxPDOs) are distinguished, the name being chosen from the point of view of the device: an input/
output module sends its input data with TxPDOs and receives its output data in the RxPDOs. This naming
convention is retained in the TwinCAT System Manager.

Communication parameters

The PDOs can be given different communication parameters according to the requirements of the
application. Like all the CANopen parameters, these are also available in the device's object directory, and
can be accessed by means of the service data objects. The parameters for the receive PDOs are at index
0x1400 (RxPDO1) onwards. There can be up to 512 RxPDOs (ranging up to index 0x15FF). In the same
way, the entries for the transmit PDOs are located from index 0x1800 (TxPDO1) to 0x19FF (TxPDO512).

The Beckhoff Bus Couplers or Fieldbus Coupler Box modules make 16 RxPDO and TxPDOs available for
the exchange of process data (although the figure for Economy and LowCost BK5110 and LC5100 Couplers
and the Fieldbus Boxes is 5 PDOs each, since these devices manage a lower quantity of process data). The
FC510x CANopen master card supports up to 192 transmit and 192 receive PDOs for each channel -
although this is restricted by the size of the DPRAM. The EL6751 CANopen terminal dynamically organizes
the process image; i.e. the process data are written in succession, enabling a higher data transmission rate.
Up to 32 TxPDOs and 32 RxPDOs can be handled in slave mode.

For each existing process data object there is an associated communication parameter object. The TwinCAT
System Manager automatically assigns the set parameters to the relevant object directory entries. These
entries and their significance for the communication of process data are explained below.

PDO Identifier

The most important communication parameter in a PDO is the CAN identifier (also known as the
communication object identifier, or COB-ID). It is used to identify the data, and determines their priority for
bus access. For each CAN data telegram there may only be one sender node (producer), although all
messages sent in the CAN broadcast procedure can be received, as described, by any number of nodes
(consumers). Thus a node can make its input information available to a number of bus devices at the same
time - even without transferring them through a logical bus master. The identifier is located in sub-index 1 of
the communication parameter set. It is coded as a 32-bit value in which the least significant 11 bits (bits
0...10) contain the identifier itself. The data width of the object of 32 bits also allows 29-bit identifiers in
accordance with CAN 2.0B to be entered, although the default identifiers always refer to the more usual 11-
bit versions. Generally speaking, CANopen is economical it its use of the available identifiers, so that the use
of the 29-bit versions remains limited to unusual applications. It is therefore also not supported by a
Beckhoff's CANopen devices. The highest bit (bit 31) can be used to activate the process data object or to
turn it off.

A complete identifier list [} 201] is provided in the appendix.

PDO linking

In the system of default identifiers, all the nodes (here: slaves) communicate with one central station (the
master), since slave nodes do not listen by default to the transmit identifier of any other slave node.

Product overview

CX705028 Version: 1.0

Fig. 9: Default identifier allocation: Master/Slave

Fig. 10: PDO linking: Peer to Peer

If the consumer-producer model of CANopen PDOs is to be used for direct data exchange between nodes
(without a master), the identifier allocation must be appropriately adapted, so that the TxPDO identifier of the
producer agrees with the RxPDO identifier of the consumer: This procedure is known as PDO linking. It
permits, for sample, easy construction of electronic drives in which several slave axes simultaneously listen
to the actual value in the master axis TxPDO.

PDO Communication Types: Overview

CANopen offers a number of possible ways to transmit process data (see also: Notes on PDO
Parameterization [} 33]).

Product overview

CX7050 29Version: 1.0

Fig. 11: Diagram: CAN process data transmission

Event driven

The ”event" is the alteration of an input value, the data being transmitted immediately after this change. The
event-driven flow can make optimal use of the bus bandwidth, since instead of the whole process image it is
only the changes in it that are transmitted. A short reaction time is achieved at the same time, since when an
input value changes it is not necessary to wait for the next interrogation from a master.

As from CANopen Version 4 it is possible to combine the event driven type of communication with a cyclic
update. Even if an event has not just occurred, event driven TxPDOs are sent after the event timer has
elapsed. If an event does occur, the event timer is reset. For RxPDOs the event timer is used as a watchdog
in order to monitor the arrival of event driven PDOs . If a PDO does not arrive within a set period of time, the
bus node adopts the error state.

Polled

The PDOs can also be polled by data request telegrams (remote frames). In this way it is possible to get the
input process image of event-driven inputs onto the bus, even when they do not change, for instance through
a monitoring or diagnostic device brought into the network while it is running. The time behavior of remote
frame and response telegrams depends on what CAN controller is in use. Components with full integrated
message filtering ("FullCAN") usually answer a data request telegram immediately, transmitting data that is
waiting in the appropriate transmit buffer - it is the responsibility of the application to see that the data there
is continuously updated. CAN controllers with simple message filtering (BasicCAN) on the other hand pass
the request on to the application which can now compose the telegram with the latest data. This does take
longer, but does mean that the data is up-to-date. Beckhoff use CAN controllers following the principle of
Basic CAN.

Since this device behavior is usually not transparent to the user, and because there are CAN controllers still
in use that do not support remote frames at all, polled communication can only with reservation be
recommended for operative running.

Synchronized

It is not only for drive applications that it is worthwhile to synchronize the determination of the input
information and the setting the outputs. For this purpose CANopen provides the SYNC object, a CAN
telegram of high priority but containing no user data, whose reception is used by the synchronized nodes as
a trigger for reading the inputs or for setting the outputs.

Product overview

CX705030 Version: 1.0

Fig. 12: Diagram: CAN "SYNC" telegram

PDO transmission types: Parameterization

The PDO transmission type parameter specifies how the transmission of the PDO is triggered, or how
received PDOs are handled.

Transmission type Cyclical Acyclical Synchronous Asynchronous Only RTR
0 X X
1-240 X X
241-251 - reserved -
252 X X
253 X X
254, 255 X

The type of transmission is parameterized for RxPDOs in the objects at 0x1400ff, sub-index 2, and for
TxPDOs in the objects at 0x1800ff, sub-index 2.

Acyclic Synchronous

PDOs of transmission type 0 function synchronously, but not cyclically. An RxPDO is only evaluated after the
next SYNC telegram has been received. In this way, for instance, axis groups can be given new target
positions one after another, but these positions only become valid at the next SYNC - without the need to be
constantly outputting reference points. A device whose TxPDO is configured for transmission type 0 acquires
its input data when it receives the SYNC (synchronous process image) and then transmits it if the data
correspond to an event (such as a change in input) having occurred. Transmission type 0 thus combines
transmission for reasons that are event driven with a time for transmission (and, as far as possible, sampling)
and processing given by the reception of "SYNC".

Cyclic Synchronous

In transmission types 1-240 the PDO is transmitted cyclically: after every ”nth" SYNC (n = 1...240). Since
transmission types can be combined on a device as well as in the network, it is possible, for example, for a
fast cycle to be agreed for digital inputs (n = 1), whereas the data for analog inputs is transmitted in a slower
cycle (e.g. n = 10). RxPDOs do not generally distinguish between transmission types 0...240: a PDO that has
been received is set to valid when the next SYNC is received. The cycle time (SYNC rate) can be monitored
(object 0x1006), so that if the SYNC fails the device reacts in accordance with the definition in the device
profile, and switches, for sample, its outputs into the error state.

The FC510x card / EL6751 terminal fully support the synchronous communication method: transmitting the
SYNC telegram is coupled to the linked task, so that new input data is available every time the task begins. If
a synchronous PDO does not arrive, this is detected and reported to the application.

Product overview

CX7050 31Version: 1.0

Only RTR

Transmission types 252 and 253 apply to process data objects that are transmitted exclusively on request by
a remote frame. 252 is synchronous: when the SYNC is received the process data is acquired. It is only
transmitted on request. 253 is asynchronous. The data here is acquired continuously, and transmitted on
request. This type of transmission is not generally recommended, because fetching input data from some
CAN controllers is only partially supported. Because, furthermore, the CAN controllers sometimes answer
remote frames automatically (without first requesting up-to-date input data), there are circumstances in which
it is questionable whether the polled data is up-to-date. Transmission types 252 and 253 are for this reason
not supported by the Beckhoff PC cards / terminals.

Asynchronous

The transmission types 254 + 255 are asynchronous, but may also be event-driven. In transmission type
254, the event is specific to the manufacturer, whereas for type 255 it is defined in the device profile. In the
simplest case, the event is the change of an input value - this means that every change in the value is
transmitted. The asynchronous transmission type can be coupled with the event timer, thus also providing
input data when no event has just occurred.

Inhibit time

The ”inhibit time" parameter can be used to implement a ”transmit filter" that does not increase the reaction
time for relatively new input alterations, but is active for changes that follow immediately afterwards. The
inhibit time (transmit delay time) specifies the minimum length of time that must be allowed to elapse
between the transmission of two of the same telegrams. If the inhibit time is used, the maximum bus loading
can be determined, so that the worst case latency can then be found.

Fig. 13: Timing diagram: "Inhibit time"

Although the Beckhoff FC510x PC cards / EL6751 terminal can parameterize the inhibit time on slave
devices, they do not themselves support it. The transmitted PDOs become automatically spread out (transmit
delay) as a result of the selected PLC cycle time - and there is little value in having the PLC run faster than
the bus bandwidth permits. The bus loading, furthermore, can be significantly affected by the synchronous
communication.

Event Timer

An event timer for transmit PDOs can be specified by sub-index 5 in the communication parameters. Expiry
of this timer is treated as an additional event for the corresponding PDO, so that the PDO will then be
transmitted. If the application event occurs during a timer period, it will also be transmitted, and the timer is
reset.

Product overview

CX705032 Version: 1.0

Fig. 14: Time representation of the event timer

In the case of receive PDOs, the timer is used to set a watchdog interval for the PDO: the application is
informed if no corresponding PDO has been received within the set period. The FC510x / EL6751 can in this
way monitor each individual PDO.

Notes on PDO Parameterization [} 33]

PDO Mapping

PDO mapping refers to mapping of the application objects (real time data) from the object directory to the
process data objects. The CANopen device profile provide a default mapping for every device type, and this
is appropriate for most applications. Thus the default mapping for digital I/O simply represents the inputs and
outputs in their physical sequence in the transmit and receive process data objects.

The default PDOs for drives contain 2 bytes each of a control and status word and a set or actual value for
the relevant axis.

The current mapping can be read by means of corresponding entries in the object directory. These are
known as the mapping tables. The first location in the mapping table (sub-index 0) contains the number of
mapped objects that are listed after it. The tables are located in the object directory at index 0x1600ff for the
RxPDOs and at 0x1A00ff for the TxPDOs.

Fig. 15: Mapping representation

Product overview

CX7050 33Version: 1.0

Digital and analog input/output modules: Read out the I/O number

The current number of digital and analog inputs and outputs can be determined or verified by reading out the
corresponding application objects in the object directory:

Parameter Object directory address
Number of digital input bytes Index 0x6000, sub-index 0
Number of digital output bytes Index 0x6200, sub-index 0
Number of analog inputs Index 0x6401, sub-index 0
Number of analog outputs Index 0x6411, sub-index 0

Variable mapping

As a rule, the default mapping of the process data objects already satisfies the requirements. For special
types of application the mapping can nevertheless be altered: the Beckhoff CANopen Bus Couplers, for
instance, thus support variable mapping, in which the application objects (input and output data) can be
freely allocated to the PDOs. The mapping tables must be configured for this: as from Version 4 of
CANopen, only the following procedure is permitted, and must be followed precisely:

1. First delete the PDO (set 0x1400ff, or 0x1800ff, sub-index 1, bit 31 to "1")
2. Set sub-index 0 in the mapping parameters (0x1600ff or 0x1A00ff) to "0"
3. Change mapping entries (0x1600ff or 0x1A00ff, SI 1..8)
4. Set sub-index 0 in the mapping parameters to the valid value. The device then checks the entries for

consistency.
5. Create PDO by entering the identifier (0x1400ff or 0x1800ff, sub-index 1).

Dummy Mapping

A further feature of CANopen is the mapping of placeholders, or dummy entries. The data type entries stored
in the object directory, which do not themselves have data, are used as placeholders. If such entries are
contained in the mapping table, the corresponding data from the device is not evaluated. In this way, for
instance, a number of drives can be supplied with new set values using a single CAN telegram, or outputs on
a number of nodes can be set simultaneously, even in event-driven mode.

4.7.3 PDO Parameterization
Even though the majority of CANopen networks operate satisfactorily with the default settings, i.e. with the
minimum of configuration effort, it is wise at least to check whether the existing bus loading is reasonable:
80% bus loading may be acceptable for a network operating purely in cyclic synchronous modes, but for a
network with event-driven traffic this value would generally be too high, as there is hardly any bandwidth
available for additional events.

Consider the Requirements of the Application

The communication of the process data must be optimized in the light of application requirements which are
likely to be to some extent in conflict. These include

• Little work on parameterization - useable default values are optimal
• Guaranteed reaction time for specific events
• Cycle time for regulation processes over the bus
• Safety reserves for bus malfunctions (enough bandwidth for the repetition of messages)
• Maximum baud rate - depends on the maximum bus length
• Desired communication paths - who is speaking with whom

The determining factor often turns out to be the available bus bandwidth (bus load).

Product overview

CX705034 Version: 1.0

Baud rate

We generally begin by choosing the highest baud rate that the bus will permit. It should be borne in mind that
serial bus systems are fundamentally more sensitive to interference as the baud rate is increased. The
following rule therefore applies: just as fast as necessary. 1000 kbit/s are not usually necessary, and only to
be unreservedly recommended on networks within a control cabinet where there is no electrical isolation
between the bus nodes. Experience also tends to show that estimates of the length of bus cable laid are
often over-optimistic - the length actually laid tends to be longer.

Determine the Communication Type

Once the baud rate has been chosen it is appropriate to specify the PDO communication type(s). These
have different advantages and disadvantages:

• Cyclic synchronous communication provides an accurately predictable bus loading, and therefore a
defined time behavior - you could say that the standard case is the worst case. It is easy to configure:
with the SYNC-Rate parameter the bus load can be set globally. The process images are
synchronized: inputs are read at the same time, output data is set valid simultaneously, although the
quality of the synchronization depends on the implementation. The BECKHOFF FC510x PC cards /
EL6751 CANopen terminal are capable of synchronizing the CANopen bus system with the cycles of
the application programs (PLC or NC).

The guaranteed response time for cyclically synchronous communication is always at least as long as
the cycle time, and the bus bandwidth is not used optimally, since old, unchanging data is also
constantly transmitted. It is however possible to optimize the network through the selection of different
SYNC multiples (transmission types 1...240), so that data that changes slowly is transmitted less often
than, for instance, time-critical inputs. It must, however, be borne in mind that input states that last for a
time that is shorter than the cycle time will not necessarily be communicated. If it is necessary for such
conditions to be registered, the associated PDOs for asynchronous communication should be provided.

• Event-driven asynchronous communication is optimal from the point of view of reaction time and the
exploitation of bus bandwidth - it can be described as "pure CAN". Your choice must, however, also
take account of the fact that it is not impossible for a large number of events to occur simultaneously,
leading to corresponding delays before a PDO with a relatively low priority can be sent. Proper network
planning therefore necessitates a worst-case analysis. Through the use of, for instance, inhibit time
[} 26], it is also necessary to prevent a constantly changing input with a high PDO priority from blocking
the bus (technically known as a "babbling idiot"). It is for this reason that event driving is switched off by
default in the device profile of analog inputs, and must be turned on specifically. The expiry timer can
be used to set time windows for the transmit PDOs: The telegram is sent at the earliest after the inhibit
time [} 26] has elapsed and is sent again at the latest after the expiry timer has elapsed.

• The communication type is parameterized by means of the Transmission Type [} 26].

It is also possible to combine the two PDO principles. It can, for instance, be helpful to exchange the set and
actual values of an axis controller synchronously, while limit switches, or motor temperatures with limit values
are monitored with event-driven PDOs. This combines the advantages of both principles: Synchronous axis
communication and short response time for limit switches. In spite of being event-driven, the distributed limit
value monitoring avoids a constant addition to the bus load from the analog temperature value.

In the example mentioned, it can also be useful to specifically influence the identifier distribution in order to
optimize the bus access through the priority distribution: the highest priority is given to the PDO with the limit
switch data, the lowest to the one with the temperature values.

Optimization of bus access latency time through modification of the identifier allocation is not, however,
normally required. In contrast, the identifiers must be changed to enable masterless communication(PDO
Linking [} 26]). In this example it would be possible for one RxPDO for each axis to be allocated the same
identifier as the limit switch TxPDO, so that alterations of the input value can be received without delay.

Determining the Bus Loading

It is always worth determining the bus loading. But what bus loading values are permitted, or indeed
sensible? It is first necessary to distinguish a short burst of telegrams in which a number of CAN messages
follow one another immediately - a temporary 100% bus loading. This is only a problem if the sequence of
receive interrupts that it caused at the CAN nodes cannot be handled. This would constitute a data overflow
(or CAN queue overrun). This can occur at very high baud rates (> 500 kbit/s) at nodes with software

Product overview

CX7050 35Version: 1.0

telegram filtering and relatively slow or heavily loaded microcontrollers if, for instance, a series of remote
frames (which do not contain data bytes, and are therefore very short) follow each other closely on the bus
(at 1 Mbit/s this can generate an interrupt every 40 µs; for example, an NMT master might transmit all its
guarding requests in an unbroken sequence). This can be avoided through skilled implementation, and the
user should be able to assume that the device suppliers have taken the necessary trouble. A burst condition
is entirely normal immediately after the SYNC telegram, for instance: triggered by the SYNC, all the nodes
that are operating synchronously try to send their data at almost the same time. A large number of arbitration
processes take place, and the telegrams are sorted in order of priority for transmission on the bus. This is
not usually critical, since these telegrams do contain some data bytes, and the telegrams trigger a sequence
of receive interrupts at the CAN nodes which is indeed rapid, but is nevertheless manageable.

Bus loading most often refers to the value averaged over several primary cycles, that is the mean value over
100-500 ms. CAN, and therefore CANopen, is indeed capable of managing a bus loading of close to 100%
over long periods, but this implies that no bandwidth is available for any repetitions that may be necessitated
by interference, for asynchronous error messages, parameterization and so on. Clearly, the dominant type of
communication will have a large influence on the appropriate level of bus loading: a network with entirely
cyclic synchronous operation is always in any case near to the worst case state, and can therefore be
operated with values in the 70-80% range. The figure is very hard to state for an entirely event-driven
network: an estimate must be made of how many events additional to the current state of the system might
occur, and of how long the resulting burst might last - in other words, for how long the lowest priority
message will be delayed. If this value is acceptable to the application, then the current bus loading is
acceptable. As a rule of thumb it can usually be assumed that an event-driven network running with a base
loading of 30-40% has enough reserve for worst-case scenarios, but this assumption does not obviate the
need for a careful analysis if delays could have critical results for the plant.

The BECKHOFF FC510x CANopen master cards / EL6751 CANopen master terminal display the bus load
via the System Manager. This variable can also be processed in the PLC, or can be displayed in the
visualization system.

The amount data in the process data objects is of course as relevant as the communication parameters: the
PDO mapping. [} 32]

4.7.4 Service Data Objects (SDO)
The parameters listed in the object directory are read and written by means of service data objects. These
SDOs are Multiplexed Domains, i.e. data structures of any size that have a multiplexer (address). The
multiplexer consists of a 16-bit index and an 8-bit sub-index that address the corresponding entries in the
object directory.

Fig. 16: SDO protocol: access to the object directory

Product overview

CX705036 Version: 1.0

The CANopen Bus Couplers are servers for the SDO, which means that at the request of a client (e.g. of the
IPC or the PLC) they make data available (upload), or they receive data from the client (download). This
involves a handshake between the client and the server.

When the size of the parameter to be transferred is not more than 4 bytes, a single handshake is sufficient
(one telegram pair): For a download, the client sends the data together with its index and sub-index, and the
server confirms reception. For an upload, the client requests the data by transmitting the index and sub-
index of the desired parameter, and the server sends the parameter (including index and sub-index) in its
answer telegram.

The same pair of identifiers is used for both upload and download. The telegrams, which are always 8 bytes
long, encode the various services in the first data byte. All parameters with the exception of objects 1008h,
1009h and 100Ah (device name, hardware and software versions) are only at most 4 bytes long, so this
description is restricted to transmission in expedited transfer.

Protocol

The structure of the SDO telegrams is described below.

Client -> Server, Upload Request

11 bit identifier 8 byte user data
0x600 (=1536dec) + node ID 0x40 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Client -> Server, Upload Response

11 bit identifier 8 byte user data
0x580 (=1408dec) + node ID 0x4x Index0 Index1 SubIdx Data0 Data1 Data2 Data3

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

Parameters whose data type is Unsigned8 are transmitted in byte D0, parameters whose type is Unsigned16
use D0 and D1.

The number of valid data bytes is coded as follows in the first CAN data byte (0x4x):

Number of parameter bytes 1 2 3 4
First CAN data byte 0x4F 0x4B 0x47 0x43

Client -> Server, Download Request

11 bit identifier 8 byte user data
0x600 (=1536dec) + node ID 0x22 Index0 Index1 SubIdx Data0 Data1 Data2 Data3

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Product overview

CX7050 37Version: 1.0

Parameter Explanation
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

It is optionally possible to give the number of valid parameter data bytes in the first CAN data byte

Number of parameter bytes 1 2 3 4
First CAN data byte 0x2F 0x2B 0x27 0x23

This is, however, not generally necessary, since only the less significant data bytes up to the length of the
object directory entry that is to be written are evaluated. A download of data up to 4 bytes in length can
therefore always be achieved in BECKHOFF bus nodes with 22 h in the first CAN data byte.

Client -> Server, Download Response

11 bit identifier 8 byte user data
0x580 (=1408dec) + node ID 0x60 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Breakdown of Parameter Communication

Parameter communication is interrupted if it is faulty. The client or server send an SDO telegram with the
following structure for this purpose:

11 bit identifier 8 byte user data
0x580 (client) or
0x600 (server) + node ID

0x80 Index0 Index1 SubIdx Error0 Error1 Error2 Error3

Parameter Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Error0 SDO error code low low byte (LLSB)
Error3 SDO error code high high byte (MMSB)

List of SDO error codes (reason for abortion of the SDO transfer):

SDO error code Explanation
0x05 03 00 00 Toggle bit not changed
0x05 04 00 01 SDO command specifier invalid or unknown
0x06 01 00 00 Access to this object is not supported
0x06 01 00 02 Attempt to write to a Read_Only parameter
0x06 02 00 00 The object is not found in the object directory
0x06 04 00 41 The object cannot be mapped into the PDO
0x06 04 00 42 The number and/or length of mapped objects would exceed the PDO length
0x06 04 00 43 General parameter incompatibility
0x06 04 00 47 General internal error in device
0x06 06 00 00 Access interrupted due to hardware error
0x06 07 00 10 Data type or parameter length do not agree or are unknown
0x06 07 00 12 Data type does not agree, parameter length too great
0x06 07 00 13 Data type does not agree, parameter length too short

Product overview

CX705038 Version: 1.0

SDO error code Explanation
0x06 09 00 11 Sub-index not present
0x06 09 00 30 General value range error
0x06 09 00 31 Value range error: parameter value too great
0x06 09 00 32 Value range error: parameter value too small
0x06 0A 00 23 Resource not available
0x08 00 00 00 General error
0x08 00 00 21 Access not possible due to local application
0x08 00 00 22 Access not possible due to current device status

Further, manufacturer-specific error codes have been introduced for register communication (index 0x4500,
0x4501):

SDO error code Explanation
0x06 02 00 11 Invalid table: Table or channel not present
0x06 02 00 10 Invalid register: table not present
0x06 01 00 22 Write protection still set
0x06 07 00 43 Incorrect number of function arguments
0x06 01 00 21 Function still active, try again later
0x05 04 00 40 General routing error
0x06 06 00 21 Error accessing BC table
0x06 09 00 10 General error communicating with terminal
0x05 04 00 47 Time-out communicating with terminal

4.7.5 Objekt dictionary

4.7.5.1 Object Directory - Structure
All the CANopen objects relevant for the Bus Coupler are entered into the CANopen object directory. The
object directory is divided into three different regions:

1. communication-specific profile region (index 0x1000 – 0x1FFF).
This contains the description of all the parameters specific to communication.

2. manufacturer-specific profile region (index 0x2000 – 0x5FFF).
Contains the description of the manufacturer-specific entries.

3. standardized device profile region (0x6000 – 0x9FFF).
Contains the objects for a device profile according to DS-401.

Every entry in the object directory is identified by a 16 bit index. If an object consists of several components
(e.g. object type array or record), the components are identified by an 8-bit sub-index. The object name
describes the function of an object, while the data type attribute specifies the data type of the entry. The
access attribute specifies whether an entry may only be read, only written, or may be both read and written.

Communication-specific region

All the parameters and objects necessary for the CANopen Bus Coupler’s communication are in this region
of the object directory. The region from 0x1000 to 0x1018 contains various general communication-specific
parameters (e.g. the device name).

The communication parameters (e.g. identifiers) for the receive PDOs are located in the region from 0x1400
to 0x140F (plus sub-index). The mapping parameters of the receive PDOs are in the region from 0x1600 to
0x160F (plus sub-index). The mapping parameters contain the cross-references to the application objects
that are mapped into the PDOs and the data width of the corresponding object (see also the section dealing
with PDO Mapping).

The communication and mapping parameters for the transmit PDOs are located in the regions from 0x1800
to 0x180F and from 0x1A00 to 0x1A0F.

Product overview

CX7050 39Version: 1.0

Manufacturer-specific region

This region contains entries that are specific to BECKHOFF, e.g.:

• data objects for special terminals
• objects for register communication providing access to all the Bus Couplers’ and Bus Terminals’

internal registers
• objects for simplified configuration of the PDOs

Standardized device profile region

The standardized device profile region supports the device profile of CANopen DS-401, Version 1. Functions
are available for analog inputs that can adapt communication in the event-driven operating mode to the
requirements of the application and to minimize the loading of the bus:

• limit value monitoring
• Delta function
• activation/deactivation of event-driven mode

4.7.5.2 Object List
The objects in the object directory can be reached by SDO access, but not generally through the
KS2000 configuration software. On the other hand, all the registers that can be configured with
KS2000 can also be reached using SDO access to the object directory (objects 0x4500 and
0x4501) - even though this does not offer the same convenience as the KS2000 software.

Parameter Index BK5120/
BK515x

BK5110 LC5100 BX5100/
BC5150

CX705x/
CX8051/B510

Device type [} 41] 0x1000 x x x x

Error register [} 41] 0x1001 x x x x x *

Error memory [} 41] 0x1003 x x x

Sync Identifier [} 41] 0x1005 x x x x x

Sync Interval [} 41] 0x1006 x x x x x

Device name [} 41] 0x1008 x x x x x *

Hardware version [} 41] 0x1009 x x x

Software version [} 41] 0x100A x x x x x

Node number [} 41] 0x100B x x x

Guard Time [} 41] 0x100C x x x x x

Life Time Factor [} 41] 0x100D x x x x x

Guarding Identifier [} 41] 0x100E x x x

Save parameters [} 41] 0x1010 x x x

Load default values [} 41] 0x1011 x x x

Emergency Identifier [} 41] 0x1014 x x x

Consumer Heartbeat Time [} 41] 0x1016 x x x x x

Producer Heartbeat Time [} 41] 0x1017 x x x x x

Device identifier (identity object)
[} 41]

0x1018 x x x x x *

Server SDO parameters [} 41] 0x1200 x x x

Communication parameters for
the 1st - 5th RxPDO [} 41]

0x1400 - 0x1404 x x x x x

Communication parameters for
the 6th - 16th RxPDO [} 41]

0x1405 - 0x140F x x x

Product overview

CX705040 Version: 1.0

Parameter Index BK5120/
BK515x

BK5110 LC5100 BX5100/
BC5150

CX705x/
CX8051/B510

Communication parameters for
the 17th - 32nd RxPDO [} 41]

0x1410 - 0x141F x only
BX5100

x

Mapping 1st -5th RxPDO [} 41] 0x1600 - 0x1604 x x x x x

Mapping 6th -16th RxPDO [} 41] 0x1605 - 0x160F x x x

Mapping 17th -32nd RxPDO
[} 41]

0x1610 - 0x161F x only
BX5100

x

Communication parameters for
the 1st - 5th TxPDO [} 41]

0x1800 - 0x1804 x x x x x

Communication parameters for
the 6th - 16th TxPDO [} 41]

0x1805 - 0x180F x x x

Communication parameters for
the 17th - 32nd TxPDO [} 41]

0x1810 - 0x181F x only
BX5100

x

Mapping 1st -5th TxPDO [} 41] 0x1A00 - 0x1A04 x x x x x

Mapping 6th -16th TxPDO [} 41] 0x1A05 - 0x1A0F x x x

Mapping 17th -32nd TxPDO
[} 41]

0x1A10 - 0x1A1F x only
BX5100

x

Flag area %MB0-511 0x2F00 x
Flag area %MB511-1023 0x2F01 x
Flag area %MB1024-1535 0x2F02 x
Flag area %MB1536-2047 0x2F03 x
Flag area %MB2048-2559 0x2F04 x
Flag area %MB2560-3071 0x2F05 x
Flag area %MB3072-3584 0x2F06 x
Flag area %MB3585-4095 0x2F07 x
3-byte special terminals, input
data [} 41]

0x2600 x

3-byte special terminals, output
data [} 41]

0x2700 x

4-byte special terminals, input
data [} 41]

0x2800 x

4-byte special terminals, output
data [} 41]

0x2900 x

5-byte special terminals, input
data [} 41]

0x2A00 x

5-byte special terminals, output
data [} 41]

0x2B00 x

6-byte special terminals, input
data [} 41]

0x2C00 x

6-byte special terminals, output
data [} 41]

0x2D00 x

8-byte special terminals, input
data [} 41]

0x3000 x

8-byte special terminals, output
data [} 41]

0x3100 x

Register communication, bus
node [} 41]

0x4500 x x x

Product overview

CX7050 41Version: 1.0

Parameter Index BK5120/
BK515x

BK5110 LC5100 BX5100/
BC5150

CX705x/
CX8051/B510

Register communication, bus
terminal/extension box [} 41]

0x4501 x x x

Enable PDOs [} 41] 0x5500 x x x
NetId 0x5FFE x
Digital inputs [} 41] 0x6000 x x x

Interrupt mask [} 41] 0x6126 x x x

Digital outputs [} 41] 0x6200 x x x

Analog inputs [} 41] 0x6401 x

Analog outputs [} 41] 0x6411 x

Event control, analog inputs
[} 41]

0x6423 x

Upper limit value, analog inputs
[} 41]

0x6424 x

Lower limit value, analog inputs
[} 41]

0x6425 x

Delta function, analog inputs
[} 41]

0x6426 x

* When an ADS server is registered, these objects are relayed to the PLC via ADS notification and have to
be answered there.

4.7.5.3 Objects and Data

Device type

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1000 0 Device type Unsigned32 ro N 0x0000000
0

Statement
of device
type

The 32 bit value is divided into two 16 bit fields:

MSB LSB
Additional information Device profile number
0000 0000 0000 wxyz 0x191 (401dez)

The additional information contains data related to the signal type of the I/O device:
z=1 signifies digital inputs,
y=1 signifies digital outputs,
x=1 signifies analog inputs,
w=1 signifies analog outputs.
A BK5120 with digital and analog inputs, but with no outputs, thus returns 0x00 05 01 91.

Special terminals (such as serial interfaces, PWM outputs, incremental encoder inputs) are not considered. A
Coupler that, for example, only has KL6001 serial interface terminals plugged in, thus returns 0x00 00 01 91.

The device type supplies only a rough classification of the device. The terminal identifier register of the Bus
Coupler can be read for detailed identification of the Bus Couplers and the attached terminals (for details see
register communication index 0x4500).

Product overview

CX705042 Version: 1.0

Error register

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1001 0 Error
register

Unsigned8 ro N 0x00 Error
register

The 8 bit value is coded as follows:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ManSpec. reserved reserved Comm. reserved reserved reserved Generic

ManSpec. Manufacturer-specific error, specified more precisely in object 1003.

Comm. Communication error (CAN overrun)

Generic An error that is not more precisely specified has occurred (the flag is set at every error message)

Error store

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1003 0x00 Predefined
error field
(Error
store)

Unsigned8 rw N 0x00 Object
1003h
contains a
description
of the error
that has
occurred in
the device -
sub-index 0
has the
number of
error states
stored.

1 Actual error Unsigned32 ro N None Last error
state to
have
occurred

... --
10 Standard

error field
Unsigned32 ro N None A maximum

of 10 error
states are
stored.

The 32 bit value in the error store is divided into two 16 bit fields:

MSB LSB
Additional code Error Code

The additional code contains the error trigger (see emergency object) and thereby a detailed error
description.

New errors are always saved at sub-index 1, all the other sub-indices being appropriately incremented. The
whole error store is cleared by writing a 0 to sub-index 0.

If there has not been an error since power up, then object 0x1003 only consists of sub-index 0 with a 0
entered into it. The error store is cleared by a reset or a power cycle.

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Product overview

CX7050 43Version: 1.0

Sync Identifier

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1005 0 COB-ID
Sync
Message

Unsigned32 rw N 0x8000008
0

Identifier of
the SYNC
message

The bottom 11 bits of the 32 bit value contain the identifier (0x80=128 dec). Bit 30 indicates whether the
device sends the SYNC telegram (1) or not (0). The CANopen I/O devices receive the SYNC telegram, and
accordingly bit 30=0. For reasons of backwards compatibility, bit 31 has no significance.

Sync Interval

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1006 0 Communica
tion cycle
period

Unsigned32 rw N 0x0000000
0

Length of
the SYNC
interval in
µs.

If a value other than zero is entered here, the bus node will go into the fault state if, during synchronous PDO
operation, no SYNC telegram is received within the watchdog time. The watchdog time corresponds here to
1.5 times the communication cycle period that has been set - the planned SYNC interval can therefore be
entered.

The I/O update is carried out at the Beckhoff CANopen bus nodes immediately after reception of the SYNC
telegram, provided the following conditions are satisfied:

- Firmware status C0 or above (CANopen Version 4.01 or higher).

- All PDOs that have data are set to synchronous communication (0..240).

- The sync interval has been entered in object 0x1006 and (sync interval x lowest PDO transmission type) is
less than 90ms.

The modules are then synchronised throughout.

Device name

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1008 0 Manufactur
er Device
Name

Visible
String

ro N BK51x0,
LC5100,
IPxxxx-
B510 or
ILxxxx-
B510

Device
name of the
bus node

Since the returned value is longer than 4 bytes, the segmented SDO protocol is used for transmission.

Hardware version

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1009 0 Manufactur
er
hardware-
version

Visible
String

ro N - Hardware
version
number of
the bus
node

Since the returned value is longer than 4 bytes, the segmented SDO protocol is used for transmission.

Product overview

CX705044 Version: 1.0

Software version

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100A 0 Manufactur
er software-
version

Visible
String

ro N - Software
version
number of
the bus
node

Since the returned value is longer than 4 bytes, the segmented SDO protocol is used for transmission.

Node number

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100B 0 Node-ID Unsigned32 ro N none Set node
number

The node number is supported for reasons of compatibility.

Guard time

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100C 0 Guard time
[ms]

Unsigned16 rw N 0 Interval
between
two guard
telegrams.
Is set by
the NMT
master or
configuratio
n tool.

Life time factor

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100D 0 Life time
factor

Unsigned8 rw N 0 Life time
factor x
guard time
= life time
(watchdog
for life
guarding)

If a guarding telegram is not received within the life time, the node enters the error state. If the life time factor
and/or guard time = 0, the node does not carry out any life guarding, but can itself be monitored by the
master (node guarding).

Guarding identifier

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100 E 0 COB-ID
guarding
protocol

Unsigned32 ro N 0x000007x
y, xy =
NodeID

Identifier of
the
guarding
protocol

Product overview

CX7050 45Version: 1.0

The guarding identifier is supported for reasons of compatibility. Changing the guarding identifier has no
longer been permitted since version 4 of CANopen.

Save parameters

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1010 0 Store
Parameter

Unsigned8 ro N 1 Number of
store
options

1 store all
parameters

Unsigned32 rw N 1 Stores all
(storable)
parameters

By writing the string save in ASCII code (hexadecimal 0x65766173) to sub-index 1, the current parameters
are placed into non-volatile storage. (The byte sequence on the bus including the SDO protocol: 0x23 0x10
0x10 0x01 0x73 0x61 0x76 0x65).

The storage process takes about 3 seconds, and is confirmed, if successful, by the corresponding TxSDO
(0x60 in the first byte). Since the Bus Coupler is unable to send or receive any CAN telegrams during the
storage process, saving is only possible when the node is in the pre-operational state. It is recommended
that the entire network is placed into the pre-operational state before such storage. This avoids a buffer
overflow.

Data saved includes:

• The terminals currently inserted (the number of each terminal category)
• All PDO parameters (identifier, transmission type, inhibit time, mapping).

[Gefahrinformation hier einfügen!]
NoteThe stored identifiers apply afterwards, not the default identifiers derived from the node
addresses. Changes to the DIP switch setting no longer affects the PDOs!

• All SYNC parameters
• All guarding parameters
• Limit values, delta values and interrupt enables for analog inputs

Parameters directly stored in the terminals by way of register communication are immediately stored there in
non-volatile form.

Load default values

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1011 0 Restore
Parameter

Unsigned8 ro N 4 Number of
reset
options

1 Restore all
parameters

Unsigned32 rw N 1 Resets all
parameters
to their
default
values

4 Set
manufactur
er Defaults

Unsigned32 rw N 1 Resets all
coupler
parameters
to
manufactur
er’s settings
(including
registers)

Product overview

CX705046 Version: 1.0

Writing the string load in ASCII code (hexadecimal 0x64616F6C) into sub-index 1 resets all parameters to
default values (as initially supplied) at the next boot (reset).

(The byte sequence on the bus including the SDO protocol: 0x23 0x11 0x10 0x01 0x6C 0x6F 0x61 0x64).

This makes the default identifiers for the PDOs active again.

Emergency identifier

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1014 0 COB-ID
Emergency

Unsigned32 rw N 0x0000008
0, +
NodeID

Identifier of
the
emergency
telegram

The bottom 11 bits of the 32 bit value contain the identifier (0x80=128 dec). The MSBit can be used to set
whether the device sends (1) the emergency telegram or not (0).

Alternatively, the bus node's diagnostic function can also be switched off using the Device diagnostics bit in
the K-Bus configuration (see object 0x4500).

Consumer heartbeat time

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1016 0 Number of
elements

Unsigned8 ro N 2 The
consumer
heartbeat
time
describes
the
expected
heartbeat
cycle time
and the
node ID of
the
monitored
node

1 Consumer
heartbeat
time

Unsigned32 rw N 0 Watchdog
time in ms
and node
ID of the
monitored
node

The 32-bit value is used as follows:

MSB LSB
Bit 31...24 Bit 23...16 Bit 15...0
Reserved (0) Node ID (unsigned8) Heartbeat time in ms (unsigned16)

The monitored identifier can be obtained from the node ID by means of the default identifier allocation:
Guard-ID = 0x700 + Node-ID.

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Product overview

CX7050 47Version: 1.0

Producer heartbeat time

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1017 0 Producer
heartbeat
time

Unsigned16 rw N 0 Interval in
ms
between
two
transmitted
heartbeat
telegrams

Device identifier (identity object)

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1018 0 Identity
Object:
Number of
elements

Unsigned8 ro N 4 The identity
object
contains
general
information
about the
type and
version of
the device.

1 Vendor ID Unsigned32 ro N 0x0000000
2

Manufactur
er identifier.
Beckhoff
has vendor
ID 2

2 Product
Code

Unsigned32 ro N Depends
on the
product

Device
identifier

3 Revision
Number

Unsigned32 ro N - Version
number

4 Serial
Number

Unsigned32 ro N - Production
date
low word,
high byte:
calendar
week (dec),
low word,
low byte:
calendar
year

Product Product Code
BK5120 0x11400
BK5110 0x113F6
LC5100 0x113EC
IPwxyz-B510 0x2wxyz
IL2301-B510 0x2008FD

Product overview

CX705048 Version: 1.0

Server SDO parameters

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1200 0 Number of
elements

Unsigned8 ro N 2 Communica
tion
parameters
of the
server
SDO. Sub-
index 0:
number of
following
parameters

1 COB-ID
Client
->Server

Unsigned32 ro N 0x000006x
y,
xy=Node-ID

COB-ID
RxSDO
(Client ->
Server)

2 COB-ID
Server
->Client

Unsigned32 ro N 0x0000058
0 + Node-
ID

COB-ID
TxSDO
(Client ->
Server)

This is contained in the object directory for reasons of backwards compatibility.

Product overview

CX7050 49Version: 1.0

Communication parameters for the 1st RxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1400 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the first
receive
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x000002x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Sub-index 1 (COB-ID): The bottom 11 bits of the 32 bit value (bits 0-10) contain the CAN identifier. The MSB
(bit 31) indicates whether the PDO exists currently (0) or not (1). Bit 30 indicates whether an RTR access to
this PDO is permissible (0) or not (1). Changing the identifier (bits 0-10) is not allowed while the object exists
(bit 31=0). Sub-index 2 contains the type of the transmission (see introduction to PDOs).

Product overview

CX705050 Version: 1.0

Communication parameters for the 2nd RxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1401 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameter
for the
second
receive
PDO.

1 COB-ID Unsigned32 rw N 0x000003x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO2

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Product overview

CX7050 51Version: 1.0

Communication parameters for the 3rd RxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1402 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameter
for the third
receive
PDO.

1 COB-ID Unsigned32 rw N 0x000004x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO3

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Product overview

CX705052 Version: 1.0

Communication parameters for the 4th RxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1403 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the
fourth
receive
PDO.

1 COB-ID Unsigned32 rw N 0x000005x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO4

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Product overview

CX7050 53Version: 1.0

Communication parameters for the 5th-16th RxPDOs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1404 -
0x140F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameter
for the 5th to
16th receive
PDOs.

1dth="5%">
1

COB-ID Unsigned32 rw N 0x8000000 COB-ID
(Communic
ation Object
Identifier)
RxPDO5...1
6

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

The number of RxPDOs for each bus node type can be found in the technical data.

Product overview

CX705054 Version: 1.0

Mapping parameters for the 1st RxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1600 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the first
receive
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6200010
8

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6200020
8

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x6200080

8
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The first receive PDO (RxPDO1) is provided by default for digital output data. Depending on the number of
outputs inserted, the necessary length of the PDO is automatically determined, and the corresponding
objects are mapped. Since the digital outputs are organised in bytes, the length of the PDO in bytes can be
found directly at sub-index 0.

Changes to the mapping

The following sequence must be observed in order to change the mapping (specified as from CANopen,
version 4):

1. Delete PDO (set bit 31 in the identifier entry (sub-index 1) of the communication parameters to 1)
2. Deactivate mapping (set sub-index 0 of the mapping entry to 0)
3. Change mapping entries (sub-indices 1...8)
4. Activate mapping (set sub-index 0 of the mapping entry to the correct number of mapped objects)
5. Create PDO (set bit 31 in the identifier entry (sub-index 1) of the communication parameters to 0)

Product overview

CX7050 55Version: 1.0

Mapping parameters for the 2nd RxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1601 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the
second
receive
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6411011
0

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6411021
0

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x0000000

0
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The second receive PDO (RxPDO2) is provided by default for analog outputs. Depending on the number of
outputs inserted, the necessary length of the PDO is automatically determined, and the corresponding
objects are mapped. Since the analog outputs are organised in words, the length of the PDO in bytes can be
found directly at sub-index 0.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Product overview

CX705056 Version: 1.0

Mapping parameters for the 3rd-16th RxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1602-
0x160F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameters
for the third
to sixteenth
receive
PDOs; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x0000000

0 (see text)
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The 3rd to 16th receive PDOs (RxPDO3ff) are automatically given a default mapping by the bus node
depending on the attached terminals (or depending on the extension modules). The procedure is described
in the section on PDO Mapping.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

[Gefahrinformation hier einfügen!]
NoteDS401 V2 specifies analog input and/or output data as the default mapping for PDOs 3+4. This
corresponds to Beckhoff's default mapping when less than 65 digital inputs or outputs are present.
In order to ensure backwards compatibility, the Beckhoff default mapping is retained - the mapping
behaviour of the devices therefore corresponds to DS401 V1, where in all other respects they
accord with DS401 V2.

Product overview

CX7050 57Version: 1.0

Communication parameters for the 1st TxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1800 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the first
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000018
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

Sub-index 1 (COB-ID): The bottom 11 bits of the 32 bit value (bits 0-10) contain the CAN identifier. The MSB
(bit 31) indicates whether the PDO exists currently (0) or not (1). Bit 30 indicates whether an RTR access to
this PDO is permissible (0) or not (1). Changing the identifier (bits 0-10) is not allowed while the object exists
(bit 31=0). Sub-index 2 contains the type of transmission, sub-index 3 the repetition delay between two
PDOs of the same type, while sub-index 5 contains the event timer. Sub-index 4 is retained for reasons of
compatibility, but is not used. (See also the introduction to PDOs.)

Product overview

CX705058 Version: 1.0

Communication parameters for the 2nd TxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1801 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the
second
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000028
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

The second transmit PDO is provided by default for analog inputs, and is configured for event-driven
transmission (transmission type 255). Event-driven mode must first be activated (see object 0x6423),
otherwise the inputs can only be interrogated (polled) by remote transmission request (RTR).

Product overview

CX7050 59Version: 1.0

Communication parameters for the 3rd TxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1802 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the third
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000038
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

The third transmit PDO contains analog input data as a rule (see Mapping). It is configured for event-driven
transmission (transmission type 255). Event-driven mode must first be activated (see object 0x6423),
otherwise the inputs can only be interrogated (polled) by remote transmission request (RTR).

Product overview

CX705060 Version: 1.0

Communication parameters for the 4th TxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1803 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the
fourth
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000048
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

The fourth transmit PDO contains analog input data as a rule (see Mapping). It is configured for event-driven
transmission (transmission type 255). Event-driven mode must first be activated (see object 0x6423),
otherwise the inputs can only be interrogated (polled) by remote transmission request (RTR).

Product overview

CX7050 61Version: 1.0

Communication parameters for the 5th-16th TxPDOs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1804-
0x180F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the 5th to
16th

transmit
PDOs. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000000 COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

Product overview

CX705062 Version: 1.0

Mapping 1st TxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1A00 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the first
transmit
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6000010
8

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6000020
8

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x6000080

8
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The first transmit PDO (TxPDO1) is provided by default for digital input data. Depending on the number of
inputs inserted, the necessary length of the PDO is automatically determined, and the corresponding objects
are mapped. Since the digital inputs are organised in bytes, the length of the PDO in bytes can be found
directly at sub-index 0.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Product overview

CX7050 63Version: 1.0

Mapping 2nd TxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1A01 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the
second
transmit
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6401011
0

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6401021
0

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 8th mapped

application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The second transmit PDO (TxPDO2) is provided by default for analog input data. Depending on the number
of inputs inserted, the necessary length of the PDO is automatically determined, and the corresponding
objects are mapped. Since the analog inputs are organised in words, the length of the PDO in bytes can be
found directly at sub-index 0.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Product overview

CX705064 Version: 1.0

Mapping 3rd-16th TxPDO

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1A02-
0x1A0F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameters
for the third
to sixteenth
transmit
PDOs; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x0000000

0 (see text)
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The 3rd to 16th transmit PDOs (TxPDO3ff) are automatically given a default mapping by the bus node
depending on the attached terminals (or depending on the extension modules). The procedure is described
in the section on PDO Mapping.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

[Gefahrinformation hier einfügen!]
NoteDS401 V2 specifies analog input and/or output data as the default mapping for PDOs 3+4. This
corresponds to Beckhoff's default mapping when less than 65 digital inputs or outputs are present.
In order to ensure backwards compatibility, the Beckhoff default mapping is retained - the mapping
behavior of the devices therefore corresponds to DS401 V1, where in all other respects they accord
with DS401 V2.

For the sake of completeness, the following object entries are also contained in the object directory (and
therefore also in the EDS files):

Index Meaning
0x2000 Digital inputs (function identical to object 0x6000)
0x2100 Digital outputs (function identical to object 0x6100)

Product overview

CX7050 65Version: 1.0

Index Meaning
0x2200 1-byte special terminals, inputs (at present no

terminals corresponding to this type are included in
the product range)

0x2300 1-byte special terminals, outputs (at present no
terminals corresponding to this type are included in
the product range)

0x2400 2-byte special terminals, inputs (at present no
terminals corresponding to this type are included in
the product range)

0x2500 2-byte special terminals, outputs (at present no
terminals corresponding to this type are included in
the product range)

0x2E00 7-byte special terminals, inputs (at present no
terminals corresponding to this type are included in
the product range)

0x2F00 7-byte special terminals, outputs (at present no
terminals corresponding to this type are included in
the product range)

3-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2600 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 3-
byte special
channels,
inputs

1 1st input
block

Unsigned24 ro Y 0x000000 1st input
channel

...
0X80 128th input

block
Unsigned24 ro Y 0x000000 128th input

channel

Example of special terminals with 3-byte input data (in the default setting): KL2502 (PWM outputs, 2 x 3
bytes)

3-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2700 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 3-
byte special
channels,
outputs

1 1st output
block

Unsigned24 rww Y 0x000000 1st output
channel

...
0X80 128th output

block
Unsigned24 rww Y 0x000000 128th output

channel

Example of special terminals with 3-byte output data (in the default setting): KL2502 (PWM outputs, 2 x 3
bytes)

Product overview

CX705066 Version: 1.0

4-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2800 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 4-
byte special
channels,
inputs

1 1st input
block

Unsigned32 ro Y 0x0000000
0

1st input
channel

...
0X80 128th input

block
Unsigned32 ro Y 0x0000000

0
128th input
channel

Examples of special terminals with 4-byte input data (in the default setting): KL5001, KL6001, KL6021,
KL6051

4-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2900 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 4-
byte special
channels,
outputs

1 1st output
block

Unsigned32 rww Y 0x0000000
0

1st output
channel

...
0X80 128th output

block
Unsigned32 rww Y 0x0000000

0
128th output
channel

Examples of special terminals with 4-byte output data (in the default setting): KL5001, KL6001, KL6021,
KL6051

5-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2A00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 5-
byte special
channels,
inputs

1 1st input
block

Unsigned40 ro Y 0x0000000
000

1st input
channel

...
0X40 64th input

block
Unsigned40 ro Y 0x0000000

000
64th input
channel

Example of special terminals with 5-byte input data (in the default setting): KL1501

Product overview

CX7050 67Version: 1.0

5-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2B00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 5-
byte special
channels,
outputs

1 1st output
block

Unsigned40 rww Y 0x0000000
000

1st output
channel

...
0X40 64th output

block
Unsigned40 rww Y 0x0000000

000
64th output
channel

Example of special terminals with 5-byte output data (in the default setting): KL1501

6-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2C00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
inputs

1 1st input
block

Unsigned48 ro Y 0x0000000
000

1st input
channel

...
0X40 64th input

block
Unsigned48 ro Y 0x0000000

000
64th input
channel

Example of special terminals with 6-byte input data (in the default setting): KL5051, KL5101, KL5111

6-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2D00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
outputs

1 1st output
block

Unsigned48 rww Y 0x0000000
000

1st output
channel

...
0X40 64th output

block
Unsigned48 rww Y 0x0000000

000
64th output
channel

Example of special terminals with 6-byte output data (in the default setting): KL5051, KL5101, KL5111

Product overview

CX705068 Version: 1.0

8-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x3000 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
inputs

1 1st input
block

Unsigned64 ro Y 0x0000000
000

1st input
channel

...
0x40 64th input

block
Unsigned64 ro Y 0x0000000

000
64th input
channel

Example for special terminals with 8-byte input data: KL5101 (with word alignment, not according to the
default setting)

8-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x3100 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
outputs

1 1st output
block

Unsigned64 rww Y 0x0000000
000

1st output
channel

...
0X40 64th output

block
Unsigned64 rww Y 0x0000000

000
64th output
channel

Example for special terminals with 8-byte output data: KL5101 (with word alignment, not according to the
default setting)

Bus node register communication

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x4500 0 Register
Access

Unsigned32 rw N none Access to
internal bus
node
registers

The 32 bit value is composed as follows:

MSB LSB
Access (bit 7) + table
number (bits 6...0)

Register number High byte register value Low byte register value

[0..1] + [0...0x7F] [0...0xFF] [0...0xFF] [0...0xFF]

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Accessing index 0x4500 allows any registers in the bus station to be written or read. The channel number
and the register are addressed here with a 32 bit data word.

Product overview

CX7050 69Version: 1.0

Reading the register value

The coupler must first be informed of which register is to be read. This requires an SDO write access to the
appropriate index/sub-index combination, with:
- table number (access bit = 0) in byte 3
- register address in byte 2 of the 32-bit data value.

Bytes 1 and 0 are not evaluated if the access bit (MSB of byte 3) equals 0. The register value can then be
read with the same combination of index and sub-index.

After the writing of the register address to be read, the coupler sets the access bit to 1 until the correct value
is available. Thus an SDO read access must check that the table number lies in the range from 0...0x7F.

An access error during register communication is indicated by the corresponding return value in the SDO
protocol (see the SDO section, Breakdown of parameter communication).

An example of reading register values

It is necessary to determine which baud rate index has been assigned to switch setting 1,1 (DIP 7,8). (See
the section covering Network addresses and baud rates). To do this, the value in table 100, register 3, must
be read. This means that the following SDO telegrams must be sent:

Write access (download request) to index 4500, sub-index 0, with the 32 bit data value 0x64 03 00 00.

 Id=0x600+Node-ID DLC=8; Data=23 00 45 00 00 00 03 64

Then a read access (upload request) to the same index/sub-index. The data value sent here is irrelevant (00
is used here).

 Id=0x600+Node-ID DLC=8; Data=40 00 45 00 00 00 00 00

The coupler responds with the upload response telegram:

 Id=0x580+Node-ID DLC=8; Data=43 00 45 00 04 00 03 64

This tells us that the value contained in this register is 4, and this baud rate index corresponds to 125 kbit/s
(the default value).

Writing register values

SDO write access to the corresponding combination of index and sub-index with:
- table number + 0x80 (access bit = 1) in byte 3
- register address in byte 2
- high byte register value in byte 1
- low byte register value in byte 0 of the 32-bit data value.

Remove coupler write protection

Before the registers of the Bus Coupler can be written, the write protection must first be removed. In order to
do this, the following values must be written in the given sequence to the corresponding registers:

Step Table Register Value Corresponding
SDO download
value (0x4500/0)

1. 99 2 45054 (0xAFFE) 0xE3 02 AF FE
(0xE3=0x63(=99)+
0x80)

2. 99 1 1 (0x0001) 0xE3 01 00 01
3. 99 0 257 (0x0101) 0xE3 00 01 01

Remove coupler write protection (CAN representation)

In order to remove the coupler write protection, the following SDO telegrams (download requests) must thus
be sent to the coupler:

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 FE AF 02 E3

Product overview

CX705070 Version: 1.0

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 01 00 01 E3

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 01 01 00 E3

An example of writing register values

After the write protection has been removed, the baud rate index for DIP switch setting 1,1 is to be set to the
value 7. This will assign a baud rate of 20 kbaud to this switch setting.

This requires the value 7 to be written into table 100, register 3. This is done with an SDO write access
(download request) to index 0x4500, sub-index 0 with the 32 bit value E4 03 00 07 (0xE4 = 0x64+0x80):

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 07 00 03 E4

Identify terminals

The identifier of the coupler (or of the bus station) and of the attached Bus Terminals can be read from the
Bus Coupler's table 9. Register 0 then contains the identifier of the Bus Coupler itself, register 1 the identifier
of the first terminal and register n the identification of the nth terminal:

Table number Register number Description Value range
9 0 Bus station identifier 0 - 65535
9 1-255 Identifier of the extension

module/bus terminal
0 - 65535

The Bus Coupler description in register number 0 contains 5120 = 0x1400 for the BK5120, 5110 = 0x13F6
for the BK5110 and 5100 = 0x13EC for the LC5100. The Fieldbus Box modules contain the identifier 510 dec
= 0x1FE in register 0.

In the case of analog and special terminals, the terminal identifier (dec) is contained in the extension module
identifier or the terminal description.
Example: if a KL3042 is plugged in as the third terminal, then register 3 contains the value 3042dec (0x0BE2).

The following bit identifier is used for digital terminals:

MSB LSB
1 s6 s5 s4 s3 s2 s1 s0 0 0 0 0 0 0 a e

s6...s1: data width in bits; a=1: output terminal; e=1: input terminal

This identifier scheme results in the terminal descriptions listed below:

Extension module identifier Meaning
0x8201 2 bit digital input terminal, e.g. KL1002, KL1052,

Kl9110, KL9260
0x8202 2 bit digital output terminal, e.g. KL2034, KL2612,

KL2702
0x8401 4 bit digital input terminal, e.g. KL1104, KL1124,

KL1194
0x8402 4 bit digital output terminal, e.g. KL2124, KL2134,

KL2184
0x8403 4 bit digital input/output terminal, e.g. KL2212

General coupler configuration (table 0)

Table 0 of the Bus Coupler contains the data for the general coupler configuration. It is not, as a general rule,
necessary to change this; however, for special applications it is possible to change the settings using the
KS2000 configuration software, or through direct access via register communication. The write protection
must first be removed in order to do this (see above).

The relevant register entries are described below:

Product overview

CX7050 71Version: 1.0

K-Bus configuration

Table 0, register 2, contains the K-Bus configuration, and is coded as follows (default value: 0x0006):

MSB LSB
0 0 0 0 0 0 0 0 0 0 0 0 0 D G A

A: Auto-reset

If there is a K-Bus error, attempts are made cyclically to start the K-Bus up again through a reset. If
emergency telegrams and guarding are not evaluated, activation of auto-reset can lead to output and input
information being lost without that loss being noticed.

0: No auto-reset (default)

1: Auto-reset active

G: Device diagnostics

 Reporting (by means of emergency telegram), that, for example
- a current input is open circuit (with diagnostics)
- 10 V exceeded at a 1-10V input terminal

0: Device diagnostics switched off

1: Device diagnostics active (default)

D: Diagnostic data

from digital terminals is included in the process image (e.g. KL2212). This flag is only evaluated when device
diagnostics is active (see above).

0: Do not display

1: Display (default)

Process image description

Table 0, register 3, contains the process image description, and is coded as follows (default value: 0x0903):

MSB LSB
0 0 0 0 k1 k0 f1 f0 0 0 a 0 d k 1 1

k0...k1: Reaction to K-Bus errors

0,2: Inputs remain unchanged (default = 2);

1: Set inputs to 0 (TxPDO with zeros is sent)

f0...f1: Reaction to fieldbus error

0: Stop the K-Bus cycles, watchdog in the terminals triggers, fault output values become active. The old
output values are initially set during a restart.

1: Set outputs to 0, then stop the K-Bus cycles (default). 2: Outputs remain unchanged.

a: Word alignment (of analog and special terminals)

0: No alignment (default)

1: Map data to word boundaries (process data always starts on an even address in the PDO)

d: Data format for complex terminals (analog and special terminals)

0: Intel format (default)

Product overview

CX705072 Version: 1.0

1: Motorola format

k: Evaluation of complex terminals (analog and special terminals)

0: User data only (default)

1: Complete evaluation (note: analog channels then, for example, need 3 input and 3 output bytes instead of,
e.g., 2 input bytes; instead of 4 channels per PDO, 2 channels require a RxPDO and a TxPDO)

Bus Terminal / Extension Box register communication

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x4501 0 Access
Terminal
Register

Unsigned8 ro N none Index
0x4501
allows
access to
all the
registers in
the bus
terminal or
extension
module.
Sub-index 0
contains
the number
of attached
bus
terminals.

1 Access
Reg.
Terminal 1

Unsigned32 rw N none Access to
bus
terminal or
extension
module
register 1

...
0XFE Access

Reg.
Terminal
254

Unsigned32 rw N none Access to
bus
terminal or
extension
module
register 254

The 32 bit value is composed as follows:

MSB LSB
Access (bit 7) + channel
number (bits 6...0)

Register number High byte register value Low byte register value

[0..1] + [0...0x7F] [0...0xFF] [0...0xFF] [0...0xFF]

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Accessing index 0x4501 allows the user registers in the bus terminal or extension module to be written or
read. The modules have a set of registers for each input or output channel. The modules are addressed by
means of the sub-index; the channel number and register are addressed in the 32-bit data value. Channel
number 0 corresponds here to the first channel, 1 to the second channel, and so forth.

Product overview

CX7050 73Version: 1.0

Reading the register value

The coupler must first be informed of which register is to be read. This requires an SDO write access to the
appropriate index/sub-index combination, with:
- channel number (access bit = 0) in byte 3
- register address in byte 2 of the 32-bit data value.

Bytes 1 and 0 are not evaluated if the access bit (MSB of byte 3) equals 0. The register value can then be
read with the same combination of index and sub-index.

After the writing of the register address to be read, the coupler sets the access bit to 1 until the correct value
is available. Thus an SDO read access must check that the table number lies in the range from 0...0x7F.

An access error during register communication is indicated by the corresponding return value in the SDO
protocol (see the SDO section, Breakdown of parameter communication).

An example of reading register values

The thermocouple type to which the second input channel of a KL3202 Thermocouple Input Terminal has
been set is to be determined. This requires feature register 32 to be read. The terminal is located in the fifth
slot, next to the Bus Coupler. This means that the following SDO telegrams must be sent:

Write access (download request) to index 4501, sub-index 5 with 32 bit data value 01 20 00 00 (0x01 = 2nd
channel, 0x20 = register 32)
Id=0x600+Node-ID DLC=8; Data=23 01 45 05 00 00 20 01

Then a read access (upload request) to the same index/sub-index. The data value sent here is irrelevant
(0x00 is used here).
Id=0x600+Node-ID DLC=8; Data=40 01 45 05 00 00 00 00

The coupler responds with the upload response telegram:
Id=0x580+Node-ID DLC=8; Data=43 01 45 05 06 31 20 01

This means that the feature register contains the value 31 06. The upper 4 bits indicate the thermocouple
type. Their value here is 3, which means that PT500 is the type that has been set for this channel (see the
KL3202 documentation).

Writing register values

SDO write access to the corresponding combination of index and sub-index with:
- channel number + 0x80 (access bit = 1) in byte 3
- register address in byte 2
- high byte register value in byte 1
- low byte register value in byte 0 of the 32-bit data value.

NOTICE
[Gefahrinformation hier einfügen!]
WarningIf the write protection is not removed (as a result, for instance, of a faulty codeword), then although
a write access to the terminal register will be confirmed (SDO download response), the value is not in fact
entered into the register. It is therefore recommended that the value is read back after writing and
compared.

Remove terminal write protection

Before the user registers in the Bus Terminal (register 32-xx, depending on terminal type or extension
module) can be written to, it is first necessary for write protection to be removed. The following codeword is
written for this purpose into register 31 of the channel concerned:

Write protection Channel Register Value Corresponding
SDO download
value (0x4500/0)

1,2, 3 or 4 31 (0x1F) 4661 (0x1235) 8y 1F 12 35 (y =
channel number)

Product overview

CX705074 Version: 1.0

Remove terminal write protection (CAN representation)

In order to remove the terminal's write protection, the following SDO telegram must thus be sent to the
coupler:

Id=600 + Node-ID DLC=8; Data=23 01 45 xx 35 12 1F 8y

where xx is the terminal's slot, and y indicates the channel.

An example of removing write protection

Suppose that a KL3202 Thermocouple Input Terminal is inserted into slot 5 of a BK5120 that has node
address 3, then the write protection for the first channel can be removed as follows:

Id=0x603 DLC=8; Data=23 01 45 05 35 12 1F 80

The following telegram is sent for the second channel:

Id=0x603 DLC=8; Data=23 01 45 05 35 12 1F 81

An example of writing register values

The type of thermocouple attached to the second channel of the KL3202 Terminal in slot 5 is now to be
changed to PT1000. For this purpose, the value 2 must be written into the upper 4 bits (the upper nibble) of
the feature register. It is assumed to that the default values are to be supplied for all the other bits in the
feature register. Once the write protection has been removed, SDO write access (download request) is used
to write the following 32 bit value into index 0x4501, sub-index 05: 81 20 21 06 (0x81=01+0x80;
0x20=32;0x2106 = register value).

The corresponding telegram on the bus looks like this:

Id=0x600+Node-ID DLC=8; Data=23 01 45 05 06 21 20 81

Activate PDOs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x5500 0 Activate
PDO
Defaults

Unsigned32 rw N 0x0000000
0

sets PDO
communica
tion
parameters
for PDOs
2...11

CANopen defines default identifiers for 4 transmit (Tx) and 2 receive (Rx) PDOs, all other PDOs being
initially deactivated after the nodes have started up. Index 0x5500 can activate all the PDOs that, in
accordance with the terminals inserted, are filled with process data (manufacturer-specific default mapping).
A manufacturer-specific default identifier allocation is carried out here for PDO5…11, while the transmission
type and a uniform inhibit time is set for PDO2…11. PDOs that do not have process data (and which are
thus superfluous in the present configuration) are not activated.

[Gefahrinformation hier einfügen!]
NoteThis object can only be written in the pre-operational state!

The 32-bit value is used as follows:

MSB LSB
Transmission Type
RxPDOs

Transmission Type
TxPDOs

High byte inhibit time Low byte inhibit time

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Product overview

CX7050 75Version: 1.0

Example

Activate PDOs for bus node number 1, set inhibit time to 10ms (=100 x 100µs), set transmission type for
TxPDOs to 255, and set transmission type for RxPDOs to 1. The following telegram must be sent:
Id=0x601 DLC=8; Data=23 00 55 00 64 00 FF 01

The node responds with the following telegram:
Id=0x601 DLC=8; Data=60 00 55 00 00 00 00 00

Identifiers used

The default identifier allocation for the additional PDOs leaves the pre-defined regions for guarding, SDOs
etc. free, assumes a maximum of 64 nodes in the network with PDO6 as the next node, and proceeds
according to the following scheme:

Object Function code Resulting COB ID (hex) Resulting COB ID (dec)
TxPDO5 1101 0x681 - 0x6BF 1665 - 1727
RxPDO5 1111 0x781 - 0x7BF 1921- 1983
TxPDO6 00111 0x1C1 - 0x1FF 449 - 511
RxPDO6 01001 0x241 - 0x27F 577 - 639
TxDPO7 01011 0x2C1 - 0x2FF 705 - 767
RxPDO7 01101 0x341 - 0x37F 833 - 895
TxPDO8 01111 0x3C1- 0x3FF 961 - 1023
RxPDO8 10001 0x441 - 0x47F 1089 - 1151
TxPDO9 10011 0x4C1 - 0x4FF 1217 - 1279
RxPDO9 10101 0x541 - 0x57F 1345 - 1407
TxDPO10 10111 0x5C1 - 0x5FF 1473 - 1535
RxPDO10 11001 0x641 - 0x67F 1601- 1663
TxPDO11 11011 0x6C1 - 0x6FF 1729 - 1791
RxPDO11 11101 0x741 - 0x77F 1857 - 1919

NOTICE
[Gefahrinformation hier einfügen!]
WarningEnsure that index 0x5500 is not used if Bus Couplers with more than 5 PDOs are present in
networks with node addresses > 64, otherwise identification overlaps can occur. In that case, the PDO
identifiers must be set individually.

For the sake of clarity, the default identifiers defined according to CANopen are also listed here:

Object Function code Resulting COB ID (hex) Resulting COB ID (dec)
Emergency 0001 0x81 - 0xBF [0xFF] 129 - 191 [255]
TxPDO1 0011 0x181 - 0x1BF [0x1FF] 385 - 447 [511]
RxPDO1 0100 0x201 - 0x23F [0x27F] 513 - 575 [639]
TxPDO2 0101 0x281 - 0x2BF [0x2FF] 641 - 676 [767]
RxPDO2 0110 0x301 - 0x33F [0x37F] 769 - 831 [895]
TxDPO3 0111 0x381 - 0x3BF [0x3FF] 897 - 959 [1023]
RxPDO3 1000 0x401 - 0x43F [0x47F] 1025 - 1087 [1151]
TxPDO4 1001 0x481 - 0x4BF [0x4FF] 1153 - 1215 [1279]
RxPDO4 1010 0x501 - 0x53F [0x57F] 1281- 1343 [1407]
SDO (Tx) 1011 0x581 - 0x5BF [0x5FF] 1409 - 1471 [1535]
SDO (Rx) 1100 0x601 - 0x63F [0x67F] 1537 - 1599 [1663]
Guarding / Heartbeat/
Bootup

1110 0x701 - 0x73F [0x77F] 1793 - 1855 [1919]

Product overview

CX705076 Version: 1.0

The identifiers that result from the DIP switch settings on the coupler are given, as are the identifier regions
for the node addresses 64...127 (not settable in Bus Couplers BK5110, BK5120 and LC5100) in square
brackets. Addresses 1…99 can be set for the Fieldbus Box modules and the BK515x Bus Couplers.

The appendix contains a tabular summary of all the identifiers.

Digital inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6000 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available
digital 8-bit
input data
blocks

1 1st input
block

Unsigned8 ro Y 0x00 1st input
channel

...
0XFE 254th input

block
Unsigned8 ro Y 0x00 254th input

channel

Interrupt mask

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6126 0 Number of
elements

Unsigned8 ro N Depending
on type

The
number of
32-bit
interrupt
masks = 2
x the
number of
TxDPOs

1 IR-Mask0
TxPDO1

Unsigned32 rw N 0xFFFFFFF
F

IR-mask
bytes 0...3
TxPDO1

2 IR-Mask1
TxPDO1

Unsigned32 rw N 0xFFFFFFF
F

IR-mask
bytes 4...7
TxPDO1

3 IR-Mask0
TxPDO2

Unsigned32 rw N 0xFFFFFFF
F

IR-mask
bytes 0...3
TxPDO2

...
0x20 IR-Mask1

TxPDO16
Unsigned32 rw N 0xFFFFFFF

F
IR-mask
bytes 4...7
TxPDO16

By default, every change in the value in an event-driven PDO causes a telegram to be sent. The interrupt
mask makes it possible to determine which data changes are evaluated for this purpose. By clearing the
appropriate ranges within the PDOs they are masked out for event-driving purposes (interrupt control). The
interrupt mask does not just govern all the PDOs with digital inputs, but all the TxPDOs that are present. If
the TxPDOs are shorter than 8 bytes, then the superfluous part of the IR mask is not evaluated.

The interrupt mask only has an effect on TxPDOs with transmission types 254 and 255. It is not stored in the
device (not even through object 0x1010). Changes to the mask at runtime (when the status is operational)
are possible, and are evaluated starting from the next change of input data.

The interrupt mask for TxPDOs with analog input data is not evaluated if either limit values (0x6424, 0x6425)
or the delta function (0x6426) have been activated for the inputs.

This entry has been implemented in firmware C3 and above.

Product overview

CX7050 77Version: 1.0

Example of data assignment

Application example

The value contained in a fast counter input is only to be transmitted when bits in the status word (the latch
input, for instance) have changed. This requires the 32 bit counter value to be masked out (zeroed) in the
interrupt mask. The status is located in byte 0, while the counter value is, by default, contained in bytes or
1..4 of the corresponding PDOs (TxPDO3 in this example, because < 65 digital and < 5 analog inputs are
present).
This means that index 0x6126, sub-index5 must receive the value 0x0000 00FF and that sub-index6 must
have 0xFFFF FF00 written into it.

The corresponding SDOs therefore appear as follows:

11 bit
identifier

8 bytes of user data

0x600+
node ID

0x22 0x26 0x61 0x05 0xFF 0x00 0x00 0x00

11 bit
identifier

8 bytes of user data

0x600+
node ID

0x22 0x26 0x61 0x06 0x00 0xFF 0xFF 0xFF

Digital outputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6200 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available
digital 8-bit
output data
blocks

1 1st input
block

Unsigned8 rw Y 0x00 1st output
channel

...
0XFE 254th input

block
Unsigned8 rw Y 0x00 254th output

channel

Product overview

CX705078 Version: 1.0

Analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6401 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 1st input Unsigned16 ro Y 0x0000 1st input
channel

...
0XFE 254th input Unsigned16 ro Y 0x0000 254th input

channel

The analog signals are displayed left aligned. The representation in the process image is therefore
independent of the actual resolution. Detailed information on the data format can be found at the relevant
signal type.

Analog outputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6411 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
output
channels
available

1 1st input
block

Unsigned16 rw Y 0x0000 1st output
channel

...
0XFE 254th input

block
Unsigned16 rw Y 0x0000 254th output

channel

The analog signals are displayed left aligned. The representation in the process image is therefore
independent of the actual resolution. Detailed information on the data format can be found at the relevant
signal type.

Event driven analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6423 0 Global
Interrupt
Enable

Boolean rw N FALSE (0) Activates
the event-
driven
transmissio
n of PDOs
with analog
inputs.

Although, in accordance with CANopen, the analog inputs in TxPDO2..4 are by default set to transmission
type 255 (event driven), the event (the alteration of an input value) is suppressed by the event control in
object 0x6423, in order to prevent the bus from being swamped with analog signals. It is recommended that
the flow of data associated with the analog PDOs is controlled either through synchronous communication or
through using the event timer. In event-driven operation, the transmission behavior of the analog PDOs can
be parameterized before activation by setting the inhibit time (object 0x1800ff, sub-index 3) and/or limit value
monitoring (objects 0x6424 + 0x6425) and/or delta function (object 0x6426).

Product overview

CX7050 79Version: 1.0

Upper limit value analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6424 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 upper limit
1st input

Unsigned16 rw Y 0x0000 Upper limit
value for 1st

input
channel

...
0XFE upper limit

254th input
Unsigned16 rw Y 0x0000 Upper limit

value for
254th input
channel

Values different from 0 activate the upper limit value for this channel. A PDO is then transmitted if this limit
value is exceeded. In addition, the event driven mode must be activated (object 0x6423). The data format
corresponds to that of the analog inputs.

Lower limit value analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6425 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 lower limit
1st input

Unsigned16 rw Y 0x0000 Lower limit
value for 1st

input
channel

...
0XFE lower limit

254th input
Unsigned16 rw Y 0x0000 Lower limit

value for
254th input
channel

Values different from 0 activate the lower limit value for this channel. A PDO is then transmitted if the value
falls below this limit value. In addition, the event driven mode must be activated (object 0x6423). The data
format corresponds to that of the analog inputs.

Product overview

CX705080 Version: 1.0

Delta function for analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6426 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 delta value
1st input

Unsigned16 rw Y 0x0000 Delta value
for the 1st

input
channel

...
0XFE delta value

254th input
Unsigned16 rw Y 0x0000 Delta value

for the 254th

input
channel

Values different from 0 activate the delta function for this channel. A PDO is then transmitted if the value has
changed by more than the delta value since the last transmission. In addition, the event driven mode must
be activated (object 0x6423). The data format corresponds to that of the analog inputs (delta value: can only
have positive values).

Commissioning

CX7050 81Version: 1.0

5 Commissioning

5.1 Mounting

Fig. 17: CX70xx Embedded PC, dimensions.

5.1.1 Note the permissible installation positions
NOTICE

Overheating
The Embedded PC may overheat if the installation position is incorrect or the minimum distances are not
adhered to. Adhere to the maximum ambient temperature of 60°C and the mounting instructions.

Install the Embedded PC horizontally in the control cabinet on a DIN rail, in order to ensure optimum heat
dissipation.

Note the following specifications for the control cabinet:

• The Embedded PC should only be operated at ambient temperatures between -25 °C and 60 °C.
Measure the temperature below the Embedded PC at a distance of 30 mm to the cooling fins, in order
to determine the ambient temperature correctly.

• Adhere to the minimum distances of 30 mm above and below the Embedded PC.
• Additional electrical equipment affects the heat generation in the control cabinet. Select a suitable

control cabinet enclosure depending on the application, or ensure that excess heat is dissipated from
the control cabinet.

The Embedded PC must be mounted horizontally on the DIN rail. Ventilation openings are located at the top
and bottom of the housing. This ensures an optimum airflow through the Embedded PC in vertical direction.
In addition, a minimum clearance of 30 mm above and below the Embedded PC is required, in order to
ensure adequate ventilation.

Commissioning

CX705082 Version: 1.0

Fig. 18: CX70xx Embedded PC, permissible installation position.

If vibrations and impact occur in the same direction as the DIN rail, the Embedded PC must be secured with
an additional bracket, in order to prevent it slipping.

Installation positions with reduced temperature range up to 45 °C

You can also mount the Embedded PC vertically or horizontally on the mounting rail. Note that you can then
only operate the Embedded PC up to an ambient temperature of 45 °C.

Ensure that Bus Terminals that are connected to the Embedded PC are designed for operation in vertical or
horizontal position.

Restrictions for E-bus/K-bus current

The maximum E-bus/K-bus current varies depending on the selected installation position and the ambient
temperature.

Table 5: Maximum E-bus/K-bus current depending on the selected installation position and the ambient
temperature.

E-bus/K-bus current Installation position Ambient temperature
max. 1.5 A variable -25…45 °C
max. 1.3 A horizontal -25…55 °C
max. 1 A variable -25…55 °C
max. 1 A horizontal -25…60 °C

Commissioning

CX7050 83Version: 1.0

5.1.2 Fastening to the DIN rail
The housing is designed such that the Embedded PC can be pushed against the DIN rail and latched onto it.

Requirements:

• DIN rail of the type TS35/7.5 or TS35/15 according to EN 60715.

Fasten the Embedded PC to the DIN rail as follows:
1. Place the Embedded PC on the DIN rail. Slightly press the Embedded PC onto the DIN rail until a soft

click can be heard and the Embedded PC has latched.

2. Subsequently, lock the catch on the left side of the Embedded PC.
3. Turn the latch counter clockwise until the latch quietly clicks and engages.

ð You have installed the Embedded PC successfully. Check again that the mounting is correct and that the
Embedded PC is engaged on the DIN rail.

Commissioning

CX705084 Version: 1.0

5.1.3 Changing the MicroSD card
Loss of data
MicroSD cards are subjected to heavy load during operation and have to withstand many write
cycles and extreme ambient conditions. MicroSD cards from other manufacturer may fail, resulting
in data loss.
Only use industrial MicroSD cards provided by Beckhoff.

The MicroSD card slot is intended for an industrially compatible MicroSD card. The firmware of the
Embedded PC is stored on the MicroSD card. If necessary, the MicroSD card can be written to from
TwinCAT 3, allowing user-defined data to be stored.

The eject mechanism is based on the push/push principle. Below, we show you how to change the MicroSD
card.

Requirements:

• The Embedded PC must be switched off. The MicroSD card may only be installed or removed in
switched-off state.

Changing the MicroSD card
1. Push the black cover upwards.

2. Gently push the MicroSD card.
3. The card is unlatched with a quiet click and raised about 2 – 3 mm out of the housing.

4. Push the new MicroSD card into the card slot with the contacts at the front. The contacts face to the
right.

5. A soft click can be heard when the MicroSD card engages.
ð The card is seated correctly when it is about 1 mm deeper than the front side of the housing.

Commissioning

CX7050 85Version: 1.0

5.1.4 Installing passive EtherCAT Terminals
Incorrectly installed passive EtherCAT Terminals
The E-bus signal between an Embedded PC and the EtherCAT Terminals can be impaired due to
incorrectly installed passive EtherCAT Terminals.
Passive EtherCAT Terminals should not be installed directly on the power supply unit.

EtherCAT Terminals that do not take part in active data exchange are referred to as passive terminals.
Passive EtherCAT Terminals have no process image and do not require current from the terminal bus (E-
bus).

Passive EtherCAT Terminals (e.g. EL9195) can be detected in TwinCAT. In the tree structure the EtherCAT
Terminal is displayed without process image, and the value in column “E-bus (mA)” does not change,
compared to the preceding EtherCAT Terminal.

Fig. 19: Identifying a passive EtherCAT Terminal in TwinCAT.

The entry "Current consumption via E-Bus" in the technical data of an EtherCAT Terminal indicates whether
a particular EtherCAT Terminal requires power from the terminal bus (E-bus).

The following diagram shows the permissible installation of a passive EtherCAT Terminal. The passive
EtherCAT Terminal was not directly attached to the power supply unit.

Fig. 20: Passive EtherCAT Terminals, permissible installation.

Commissioning

CX705086 Version: 1.0

5.2 Power supply
NOTICE

Damage to the Embedded PCs
The Embedded PCs may be damaged during wiring. The cables for the power supply should only be
connected in de-energized state.

The power supply terminal requires an external voltage source which provides 24 V DC (-15 % / +20 %).

The cabling of the Embedded PC in the control cabinet must be done in accordance with the standard EN
60204-1:2006 (PELV = Protective Extra Low Voltage):

• The "PE" and "0 V" conductors of the voltage source for a basic CPU module must be on the same
potential (connected in the control cabinet).

• Standard EN 60204-1:2006, section 6.4.1:b stipulates that one side of the circuit, or one point of the
energy source for this circuit must be connected to the protective earth conductor system.

Connections

Fig. 21: Connections for system voltage (Us) and power contacts (Up).

Table 6: Key for the connection example.

No. Description
1 The upper spring-loaded terminals labeled "24 V Us" and "0 V Us" supply the basic CPU module

and the terminal bus (data transfer via K- or E-bus) with voltage.
2 The spring-loaded terminals labeled "+24 V Up" and "0 V Up" supply the multi-functional I/Os, the

bus terminals, and EtherCAT Terminals with voltage via the power contacts.

Fuse
• When dimensioning the fuse for the system voltage (Us), take the maximum power consumption of the

embedded PC into account (see: Technical data [} 198])
• Protect the power contacts (Up) with a fuse with a max. rating of 10 A (slow-blow).

Interrupting/switching off the power supply

To switch off the embedded PC, do not disconnect the ground (0 V), because otherwise current may
continue to flow via the shielding, depending on the device, and damage the embedded PC or peripheral
devices.

Always disconnect the 24 V line. Devices connected to the embedded PC which have their own power
supply (e.g. a panel) must have the same potential for "PE" and "0 V" as the embedded PC has (no potential
difference).

Commissioning

CX7050 87Version: 1.0

5.2.1 Connect Embedded PC
The cables of an external voltage source are connected to spring-loaded terminals on the power supply
terminal. Observe the required conductor cross-sections and strip lengths.

Table 7: Required wire cross-sections and strip lengths.

Conductor cross-section e*: 0.08 ... 1.5 mm2

f*: 0.25 ... 1.5 mm2

a*: 0.14 ... 0.75 mm2

e*: AWG 28 ... 16
f*: AWG 22 ... 16
a*: AWG 26 ... 19

Strip length 8 ... 9 mm 0.33 inch

*e: single-wire, solid wire; f: stranded wire; a: with wire end sleeve

Fig. 22: Connection example with a CX7000.

Connect the Embedded PC as follows:
1. Open a spring-loaded terminal by slightly pushing with a screwdriver or a rod into the square opening

above the terminal.

2. The wire can now be inserted into the round terminal opening without any force.
3. The terminal closes automatically when the pressure is released, holding the wire safely and

permanently.
ð You have successfully connected the voltage source to the power supply terminal when the two upper

LEDs of the power supply terminal light up green.

The left LED (Us 24V) indicates the supply of the basic CPU module and terminal bus. The red LED (Up
24V) indicates the Bus Terminal supply via the power contacts.

Commissioning

CX705088 Version: 1.0

5.2.2 UL requirements
The CX7050 Embedded PCs are UL-certified. The corresponding UL label can be found on the name plate.

The CX7050 Embedded PCs can thus be used in areas where special UL requirements have to be met.
These requirements apply to the system voltage (Us) and the power contacts (Up). Applications without
special UL requirements are not affected by UL regulations.

UL requirements:

• The Embedded PCs must not be connected to unlimited voltage sources.
• Embedded PCs may only be supplied from a 24 V DC voltage source. The voltage source must be

insulated and protected with a fuse of maximum 4 A (corresponding to UL248).
• Or the power supply must originate from a voltage source that corresponds to NEC class 2. An NEC

class 2 voltage source must not be connected in series or parallel with another NEC class 2 voltage
source.

Fig. 23: Connection example for areas with special UL requirements.

Commissioning

CX7050 89Version: 1.0

5.3 CANopen: Connection and wiring
NOTICE

Improper wiring
On account of the lack of electrical isolation, the CAN driver can be destroyed or damaged due to incorrect
cabling. Always carry out the cabling in the switched-off condition. First connect the power supply and then
the CAN.

CAN is a 2-wire bus system, to which all devices are connected in parallel (i.e. using short drop lines). The
bus must be terminated at each end with a 120 (or 121) ohm termination resistor to prevent reflections. This
is also necessary even if the cable lengths are very short!

Since the CAN signals are represented as differential levels on the bus, the CAN line is comparatively
insensitive to interference (EMI). Both lines are affected, so the interference hardly changes the differential
level.

Additional shielding of the twisted wires can be used to further reduce EMI interference.

Commissioning

CX705090 Version: 1.0

Bus length

The maximum length of a CAN bus is primarily limited by the signal propagation time. The multi-master bus
access method (arbitration) requires that the signals are present quasi-simultaneously (before sampling
within a bit time) at all nodes. Since the signal propagation time in the CAN connections (transceiver,
optocoupler, CAN controller) are almost constant, the cable length must be adapted to the baud rate.

Baud rate Bus length
1 Mbit/s < 20 m*
500 kbit/s < 100 m
250 kbit/s < 250 m
125 kbit/s < 500 m
50 kbit/s < 1000 m
20 kbit/s < 2500 m
10 kbit/s < 5000 m

*) Often you can find the specification 40 m at 1 Mbit/s in the literature for CAN. However, this does not apply
to networks with opto-decoupled CAN controllers. The worst case calculation for opto-couplers yields a
figure 5 m at 1 Mbit/s - in practice, however, 20 m can be reached without difficulty.

It may be necessary to use repeaters for bus lengths greater than 1000 m.

Drop lines

Drop lines must always be avoided as far as possible, since they inevitably cause signal reflections. The
reflections caused by drop lines are not however usually critical, provided they have decayed fully before the
sampling time.

Commissioning

CX7050 91Version: 1.0

In the case of the bit timing settings selected in the bus couplers it can be assumed that this is the case,
provided the following drop line lengths are not exceeded:

Baud rate Drop line length Total length of all drop lines
1 Mbit/s < 1m < 5 m
500 kbit/s < 5 m < 25 m
250 kbit/s < 10 m < 50 m
125 kbit/s < 20m < 100 m
50 kbit/s < 50m < 250 m

Drop lines must not have termination resistors.

Star Hub (Multiport Tap)

When using passive distributors ("Multiport Taps"), e.g. the BECKHOFF distribution box ZS5052-4500,
shorter drop line lengths must be maintained.

The following table indicates the maximum drop line lengths and the maximum length of the trunk line
(without the drop lines):

Commissioning

CX705092 Version: 1.0

Baud rate Drop line length with multiport
topology

Trunk line length (without drop
lines)

1 Mbit/s < 0.3 m < 25 m
500 kbit/s < 1.2 m < 66 m
250 kbit/s < 2.4 m < 120 m
125 kbit/s < 4.8 m < 310 m

5.3.1 D-sub connector (X003)

Fig. 24: CANopen interface X003.

The CAN bus line is connected via a 9-pin D-sub connector with the following pin assignment:

Pin Connection
1 not used
2 CAN low (CAN-)
3 CAN Ground (internally connected to pin 6)
4 not used
5 Shield
6 CAN Ground (internally connected to pin 3)
7 CAN high (CAN+)
8 not used
9 not used

The DIN rail contact spring and the connector shield are connected together. An auxiliary voltage of up to
30 VDC may be connected to pin 9, which is used by some CAN devices to supply the transceivers.

Commissioning

CX7050 93Version: 1.0

5.3.2 Cable and shielding
Shielded twisted-pair cables (2x2) with a characteristic impedance of between 108 and 132 ohm is
recommended for the CAN wiring. If the CAN transceiver’s reference potential (CAN ground) is not to be
connected, the second pair of conductors can be omitted. (This is only recommended for networks of small
physical size with a common power supply for all the devices).

ZB5100 CAN Cable

A high quality CAN cable with the following properties is included in BECKHOFF's range:

• 2 x 2 x 0.25 mm² (AWG 24) twisted pairs, cable colors: red/black + white/black
• double shielded
• shield braid with filler strand (can be attached directly to pin 3 of the 5-pin connection terminal),
• flexible (minimum bending radius 35 mm when bent once, 70 mm for repeated bending)
• characteristic impedance (60 MHz): 120 ohm
• conductor resistance < 80 ohm/km
• sheath: gray PVC, outer diameter 7.3 +/- 0.4 mm
• weight: 64 kg/km.
• printed with "Beckhoff ZB5100 CAN-BUS 2x2x0.25" and meter marking (length data every 20 cm)

ZB5200 CAN/DeviceNet Cable

The ZB5200 cable material corresponds to the DeviceNet specification, and is also suitable for CANopen
systems. The ready-made ZK1052-xxxx-xxxx bus cables for the fieldbus box modules are made from this
cable material. It has the following specification:

• 2 x 2 x 0.34 mm² (AWG 22) twisted pairs
• double shielded · shield braid with filler strand
• characteristic impedance (1 MHz): 126 ohm
• conductor resistance 54 ohm/km
• sheath: gray PVC, outer diameter 7.3 mm
• printed with "InterlinkBT DeviceNet Type 572" as well as UL and CSA ratings
• stranded wire colors correspond to the DeviceNet specification
• UL recognized AWM Type 2476 rating
• CSA AWM I/II A/B 80°C 300V FT1
• corresponds to the DeviceNet "Thin Cable" specification

Commissioning

CX705094 Version: 1.0

Shielding

The shield is to be connected over the entire length of the bus cable, and only galvanically grounded at one
point, in order to avoid ground loops.
The design of the shielding, in which HF interference is diverted through R/C elements to the mounting rail
assumes that the rail is appropriately grounded and free from interference. If this is not the case, it is
possible that HF interference will be transmitted from the mounting rail to the shield of the bus cable. In that
case the shield should not be attached to the couplers - it should nevertheless still be fully connected
through.

Cable colors

Recommended application of Beckhoff CAN cables:

Function ZB5100 cable color ZB5200 cable color
CAN Ground black /(red) black
CAN Low black blue
Shield Filler strand Filler strand
CAN high white white
not used (red) (red)

Multifunction I/Os

CX7050 95Version: 1.0

6 Multifunction I/Os
A total of four adjustable slots are available for configuring the operation modes. A slot is a certain number of
inputs and outputs. For each slot a maximum of one module (DI, DIO, ENC, CNT or PWM) can be assigned,
which in turn determines the operation mode for the respective slot. A module is therefore a function that
these inputs and outputs can assume. The current module configuration is listed in TwinCAT under the
CX7028 interface. Note that the CX7028 interface for controlling the multifunction I/Os has its own CPU and
the CX7028 interface is not displayed or does not work under TwinCAT if the power supply (Up) is not
connected.

Fig. 25: CX7028 interface, slot and module configuration under TwinCAT.

Modules can be assigned to a specific slot with the button < or removed again with x. There is a choice of
different modules depending on the slot used. The module used by each slot is listed in the following.

Cycle time for multifunction I/Os

Communication to the multifunction I/Os is monitored with a fixed watchdog of 100 ms. This means that the
cycle time for the multifunction I/O must be faster than 100 ms.

Slot 1:

When using slot 1, inputs 1, 2 and (*3) as well as outputs 1 and 2 are configured.

Fig. 26: Supported modules when using slot 1.

• ENC (incremental encoder mode). 2 x digital input for 250 kHz encoder signal, 2 x encoder digital
output.

• CNT (counter mode). 1 x counter digital input 100 kHz, 1 x digital input as up/down counter 20 kHz, 2 x
counter digital output.

• DIO_2x (digital inputs and outputs). 2 x digital input, 24 V DC, filter 3 ms, type 3, 2 x digital output, 24 V
DC, 0.5 A, 1-wire technique.

Multifunction I/Os

CX705096 Version: 1.0

*) Input 3 is only available in incremental encoder mode. If the level is high, the value of the incremental
encoder can be latched or the counter reset.

Slot 2:

When using slot 2, inputs 3 and 4 as well as outputs 3 and 4 are configured.

Fig. 27: Supported modules when using slot 2.

• DIO_2x (digital inputs and outputs). 2 x digital input, 24 V DC, filter 3 ms, type 3, 2 x digital output, 24 V
DC, 0.5 A, 1-wire technique.

• PWM_DI_2x (PWM signal mode). 2 x digital input, 24 V DC, filter 3 ms, 2 x digital output configured for
PWM signal.

Slot 3:

When using slot 3, inputs 5 and 6 are configured.

Fig. 28: Supported modules when using slot 3.

Slot 3 contains only one module and therefore cannot be configured differently. The module supports 2 x
digital input, 24 V DC, filter 3 ms, type 3.

Slot 4:

When using slot 4, inputs 7 and 8 are configured.

Fig. 29: Supported modules when using slot 4.

• AI_2x (analog signal mode). 2 x digital input configured as analog input 0 to 10 V, 12 bits
• DI_2x (digital input). 2 x digital input, 24 V DC, filter 3 ms, type 3

Multifunction I/Os

CX7050 97Version: 1.0

6.1 Digital inputs
The digital inputs acquire binary control signals from the process level. Typically, these are mechanical
contacts such as normally closed contacts or normally open contacts, electronic sensors such as inductive
proximity switches, optical sensors or other methods in order to generate a low/high signal in the sense of
control technology. Thanks to integrated multi-function I/Os, the CX70xx has a total of 8 digital inputs, 24 V
DC, filter 3 ms, type 3.

Fig. 30: Configurable digital inputs.

The digital inputs have a 3 ms input filter. The signal status of each individual input is displayed by an LED.
For digital inputs 3, 4, 5 and 6, additional filter settings can be made in the appropriate CoE objects and, for
example, the resolution and filter time can be set.

Table 8: Technical data, multi-function I/Os as digital inputs.

Technical data CX7050
Connection technology 1-wire
Number of inputs 8
Nominal voltage 24 V DC (-15 %/+20 %)
Specification EN 61131-2, type 3
Signal voltage "0" -3…+5 V
Signal voltage "1" 11…30 V
Input filter Configurable, default: 3 ms, min.: 10 μs
Connection cross-section e*: 0.08…1.5 mm²,

f*: 0.25…1.5 mm²,
a*: 0.14…0.75 mm²

Connection cross section AWG e*: AWG 28…16,
f*: AWG 22…16,
a*: AWG 26…19

Strip length 8 … 9 mm

*e: single-wire, solid wire; f: stranded wire; a: with ferrule

Multifunction I/Os

CX705098 Version: 1.0

6.2 Digital outputs
NOTICE

Feedback at the 24 V outputs
A voltage of 24 V at the outputs can destroy the device if the power supply (Up) is not connected
(feedback). Connect the power supply (Up) so that 24 V can be applied to the outputs.

The digital outputs forward binary 24 V DC control signals, electrically isolated, to actuators at the process
level. The high level of the positive switching logic corresponds to the supply voltage.

Outputs 3 and 4 have a PWM output stage. If the two digital outputs are used as normal digital outputs, the
internal wiring will cause a leakage current of less than 100 µA, which will cause a voltage of about 5 V. If
you want to reach nearly 0 V at the low level of the output, you have to connect a 47 kΩ resistance to
ground.

Another possibility is to operate the two outputs in PWM mode and to write the variable PWM output of the
PWM signal for FALSE with 0x0000 and for TRUE with 0xFFFF. This activates the PWM output stage, which
does not generate any leakage current.

Fig. 31: Configurable digital outputs.

The CX7050 contains a total of four outputs, which indicate their signal state by means of light emitting
diodes. The outputs can be used to switch standard actuators such as contactors and valves.

Table 9: Technical data, multi-function I/Os as digital outputs.

Technical data CX7050
Connection technology 1-wire
Number of outputs 4
Nominal voltage 24 V DC (-15 %/+20 %)
Load type ohmic, inductive, lamp load
Max. output current 24 V/0.5 A (short-circuit proof)
Changeover times TON: 20 µs typ., TOFF: 10 µs typ.
Short circuit current < 2 A typ.
Max. breaking energy (ind.) < 150 mJ/channel
Connection cross-section e*: 0.08…1.5 mm²,

f*: 0.25…1.5 mm²,
a*: 0.14…0.75 mm²

Multifunction I/Os

CX7050 99Version: 1.0

Technical data CX7050
Connection cross section AWG e*: AWG 28…16,

f*: AWG 22…16,
a*: AWG 26…19

Strip length 8 … 9 mm

*e: single-wire, solid wire; f: stranded wire; a: with ferrule

Multifunction I/Os

CX7050100 Version: 1.0

6.3 Counter mode
The CX7050 Embedded PC can be configured as an up/down counter that enables the counting of a pulse.
The embedded PC is suitable for fast counting tasks with a cut-off frequency of up to 100 kHz, whereby the
CX7050 can be operated in 1-counter mode.

Fig. 32: Configurable inputs and outputs in counter mode.

The CX7050 supports three operation modes in counter mode:

• Up/down counter
• Up counter
• Down counter

In addition, output 1 can be switched depending on the counter value. Output 2 can be switched from the
PLC. This allows fast control signals for field devices to be used and switched.

The operation modes are set in TwinCAT via CoE objects.

Up/down counter

In the up/down counter operation mode, the pulse to be counted is detected by digital input 1. The counting
direction is specified by digital input 2.

If there is a high level at input 1 and at the same time at input 2, the counter counts upwards. If there is a
high level at input 1 and a low level at input 2, the counter counts downwards.

Up counter

In this operation mode, the signal is detected at digital input 1.

Down counter

In this operation mode, the signal is detected at digital input 1.

Multifunction I/Os

CX7050 101Version: 1.0

Table 10: Technical data, multi-function I/Os in counter mode.

Technical data CX7050
Number of counters 1 x up/down counter, 1 x up or down counter
Nominal voltage 24 V DC (-15 %/+20 %)
Specification EN 61131-2, type 3
Signal voltage "0" -3…+5 V
Signal voltage "1" 11…30 V
Cut-off frequency Up/down counter: 20 kHz1), counting in one direction only: 100 kHz
Counter depth 32-bit
Max. output current 24 V/0.5 A (short-circuit proof)
Special features Set counter, switch outputs, reset counter
Connection cross-section e*: 0.08…1.5 mm²,

f*: 0.25…1.5 mm²,
a*: 0.14…0.75 mm²

Connection cross section AWG e*: AWG 28…16,
f*: AWG 22…16,
a*: AWG 26…19

Strip length 8 … 9 mm

1) The up/down counter can also count up to 100 kHz, only with a direction reversal the counting frequency
must be <= 20 kHz, otherwise pulses will be lost.

*e: single-wire, solid wire; f: stranded wire; a: with ferrule

Multifunction I/Os

CX7050102 Version: 1.0

6.3.1 Select operation mode
The CX7050 supports three operation modes in counter mode: The operation mode is set in TwinCAT via
CoE objects. You can choose between the three operating modes up/down counter, up counter and down
counter.

Proceed as follows:
1. Click the CX7028 device on the left in the structure tree.
2. Click the CoE-Online tab.

3. Double-click the CoE object 8000:09 Operating mode.
4. Under the Enum option, select the required operation mode.
ð The operation mode is applied. Note that you can only use one operation mode at a time with the

CX7050 and mode mixing is not possible.

Multifunction I/Os

CX7050 103Version: 1.0

6.3.2 Switching outputs
With the CX7050, it is possible to switch output 1 automatically as soon as a certain counter value is
reached. This enables fast processing without the PLC. A second output, output 2, can be switched via the
PLC irrespective of the counter value.

Output 1 is switched or switched off respectively by the variables Switch on threshold value and Switch
off threshold value:

• If the value set under Switch on threshold value is reached, the output is switched.
• If the value set under Switch off threshold value is reached, the output is switched off.

When counting downwards, the corresponding switching instruction is executed in reverse. If the value falls
below the value set in Switch on threshold value, output 1 is switched off.

Proceed as follows:

1. Use the variable Switch on threshold value to specify a counter value at which the output should be
switched.

2. Use the variable Switch off threshold value to specify a counter value at which the output should be
switched off.

3. Then set the variable Enable output functions to True so that the settings are applied.
ð Only when the variable Enable output functions is set to True the function is enabled and the output is

switched.

If the parameterized counter value from Switch on/off threshold is reached or exceeded, but the
variable Enable output functions is not set, the switching order is not executed. The output is switched
as soon as Enable output functions is set. Likewise, a subsequently activated counter value Switch
on/off threshold affects the output immediately when the switching condition is fulfilled.

Multifunction I/Os

CX7050104 Version: 1.0

6.3.3 Set counter value
This step shows you how to set the counter value to a specific value. The variable Set counter value is
used to specify a value and the variable Set counter is used to set the counter value. Both variables can be
controlled from the PLC.

Proceed as follows:

1. Use the variable Set counter value to specify a value to set as a counter value.
2. Then set the variable Set counter to True to apply the settings.
ð Only when the variable Set counter is set to True, the value set under Set counter value is applied for

the counter value.

Multifunction I/Os

CX7050 105Version: 1.0

6.3.4 Setting the limit value for counters
This step shows you how to set a limit value in TwinCAT from which the counter value is automatically reset
to zero. When counting upwards, the counter value is reset to zero when the limit value is reached. When
counting downwards, the counter value is reset to the set limit value when zero is reached.

The counter value is a UDINT variable. The counter counts only in the positive range from 0 to
0xFFFF_FFFF (4294967295). If the value falls below zero, the counter is set to the maximum positive value.
If it exceeds 4294967295, the counter is set to zero. The two variables Counter underflow or Counter
overflow respectively indicate the overflow and are reset either on reaching 0x4000 in the positive direction
or on reaching 0xFFFFC000 in a negative direction or if the corresponding other overflow has been reached.

Proceed as follows:
1. Click the CX7028 device on the left in the structure tree.
2. Click the CoE-Online tab.

3. Double-click the CoE object 8000:22 Counter reload value and set the limit value.
4. Then double-click the CoE object 8000:03 Enable reload and set the value to True.
ð Only when the CoE object 8000:03 Enable reload is set to True are the function and the defined limit

value active.

Multifunction I/Os

CX7050106 Version: 1.0

6.4 Incremental encoder mode
In incremental encoder mode, the CX7050 can be configured as an interface for direct connection of 24 V
incremental encoders. A quadruple evaluation is used and both high level and low level are detected at input
1 and input 2.

Fig. 33: Configurable inputs and outputs in incremental encoder mode.

The range of functions in encoder mode corresponds to the range of functions in counter mode. In addition,
the counter value at input 3 can be latched, i.e. the value is entered in the process data on a high level at
input 3. Alternatively, the counter can be reset on a high level at input 3.

In addition, output 1 can be switched depending on the counter value. Output 2 can be switched from the
PLC. This allows fast control signals for field devices to be used and switched.

Multifunction I/Os

CX7050 107Version: 1.0

Table 11: Technical data, multi-function I/Os in encoder mode.

Technical data CX7050
Technology Incremental encoder interface
Nominal voltage 24 V DC (-15 %/+20 %)
Specification EN 61131-2, type 3
Encoder connection 1 x A, B: 24 V, single-ended
Additional inputs Latch input, 24 V DC
Cut-off frequency 250,000 increments/s (with 4-fold evaluation), corresponds to 62.5 kHz
Counter depth 32-bit
Quadrature decoder 4-fold evaluation
Max. output current 24 V/0.5 A (short-circuit proof)
Special features Latch function, software gate, set counter, switch outputs, reset

counters
Connection cross-section e*: 0.08…1.5 mm²,

f*: 0.25…1.5 mm²,
a*: 0.14…0.75 mm²

Connection cross section AWG e*: AWG 28…16,
f*: AWG 22…16,
a*: AWG 26…19

Strip length 8 … 9 mm

*e: single-wire, solid wire; f: stranded wire; a: with ferrule

Multifunction I/Os

CX7050108 Version: 1.0

6.4.1 Switching outputs
With the CX7050, it is possible to switch output 1 automatically as soon as a certain counter value is
reached. This enables fast processing without the PLC. A second output, output 2, can be switched via the
PLC irrespective of the counter value.

Output 1 is switched or switched off respectively by the variables Switch on threshold value and Switch
off threshold value:

• If the value set under Switch on threshold value is reached, the output is switched.
• If the value set under Switch off threshold value is reached, the output is switched off.

Proceed as follows:

1. Use the variable Switch on threshold value to specify a counter value at which the output should be
switched.

2. Use the variable Switch off threshold value to specify a counter value at which the output should be
switched off.

3. Then set the variable Enable output functions so that the settings are applied.
ð Only when the variable Enable output functions is set to True is the function enabled and the settings

applied.

If the parameterized counter value from Switch on/off threshold is reached or exceeded, but the
variable Enable output functions is not set, the switching order is not executed. The output is switched
as soon as Enable output functions is set. Likewise, a subsequently activated counter value Switch
on/off threshold affects the output immediately when the switching condition is fulfilled.

Multifunction I/Os

CX7050 109Version: 1.0

6.4.2 Latching the counter value
In incremental encoder mode, the counter value can be latched and thus the current value can be entered in
the process data. Input 3 is used as a latch input.

To enable the function, the variable Enable latch extern on positive edge must be set to True. On a high
level at input 3, the current counter value is entered into the variable Latch Value. You can monitor the
validity of the variable. As soon as the latch value is entered, the variable Latch extern valid is also set to
True.

Proceed as follows:

1. Set the variable Enable latch extern on positive edge to True to enable the latch function.
2. Monitor the status of the latch input with the variable Status of extern latch.
3. On a high level at input 3, the current counter value is entered into the variable Latch Value.
4. Monitor the validity of the latch value via the variable Latch extern valid. Once the latch value has been

written, the variable is also set to True.
ð To execute a latch again, the variable Enable latch extern on positive edge must receive a high level

again.

Multifunction I/Os

CX7050110 Version: 1.0

6.4.3 Setting the limit value for counters
This step shows how you can set a limit value in TwinCAT from which the counter value is automatically
reset to zero. When counting upwards, the counter value is reset to zero when the limit value is reached.
When counting downwards, the counter value is reset to the set limit value when zero is reached.

Proceed as follows:
1. Click the CX7028 device on the left in the structure tree.
2. Click the CoE-Online tab.

3. Double-click the CoE object 8000:12 Counter reload value and set the limit value.
4. Then double-click the CoE object 8000:09 Enable reload and set the value to True.
ð The function is only active when Enable reload is set. Alternatively, the latch input can be used and the

counter value can thus be reset externally. To do this, the latch function must be disabled and the CoE
object Enable extern reset set to True. With this setting, the current counter value is set to zero on a
high level at input 3.

Multifunction I/Os

CX7050 111Version: 1.0

6.5 Analog signal mode
The single-ended inputs 7 and 8 acquire signals in the range of 0 to 10 V.

Fig. 34: Configurable analog inputs.

The voltage is digitized with a resolution of 12 bits. LEDs are used to indicate the signal state.

Table 12: Technical data, multi-function I/Os in analog mode.

Technical data CX7050
Technology single ended
Number of inputs 2
Signal voltage 0…10 V
Internal resistance 500 kΩ
Input filter cut-off frequency 2 kHz
Resolution 12-bit (16-bit representation)
Measuring error < ±0.3 % (relative to full scale value)
Connection cross-section e*: 0.08…1.5 mm²,

f*: 0.25…1.5 mm²,
a*: 0.14…0.75 mm²

Connection cross section AWG e*: AWG 28…16,
f*: AWG 22…16,
a*: AWG 26…19

Strip length 8 … 9 mm

*e: single-wire, solid wire; f: stranded wire; a: with ferrule

Multifunction I/Os

CX7050112 Version: 1.0

6.6 PWM signal mode
NOTICE

Feedback at the 24 V outputs
A voltage of 24 V at outputs 3 and 4 can destroy the device (feedback). No voltage may be applied to the
outputs in PWM mode.

The PWM signal mode enables a pulse width modulated binary signal to be output at outputs 3 and 4.

Fig. 35: Configurable inputs and outputs in PWM signal mode

This signal is separated into duty cycle (0... 100 %) and PWM clock frequency (15 Hz... 100 kHz). The LEDs
are clocked with the outputs, and show the duty cycle by their brightness. The signal values are transferred
in 16-bit values.

Table 13: Technical data, multi-function I/Os in PWM mode.

Technical data Digital inputs
Connection technology PWM output
Number of outputs 2
Nominal voltage 24 V DC (-15 %/+20 %)
Load type ohmic, inductive, lamp load
Max. output current 24 V/0.5 A (short-circuit proof)
PWM clock frequency 15 Hz…100 kHz
Duty cycle 0…100 % (TON > 20 ns, TOFF > 200 ns)
Short circuit current < 2 A typ.
Special features separate frequency can be set for each channel

Multifunction I/Os

CX7050 113Version: 1.0

Technical data Digital inputs
Connection cross-section e*: 0.08…1.5 mm²,

f*: 0.25…1.5 mm²,
a*: 0.14…0.75 mm²

Connection cross section AWG e*: AWG 28…16,
f*: AWG 22…16,
a*: AWG 26…19

Strip length 8 … 9 mm

*e: single-wire, solid wire; f: stranded wire; a: with ferrule

Multifunction I/Os

CX7050114 Version: 1.0

6.6.1 Setting the PWM clock frequency and duty cycle
The signals at outputs 3 and 4 are output with pulse width modulation, the signals being separated into duty
cycle and PWM clock frequency. Separate values for duty cycle and PWM clock frequency can be defined
for both outputs.

Table 14: PWM output (duty cycle), representation of the PWM signal in the delivery state.

Value Decimal Hexadecimal
0 % 0 0x0000
25 % 16383 0x3FFF
50 % 32767 0x7FFF
100 % 65.535 0xFFFF

Table 15: PWM period (PWM clock frequency), representation of the PWM signal in the delivery state.

Value Decimal Hexadecimal Frequency
0.010 ms 0..10 0x0000-0x000A 100 kHz
0.011 ms 11 0x000B 90.909 kHz
0.100 ms 100 0x0064 10 kHz
1.000 ms 1000 0x03E8 1 kHz
16.38 ms 16383 0x3FFF 61.04 Hz
65.53 ms 65535 0xFFFF 15.26 Hz

The variable PWM output correspond to the duty cycle and PWM period to the PWM clock frequency at
which the signal is output.

Proceed as follows:

1. On the left in the structure tree, select an output for which you wish to set the duty cycle and PWM clock
frequency.

2. Link the variables PWM output and PWM period with the appropriate variables from your PLC project.
3. In the variables, set the values for duty cycle and PWM clock frequency according to the above tables.

Multifunction I/Os

CX7050 115Version: 1.0

6.6.2 Setting the channel synchronization
The channel synchronization option makes the output of output 2 dependent on output 1. The following
values are available in the CoE objects:

• No: no dependency
• Ch2 = Ch1: Duty cycle and PWM clock frequency of output 1 are also applied to output 2. The phase

position is 0, i.e. the rising and falling edges of output 1 and output 2 are synchronized.
• Ch2 = Ch1 inverted: Duty cycle and PWM clock frequency of output 1 are also applied to output 2.

However, the PWM clock frequency is inverted. The phase position is 0, i.e. a rising edge at output 1
triggers a falling edge at output 2 at the same time.

Proceed as follows:
1. Click the CX7028 device on the left in the structure tree.
2. Click the CoE-Online tab.

3. Double-click the CoEobject 8020:09 Channel synchronization.
4. Under the option Enum, select the type of synchronization required.

Configuration

CX7050116 Version: 1.0

7 Configuration

7.1 Starting the Beckhoff Device Manager
Using the Beckhoff Device Manager, an Industrial PC can be configured by remote access with the aid of a
web browser. The access takes place via the HTTP protocol and Port 80 (TCP).

Requirements:

• Host PC and Embedded PC must be located in the same network. The network firewall must allow
access via port 80 (HTTP).

• IP address or host name of the Embedded PC.

Table 16: Access data for the Beckhoff Device Manager on delivery.

User name Password
Administrator 1

Start the Beckhoff Device Manager as follows:
1. Open a web browser on the host PC.
2. Enter the IP address or the host name of the Industrial PC in the web browser to start the Beckhoff

Device Manager.

• Example with IP address: http://169.254.136.237/config

• Example with host name: http://BTN-000f89fa/config
3. Enter the user name and password. The start page appears:

ð Navigate forward in the menu and configure the Industrial PC. Note that modifications only become
active once they have been confirmed. It may be necessary to restart the Industrial PC.

http://169.254.136.237/config
http://btn-000f89fa/config

Configuration

CX7050 117Version: 1.0

7.2 Persistent data
NOTICE

Application example
In the following example, changes to the loads, the power supply or even just aging components can lead
to the application no longer fulfilling the desired function. Beckhoff takes no responsibility for the
implementation of the example in an application.

Normally, persistent data are only stored during the TwinCAT stop or by a function block. This chapter shows
you how to store persistent data on a CX7050 without a UPS.

In the case of an Embedded PC with UPS, the function block is usually linked to the UPS. The function block
becomes active as soon as a power failure is detected, writes the persistent data and then shuts down the
Embedded PC. With a 1-second UPS, the Embedded PC is not shut down because there is too little time left
for this.

In the case of a small controller such as the CX7050 which is delivered without a 1-second UPS, you can still
use this function. All that is needed is to use a power supply unit that has enough residual energy to supply
power to the CX7050 with this residual energy for a certain period of time. A small test can show you if this is
possible with your power supply unit:

Testing a power supply unit

When the CX7050 is running, turn off the AC voltage of your power supply unit and measure how long the
CX7050 continues to run. If it is more than three seconds, you may be able to use the power supply unit as a
replacement for a 1-second UPS. Note that power supply units also age and lose capacity. You should
therefore include a safety factor, such as a factor of three, so that you have enough reserve to be able to
operate the power supply unit for a longer period of time as a replacement for a 1-second UPS.

Now determine how long the power supply unit maintains the supply of power. You need an EL1722 for this,
which you connect to the AC side of the power supply unit. Then write a small program:
VAR
 bPower230V AT %I* : BOOL; (*link to the EL1722*)
END_VAR

VAR RETAIN
 Counter : INT;
END_VAR

Program:
IF NOT bPower230V THEN (*bPower230V is linked to the EL1722*)
 Counter:=counter+1; (*the counter is a retain value*)
END_IF

Create a boot project and turn off the AC voltage of the power supply unit. As soon as the EL1722 no longer
displays a value, the counter is incremented and the data are copied to the internal NOVRAM. Turn the AC
voltage back on and log in. You must now multiply the counter value by the task time. Repeat this a few
times to be sure that the power supply unit always behaves in the same way. Next, you have to insert the
function block FB_WritePersistentData. This is contained in the Tc2_Utilities library (in the "TwinCAT
PLC" folder).

Then determine how long it takes to store the persistent data. Repeat this process a few times too, so that
you obtain a constant value and can determine a maximum value in case of fluctuations. You can determine
the time required via the Busy flag. The function block is being processed as long as the Busy flag is set.
Multiply the value determined by two to incorporate a further safety factor.

Example:

Your measurement shows that the power supply unit maintains the supply of power for three seconds and
that the persistent data is written in about 400 ms. With the recommended safety factors, the power supply is
maintained for one second and the persistent data is written in about 800 ms.

The power supply is therefore maintained for a longer period of time than is needed to store the persistent
data. Therefore you can use the example power supply unit as a replacement for the 1-second UPS.

Configuration

CX7050118 Version: 1.0

7.3 NOVRAM
The NOVRAM can be used to reliably save important variable values, such as production data or counter
values, in the event of a power failure. The memory size of the NOVRAM is limited and only suitable for
smaller data quantities up to 4 kB.

In this chapter we show you how the NOVRAM is used in TwinCAT 3.

Functioning

The NOVRAM (Non-Volatile Random Access Memory) is a special memory component that is used to
reliably save important data. The NOVRAM consists of two sections, a volatile memory and a non-volatile
memory.

TwinCAT only writes to the volatile section of the NOVRAM. In the event of a power failure, the data are
automatically copied from the volatile memory into the non-volatile memory. The energy required for this
process is supplied by a capacitor. As soon as the power supply is restored, the data are automatically
copied back into the volatile memory, so that TwinCAT can continue to use them.

Fig. 36: Controller behavior with and without NOVRAM.

Memory size

The NOVRAM has a capacity of 4 kB. The data are saved cyclically and alternately based on the dual buffer
principle, in order to avoid the risk of data inconsistency.

Requirements

Development environ-
ment

Target platforms Hardware PLC libraries
to include

TwinCAT 3.1 Build: 4020 PC or CX (x86, x64, ARM) CX70xx, CX9020,
CX20x0, CX20x2,
CX20x3

Tc2_IoFunctions

Configuration

CX7050 119Version: 1.0

7.3.1 Creating a Retain Handler
Under TwinCAT 3 (from Build 4020) a delta algorithm is used to save data in the NOVRAM. The algorithm
does not save all the variables in the NOVRAM. Instead, it searches for changes (delta function) compared
to the previous cycle and only saves variables that have changed.

To use the delta algorithm, a Retain Handler must be created in TwinCAT 3, and the relevant variables must
be declared in the PLC with the keyword VAR_RETAIN.

A new feature of this method is that no function blocks have to be used. The Retain Handler saves data in
the NOVRAM in the event of a power failure and makes them available again once the power has been
restored.

This chapter describes how to create a Retain Handler in TwinCAT 3. The Retain Handler saves data in the
NOVRAM and makes them available again. In other words, important variable values such as production
data or counter values are retained during a restart or power failure.

Requirements for this step:

• TwinCAT 3.1 Build: 4020.
• A target device selected in TwinCAT.

Create the Retain Handler as follows:
1. Right-click on Devices in the tree view on the left-hand side.
2. In the context menu click on Scan.

3. Select Device (NOV-DP-RAM) and confirm with OK.

4. Click on Yes to search for boxes.

Configuration

CX7050120 Version: 1.0

5. Click on Device (NOV-DP-RAM) in the tree view on the left-hand side and then on the tab Generic
NOV-DP-RAM Device.

6. Click the option RAM.
7. Right-click on Device (NOV-DP-RAM) in the tree view and then on Add New Item.

8. Select the Retain Handler and click on OK.

ð You have successfully created a Retain Handler in TwinCAT.

In the next step you can create retain variables in the PLC and link them with the Retain Handler.

Configuration

CX7050 121Version: 1.0

7.3.2 Creating and linking variables
Once you have created a Retain Handler in TwinCAT, you can declare variables in the PLC and link them to
the Retain Handler. The variables have to be identified in the PLC with the keyword VAR_RETAIN.

Prerequisite for this step:

• A PLC project created in TwinCAT.

Create variables as follows:
1. Create the variables in your PLC project in a VAR RETAIN area.

2. Click on Build in the toolbar at the top, then on Build Solution.

3. Click on PLC Instance in the tree view on the left and then on the tab Data Area.

Configuration

CX7050122 Version: 1.0

4. Under Retain Hdl, select the Retain Handler that you have created.

ð After selecting a Retain Handler as a target, the symbols in the tree view are linked and a mapping is
created.
In the tree view the variables are created from the PLC under the Retain Handler and linked to the
variables from the PLC instance.

An existing link is displayed with an arrow symbol.

Configuration

CX7050 123Version: 1.0

7.3.3 Deleting variables under the Retain Handler
If variables are deleted from the PLC, the link with the Retain Handler is cancelled. However, the variables
continue to be shown under the Retain Handler and are not deleted automatically.

Under TwinCAT 3 the variables have to be deleted manually.

Prerequisites for this step:

• Variables declared with VAR_RATAIN were deleted from the PLC.

Delete the variables under the Retain Handler as follows:
1. The variable GVL_Retain.iNt under the Retain Handler is to be deleted.

2. Right-click on the Retain Handler in the tree view on the left.
3. In the context menu click on Optimize Retain Variables.

ð The variable under the Retain Handler is deleted.

Configuration

CX7050124 Version: 1.0

7.4 Software configuration

7.4.1 User name and password
In the delivery state, the CX7050 has a preset user name with password, which is necessary for logging in to
TwinCAT or the Beckhoff Device Manager.

• User name: Administrator
• Password: 1

The user name is fixed and cannot be changed. It is also not possible to add another user name. The preset
password can be changed via the Beckhoff Device Manager (see: Starting the Beckhoff Device Manager).
The password can contain a maximum of 32 characters. Numbers, letters and special characters are allowed
and a distinction is also made between upper and lower case letters.

Fig. 37: Changing the password in the Beckhoff Device Manager.

You can restore the delivery state and preset password by removing the MicroSD card, accessing the
MicroSD card with a card reader and deleting the device.conf file in the /etc folder. The password
cannot be reset without physical access to the CX7050 and thus to the MicroSD card.

Configuration

CX7050 125Version: 1.0

7.4.2 Setting the IP address
DHCP is enabled by default for the CX7050. Without a DHCP server, the CX7050 uses a local IP address in
the address range 169.254.x.x

In the case of the CX7050 Embedded PC, there are several ways to set the IP address. One way is to call
the Beckhoff Device Manager and set the IP address for the CX7050 in the browser (see: Starting the
Beckhoff Device Manager).

Another way to set the IP address is offered by the boot.conf file, which is created on the MicroSD card after
the first start. This step shows you how to set the IP address in the boot.conf file.

Requirements:

• MicroSD card reader

Proceed as follows:
1. Switch the Embedded PC off and remove the MicroSD card from the Embedded PC.
2. Open the Boot.conf file under \etc

3. Set the DhcpEnabled entry to false.
4. Assign an IP address under IPv4.
5. Make the settings for subnet mask, gateway and DNS server.
ð Save the changes and install the MicroSD card in the Embedded PC again. The settings are effective

after startup.

Configuration

CX7050126 Version: 1.0

7.4.3 Update image
NOTICE

Failure of the power supply
The bootloader may be corrupted if the update is interrupted. The CX70x0 thus becomes unusable and
must be sent in for repair. Ensure a stable power supply during initial start-up and do not interrupt the
update.

The new image will be copied directly to the MicroSD card in order to update the image of the Embedded
PC. The new image is made available by Beckhoff Service. Perform the update only after consulting with
Beckhoff Service.

Requirements:

• Card reader for MicroSD cards.

Update the image as follows:
1. Switch the Embedded PC off and remove the MicroSD card from the Embedded PC.
2. Insert the MicroSD card into an external card reader and open the MicroSD card's folder tree.
3. Delete all files and folders on the MicroSD card.
4. Copy all files and folders of the new image to the empty MicroSD card.

5. Re-install the MicroSD card in the Embedded PC and start the Embedded PC.
ð The Embedded PC is started and saves the current hardware configuration. New folders are created,

such as Hard Disk or TwinCAT. The image has now been successfully updated.

Configuration

CX7050 127Version: 1.0

7.4.4 Updating the firmware for multifunction I/Os
This step shows you how to update the firmware of the multifunction I/Os. The firmware is provided by
Beckhoff Service and the update is carried out in TwinCAT.

Requirements:

• EtherCAT firmware file (*.efw)

Proceed as follows:
1. Start TwinCAT in configuration mode (config mode).
2. On the left in the structure tree, click the CX7028 device and then click the Online tab.

3. Click the Bootstrap button to switch the multifunction I/Os to the bootstrap state.
4. Click the Download button and select a current efw file.

ð The update takes about 3 to 4 minutes. A progress bar indicates the progress of the update. Do not
switch the CX7050 off during this time.

When the update is complete, return to the Operational (Op) state by clicking the Op button.

Configuration

CX7050128 Version: 1.0

7.4.5 Updating the ESI device description
The TwinCAT System Manager and the TwinCAT EtherCAT Master require the device description files of all
EtherCAT devices for configuration in online and offline mode. These device descriptions are the so-called
ESI files (EtherCAT Slave Information) in XML format. These files can be requested from the respective
vendor and are made available for download. An *.xml file may contain several device descriptions.

ESI files for Beckhoff EtherCAT devices are provided at https://www.beckhoff.com.

Requirements:

• ESI file for the CX7050 in XML format.
• If necessary, the associated *.xsd file, which describes the structure of the XML file.

Proceed as follows:
1. Copy the ESI file into the TwinCAT installation directory: \TwinCAT\3.1\Config\Io\OnboardIo.
2. Create the folder manually if it doesn't exist.
3. Open TwinCAT and click in the menu under TwinCAT > EtherCAT Devices on Reload Device

Description.

ð The ESI file is re-read into TwinCAT. An error is returned if there is a faulty ESI file. Check whether the
structure of the *.xml corresponds to the associated *.xsd file or whether the files match the CX7050.

https://www.beckhoff.com

TwinCAT

CX7050 129Version: 1.0

8 TwinCAT

8.1 First Steps

8.1.1 Connect to the CX70x0
Before you can configure the CX7050 in TwinCAT, you must establish a connection between your
engineering computer and the CX7050 (target system). The engineering computer and the Embedded PC
must be in the same network and subnet or alternatively connected directly via an Ethernet cable (peer-to-
peer).

The IP address or host name of the CX7050 is required for the connection.

Requirements:

• TwinCAT must be in Config mode.
• IP address or host name of the Embedded PC.

Establish a connection as follows:
1. In the menu at the top click on File > New > Project and create a new TwinCAT XAE project.
2. In the tree view on the left click on SYSTEM, and then Choose Target.

3. Click on Search (Ethernet).

TwinCAT

CX7050130 Version: 1.0

4. Click Broadcast Search and search for available devices on the network.

5. Mark the appropriate CX7050 and click Add Route. The host name and IP address facilitate
identification.

6. Enter the user name and password in the User and Password fields respectively and click OK. User
name: Administrator Password: 1

7. The new device is displayed in the Choose Target System window.

TwinCAT

CX7050 131Version: 1.0

8. Select the device you want to specify as target system and click OK.

ð You have successfully established a connection between your engineering computer and the CX7050
(target system) in TwinCAT. The new target system and the host name are displayed in the menu bar.

Using this procedure you can search for all available devices and also switch between the target systems
at any time.

8.1.2 Scan multifunction I/Os
Special features of the CX7000 series are the eight integrated multifunction inputs and four integrated
multifunction outputs. This chapter shows how to scan and create the multifunction I/Os in TwinCAT.

Note that the CX7028 interface for controlling the multifunction I/Os has its own CPU and the CX7028
interface is not displayed or does not work under TwinCAT if the power supply(Up) is not connected.

Proceed as follows:

TwinCAT

CX7050132 Version: 1.0

1. On the left side of the tree view, right-click Devices and then click Scan.

All
available I/O devices are displayed.

2. Select the appropriate I/O devices. For this example, at least the CX7028 interface, i.e. the CX7000
device, must be selected. If you still want to operate Bus or EtherCAT Terminals on the CX7000, then
you must also select EtherCAT as a device.

3. A total of four slots are created. For each slot a maximum of one module (DI, DIO, ENC, CNT or PWM)
can be assigned, which in turn determines the operation mode for the respective slot.

4. Modules can be assigned to a specific slot with the button < or removed again with x.
ð Define the required modules according to their requirements. There is a choice of different modules

depending on the slot used. Which modules are supported by which slot is listed in the chapter
Multifunction I/Os [} 95].

TwinCAT

CX7050 133Version: 1.0

8.1.3 Establishing ADS communication
This chapter shows you how to connect a CX7050 to another CX70x0 or any TwinCAT controller. The ADS
protocol provides the simplest way to connect two TwinCAT systems to each other. With the ADS protocol,
data can be both read and written. ADS function blocks are normally used for communication; these are
included in the Tc2_System library. In the following example, data are to be written to and read from a
memory area.

In order to set up an ADS connection, an ADS route is created first. Communication then takes place via
Ethernet and data exchange via the TCP/IP protocol. The ADS route is then the interface between the ADS
and TCP/IP connection. The ADS route indicates which AmsNetId is assigned to which TCP/IP address. As
a result, the ADS function blocks no longer use the TCP/IP address, but the AmsNetId.

Requirements:

• Two CX70x0 Embedded PCs.
• Both CX70x0s are in the same network and accessible via ADS.

Proceed as follows:

1. Start TwinCAT and connect to the first CX70x0 (see: Connect to the CX70x0 [} 129]).
2. On the left in the tree view, click Routes, select the Static Routes tab, and click the Add button.

3. Under Remote Route, select the Static option so that the ADS route remains in the project, and then
click the Broadcast Search button.

TwinCAT

CX7050134 Version: 1.0

4. Select the second CX70x0 as the destination of the ADS route. The ADS route is entered for both
Embedded PCs. The AmsNetId of the second CX70x0 is displayed and can be used in the program for
ADS function blocks.

5. Now connect to the second CX70x0, which has been set as the destination of the ADS route, and write a
small program. Define an array and increment a value of the array.
VAR
 MarksTest AT %MB0 : ARRAY[0..9] of INT;
END_VAR

Program:
MarksTest[0]:=MarksTest[0]+1;

6. Activate the configuration and switch the CX70x0 to Run mode.
7. For the first CX70x0, write a program that reads the incremented value of the array.

VAR
 ADSREAD : ADSREAD;
 NetID : STRING:='5.81.38.23.1.1'; (* AMSNetId of the target*)
 Value : INT; (* value of target MarksTest[0]*)
 Error : INT;
 NoError : INT;
END_VAR

Program:
 ADSREAD(
 NETID:=NetID ,
 PORT:=851 , (* plc port of the target*)
 IDXGRP:=16#4020 , (* Marks %MB*)
 IDXOFFS:=0 , (* Marks offset in byte*)
 LEN:=2 , (* length of data in byte*)
 DESTADDR:=ADR(Value) , (* pointer to the data in which the value is to be stored *)
 READ:=TRUE ,
 TMOUT:= ,
 BUSY=> ,
 ERR=> ,
 ERRID=>);
 IF NOT ADSREAD.BUSY THEN
 IF NOT ADSREAD.ERR THEN
 NoError:=NoError+1;
 ELSE
 Error:=Error+1;
 END_IF
 ADSREAD(Read:=FALSE);
 END_IF

8. The incremented value is read out and transmitted to the first CX70x0.
ð You should see on the first CX70x0 how the value of the Value variable is incremented. The writing of

the data works in the same way. Data can be written with the ADSWRITE function block. Make sure that
you set the offset (IDXOFFSET) to 10 in this sample setup so that the array [4... 9] is written. Limit the
length to 10 bytes, as an array of 0... 9 of type INT was created and the memory thus uses %MB0...
MB19 (10 * 2 bytes) (The elements 0...4 for reading the array and the elements 5...9 for writing it).

Use one ADS command at a time. Wait until the ADS service is finished, i.e. the BUSY output of the

TwinCAT

CX7050 135Version: 1.0

function block is switched to FALSE, and only then use the next ADS function block. To optimize the
access timing, you can also use an ADSREADWRITE function block that reads and writes the data at the
same time.

8.1.4 Creating a PLC project
The next steps describe how to create a PLC project in TwinCAT and add it in the tree view.

Prerequisites for this step:

• A newly created TwinCAT XAE project.

Create a PLC project as follows:
1. Right-click on PLC in the tree view.
2. In the context menu click on Add New Item and select the Standard PLC Project.

3. In the tree view click on the newly created PLC project, then double-click on MAIN (PRG) under POUs.

4. Write a small program, as shown in the diagram below.

TwinCAT

CX7050136 Version: 1.0

5. In the tree view right-click on the PLC project, then click on Build in the context menu.

ð You have successfully created a PLC project and added the project in TwinCAT. A PLC instance with the
variables for the inputs and outputs is created from the PLC project.

In the next step you can link the variables with the hardware.

TwinCAT

CX7050 137Version: 1.0

8.1.5 Linking variables
Once the PLC project was successfully added in the System Manager, you can link the newly created input
and output variables from the PLC project with the inputs and outputs of your hardware.

Prerequisites for this step:

• A PLC program attached in TwinCAT.

Link the variables as follows:
1. Double-click on the input or output variables in the tree view under PLC.

The Attach Variable window appears and shows which inputs or outputs can be linked with the
variables from the PLC project.

2. Double-click on the inputs or outputs of the hardware in the Attach Variable window.
Link the input variables with the inputs and the output variables with the outputs of the hardware.

Variables that are already linked are indicated with a small arrow icon in TwinCAT.
3. In the toolbar click on Activate Configuration.

4. Confirm the request whether TwinCAT is to start in Free Run mode with Yes.
ð You have successfully linked variables with the hardware. Use Activate Configuration to save and

activate the current configuration.

The configuration can now be loaded on the CX, in order to automatically start TwinCAT in Run mode,
followed by the PLC project.

TwinCAT

CX7050138 Version: 1.0

8.1.6 Load configuration to CX
Once variables are linked, the configuration can be saved and loaded on the CX. This has the advantage
that the PLC project is loaded and started automatically when the CX is switched on. The start of the
previously created PLC project can thus be automated.

Prerequisites for this step:

• A completed PLC project, added in the System Manager.
• Variables from the PLC project, linked with the hardware in the System Manager.
• A CX selected as target system.

Load the configuration from the System Manager to the CX as follows:
1. In the tree view on the left click on SYSTEM.

2. Click on the Settings tab.

3. Under Boot Settings select the option Run Mode (Enable) and tick the Auto Logon checkbox.

4. Enter the user name and password for the CX in the User Name and Password fields.

5. Click on Apply.

6. In the tree view on the left right-click on the PLC project under PLC.

TwinCAT

CX7050 139Version: 1.0

7. In the context menu click on Autostart Boot Project.
The setting is selected

8. Right-click on the project folder in the tree view.

9. In the context menu click on Auto Save to Target as Archive.
The setting is selected.

ð You have successfully loaded the CX configuration. From now on, TwinCAT will start in Run mode and
the PLC project will start automatically.

Next, the master can be added in a new project in the System Manager and can then be used to find
slaves that have already been set up.

TwinCAT

CX7050140 Version: 1.0

8.2 TwinCAT tabs
In TwinCAT, information and settings for the CANopen interface are added under tabs. The main TwinCAT
tabs are described in this chapter. In addition, the section illustrates how the CANopen interface is displayed
in the tree view under TwinCAT.

8.2.1 Tree view
A CANopen master and a CANopen slave connected to it are displayed in the tree view as follows:

1

2

3

4

Fig. 38: CANopen master and CANopen slave in the TwinCAT tree view with tabs.

In this sample the slave was linked to the master. TwinCAT was then scanned for the master, and the master
was created in TwinCAT together with the slave.

No. Description
1 The device name of the master is shown in brackets. All CANopen slaves

are added under the master.
2 Under the CANopen master, status messages are listed as input variables.

The variables can be linked with the PLC and used for diagnostic purposes
(e.g. error codes, counters, etc.).

3 CANopen slaves are added under the master, labeled as box and
numbered consecutively. The device name appears in brackets after it.
Each CANopen slave has its own input variables for diagnostic purposes,
which indicate the state of the communication.

4 Further settings for the CANopen master or slave can be implemented
under the tabs.
Other tabs are displayed, depending on whether the master or slave is
selected in the tree view.

TwinCAT

CX7050 141Version: 1.0

A CANopen slave and the corresponding tabs are shown as follows in the tree view:

2

3

1

Fig. 39: CANopen slave in the TwinCAT tree view with associated tabs.

No. Description
1 Under the CANopen slave, status messages are listed as input variables.

The variables can be linked with the PLC and used for diagnostic purposes.
2 The process data objects (PDO) are displayed under the CANopen slave.

At this point the variables for the data transmission are also created. The
variables can be linked with the PLC.
The data transfer direction is described from the perspective of the slave:
• RxPDOs are received by the device.
• TxPDOs are sent by the device.

3 Further settings for the CANopen slave can be implemented under the tabs.
Other tabs are displayed, depending on whether slave or other entries are
selected in the tree view.

When the PLC process image is read, the variables for status messages and the variables under the
process data objects can be linked with the variables from the PLC program. Double-click on a variable
name in the tree view to open the link dialog. The link variables are identified with a small arrow icon.

Further information about TwinCAT can be found in the TwinCAT documentation on the Beckhoff website:
www.beckhoff.de

TwinCAT

CX7050142 Version: 1.0

8.2.2 CANopen master

8.2.2.1 General
The General tab contains general information for a CANopen device, including name, type and ID.

1

2

3

5

4

Fig. 40: General tab of a CANopen master in TwinCAT.

No. Description
1 Name of the CANopen device
2 CANopen device type
3 Here you can add a comment (e.g. notes relating to the system component)
4 Here you can disable the CANopen device
5 Running No.

The CANopen device can be switched off via this tab. A comment box offers the option to add a label, in
order to provide additional information on the device.

TwinCAT

CX7050 143Version: 1.0

8.2.2.2 CCAT CNM

1

2

3

8

4

75

6

Fig. 41: CCAT-CNM tab of a CANopen master in TwinCAT.

No. Description
1 Designation of the physical interface.

Name and type of the CANopen device.
2 Name of the CANopen master. Range between 1 and 127. Determines the

identifier of the master heartbeat telegram and must not match a slave node
address.

3 The baud rate is set here. Automatically tests whether the connected slave
supports this baud rate.

4 Displays the cycle time of the corresponding highest priority task.
5 With CANopen it is often the case that event-driven communication is

combined with cyclic synchronous communication. In order to be able to
respond to events quickly, the task cycle time must be less than the cycle
time of the sync telegram.
If the Sync-Cycle Multiplier is set to values > 1, the TwinCAT task is called
repeatedly before the sync telegram is sent again.

6 The cycle time of the sync telegram is displayed here. It results from the
cycle time of the highest priority task, its process data and from the Sync-
Cycle Multiplier.
Cync-Cycle-Time= Cycle Timex Sync-Cycle Multiplier

7 The current firmware version is displayed here.
8 The Search button is used to search for the physical interface and select

the desired one, if not already done automatically.

TwinCAT

CX7050144 Version: 1.0

8.2.2.3 ADS

Fig. 42: ADS tab of a CANopen master in TwinCAT.

The CANopen master is an ADS device with its own Net ID, which can be modified here. All ADS services
(diagnostics, acyclic communication) sent to the CANopen master must use this NetId and Port No.

TwinCAT

CX7050 145Version: 1.0

8.2.3 CANopen slave

8.2.3.1 CAN node

1

11

10

2

3

4

5

8

6

7

9

12

13

Fig. 43: CAN Node tab of a CANopen slave in TwinCAT.

No. Description
1 The address is set here.
2 According to CANopen the parameter 0x1000 "Device Type" contains in the

two least significant bytes the number of the device profile supported by the
device. This number is entered here and compared with the parameter in
the device on system startup. If no device profile is supported, the
parameter will contain the value 0.

3 Add. Information:‘
The Add. Information is in the two most significant bytes of the object
dictionary entry 0x1000 (Device Type). The set/actual configuration
comparison only takes place if Profile No. or Add. Information (i.e. object
directory entry 0x1000) is set to a value that is not null. If the expected
values do not match the actual values on system startup, the node start is
aborted and a corresponding error message is displayed on the Diag tab.

4 Guard Time:
The Guard Time determines the interval in which the node is monitored
(Node Guarding). The value entered is rounded up to the next multiple of
10 ms. 0 signifies no monitoring.

5 Life Time Factor:
Guard Time x Life Time Factor determines the watchdog length for the
mutual monitoring of master and slave. The entry 0 means that the slave
does not monitor the master. If 0 is entered, the master directly takes the
guard time as watchdog length.
The heartbeat protocol is also supported, and the system initially tries to
initiate this form of node monitoring on the CANopen node. If this attempt
fails, guarding is activated.

6 Emcy COB ID / Guard COB ID are identifiers for emergency messages or
the guarding protocol. They result from the node address.

TwinCAT

CX7050146 Version: 1.0

No. Description
7 Heartbeat is used for monitoring of the node. If heartbeat is disabled,

guarding is used for monitoring.
The guard time as producer heartbeat time and (guard time x lifetime factor)
as consumer heartbeat time are entered. In this case a heartbeat telegram
with the smallest configured guard time sent. The guard time can be set
individually for each node.

8 If values other than zero are entered here, these identity object inputs
(0x1018 in the object directory) are read off at the system StartUp and
compared with the configured values. The corresponding node will be
started only if the values coincide. It is also possible to compare only some
of the values (e.g. the vendor ID and the product code). In this case,
parameters that are not used must be set to zero.

9 If this option is selected, the entire CANopen network management is
disabled for this device. It is not started, monitored, etc. The PDO entries
are regarded as pure CAN telegrams (layer 2) and are made available to
the controller on an event-driven basis.

10 Opens a window with further settings, which can be enabled:
• Switch off upload object 0x1000.
• Switch off download object 0x1006.
• Switch off automatic sending of start node (then has to be sent

manually).
• Continue to send start SDOs, in the event of a termination.

11 The option StopNode is used to set the node to "stopped" state after a fault.
It can be used to set nodes to a safe state, although they can no longer be
addressed via SDO.

12 If the option is selected, entries are created automatically in TwinCAT,
which are transferred via SDO on system startup (see: SDOs [} 147] tab).

13 If the option is selected, the default identifiers of the process data objects
are automatically adjusted if the node ID changes (see: no. 6).

TwinCAT

CX7050 147Version: 1.0

8.2.3.2 SDOs
The SDO tab is used to display and manage entries, which are sent to the node on startup.

1

5

2

3

4

Fig. 44: SDO tab of a CANopen slave in TwinCAT.

No. Description
1 Object index entries in angle brackets were created automatically based on

the current configuration.
Further entries can be created and managed via "Append", "Insert", Delete"
and "Edit".

2 If this option is selected, the slave is restarted if no TxPDO was received
after 10 seconds.

3 This option can be used to set the maximum number of SDOs in the send
queue.

4 The maximum timeout (ms) for the SDO is set here.
5 The boot-up timeout (s) is set here.

TwinCAT

CX7050148 Version: 1.0

8.2.3.3 PDO
This tab appears if you click on a process data object (PDO) in the tree view.

Process Data Objects (PDOs) are CAN telegrams which transport process data without a protocol overhead.

• RxPDOs are received by the device.
• TxPDOs are sent by the device.

A device sends its input data with TxPDOs and receives the output data in the RxPDOs. This designation is
retained in TwinCAT.

1

3

4

5

2

Fig. 45: PDO tab of a CANopen slave in TwinCAT.

No. Description
1 CAN identifier of the PDO. For two send and receive PDOs per node,

CANopen provides Default Identifiers. These can then be changed.
2 The Transmission Type determines the send behavior of the PDO. 255

corresponds to the event-driven sending (see: Setting the transmission
type).

3 The length of the PDO depends on the created variables and can therefore
not be edited here.

4 Enter the value for the Event Timer in ms. For send PDOs (RxPDOs), PDOs
are sent again after a timer has elapsed. For receive PDOs (TxPDOs), the
arrived PDOs are monitored, and the box state of the node may be
modified.
TwinCAT creates corresponding inputs in the node object directory on the
basis of the parameters entered here. These are transferred via SDO at the
system start. The entries can be viewed in the SDO tab (see: SDOs [} 147]).
This function can be disabled via the checkbox Automatic PDO Parameter
Download on the CAN Node tab (see: CAN node [} 145]).

5 The PDO length check can be disabled here.

8.3 Creating CX7050 as master
If the CX7050 is to be created as a CANopen master, it can be scanned for the device in TwinCAT and
additionally all slaves connected in it can be created automatically. The following section illustrates how to
create a CANopen master in TwinCAT.

Requirements for this step:

TwinCAT

CX7050 149Version: 1.0

• TwinCAT must be in Config mode.
• A selected target system.

Create the CANopen device as follows:
1. In the tree view on the left, right-click on Devices.
2. In the context menu click Scan.

3. Select the devices you want to use and confirm the selection with OK.

4. Confirm the request with Yes to search for boxes.
The window Select Baudrate appears.

5. Under Baudrate select the appropriate baud rate for the CANopen master.

TwinCAT

CX7050150 Version: 1.0

ð All found devices and slave boxes are displayed in the tree view on the left. The bus terminals connected
to the devices or slave boxes are also displayed.

Repeat the steps if not all devices are displayed. If not all devices and slave boxes are found despite the
repeat operation, check the cabling of the devices and slave boxes.

TwinCAT

CX7050 151Version: 1.0

8.3.1 SDO communication from the PLC
ADS blocks are used for SDO communication from the PLC. These function blocks can be used for sending
SDO telegrams and receiving the response of the slave (ADSWRITE/ADSREAD).

Input parameters Description
NETID ADS NetID of the CAN interface
Port number 0x1000hex + NodeId (slave number)
IDXGRP SDO Index
IDXOFFS SDO Subindex
LEN Length of SDO data (1...4)

Manual network management

The CANopen state (STOPPED, PRE-OPERATIONAL, OPERATIONAL) of a CANopen slave can be
changed via ADS write control. In this case the AMS address should be set as for SDO communication. The
other parameter are listed in the following table:

ADS State Device State CANopen state transition
ADSSTATE_RUN (5) 0 OP->PREOP
ADSSTATE_RUN (5) 1 PREOP->OP
ADSSTATE_STOP (6) 0 OP->STOP
ADSSTATE_RUN (5) 1 STOP->OP (with communication reset)
ADSSTATE_RUN (5) 3 STOP->OP (without communication reset)
ADSSTATE_STOP (6) 0 PREOP->STOP
ADSSTATE_RUN (5) 2 STOP->PREOP (without communication reset)

Restarting the CAN interface

The ADSWRTCTL function block can be used to stop and restart the CAN interface. It should be stopped
first before restarting it.

Input parameters Description
NETID ADS NetID of the CAN interface
Port number 200dec

ADSSTATE ADSSTATE_STOP, ADSSTATE_RUN
DEVSTATE 0
LEN 0
SRCADDR 0

8.3.2 CAN interface
Almost all CANopen masters from Beckhoff offer the so-called CAN interface. The CAN interface is a
Layer-2 implementation of the CAN interface. It enables any desired CAN telegrams to be received and
transmitted. The higher-level protocol is not important here, i.e. all CAN-based protocols can be used;
however the protocol part must then be implemented in the PLC.

A detailed description of the CAN interface can be found at:
https://download.beckhoff.com/download/document/io/infrastructure-components/can-interface_en.pdf

Any CAN data can be sent via the CAN interface. There is a choice between 11-bit identifier (CAN 2.0A) or
29-bit identifier (CAN 2.0B).

Message structure with 29-bit support
• Length (0..8)
• CobId

◦ Bit 0-28: 11-bit identifier / 29-bit identifier

https://download.beckhoff.com/download/document/io/infrastructure-components/can-interface_en.pdf

TwinCAT

CX7050152 Version: 1.0

◦ Bit 30: RTR
◦ Bit 31: 0: normal message (11-bit identifier), 1: extended message (29-bit identifier)

• Data[8]

Send data: In "NoOfTxMessages" enter the number of data you want to send from the Tx buffer. If the buffer
has capacity for 10 entries, the maximum number of telegrams that can be send consecutively is 10.
"Length" defines the number of PDO data bytes (maximum 8 bytes). Fill in the data and enter the identifier of
the CAN message in "codId". Now increment the TxCounter value.

Sample code: Sending messages from the PLC
if Outputs.TxCounter = Inputs.TxCounter then
 for i=0 to NumberOfMessagesToSend do
 Outputs.TxMessage[i] = MessageToSend[i];
 End_for
 Outputs.NoOfTxMessages = NumberOfMessagesToSend;
 Outputs.TxCounter := Outputs.TxCounter + 1;
end_if

Sample code: Receiving messages from the PLC
if Outputs.RxCounter <> Inputs.RxCounter then
 for i := 0 to (Inputs.NoOfRxMessages-1) do
 MessageReceived[i] := Inputs.RxMessage [i];
 End_for
 Outputs.RxCounter := Outputs.RxCounter+1;
end_if

TwinCAT

CX7050 153Version: 1.0

8.4 Creating CX705x as slave
This section shows how to create a CX7050 as CANopen slave. In order for the CANopen slave to be
recognized later by a CANopen master with all inputs and outputs, the CANopen slave must first be created
in TwinCAT and configured with all associated PDOs and variables.

Requirements for this step:

• CX7050 selected as target device.

Create the CANopen slave as follows:
1. In the tree view on the left, right-click on Devices.
2. In the context menu click Add New Item.

3. Select as device CANopen Slave (CCAT) and confirm the selection with OK.

4. Confirm the request with Yes, in order to look for boxes.

TwinCAT

CX7050154 Version: 1.0

ð The CANopen slave has been successfully added in TwinCAT and is displayed in the tree view with the
inputs and outputs.

In the next step you can extend the process image by creating additional virtual slaves. Or you can set
the address, once the slave configuration is complete.

TwinCAT

CX7050 155Version: 1.0

8.4.1 Creating a virtual slave
Additional virtual slaves can be created on the same hardware interface. This enables more data to be
exchanged with a CANopen master, or a connection with a second CANopen master can be established. Up
to three virtual slaves can be created on the same hardware interface of a slave.

Because a maximum of 16 PDOs can be configured for each slave, the additional three virtual slaves
increase the maximum possible number of PDOs to 4 x 16 PDOs in each send direction. Each virtual slave is
assigned a dedicated address via TwinCAT and is configured like an independent device for the CANopen
master.

Requirements for this step:

• A CANopen slave, created in TwinCAT.

Create a virtual slave as follows:
1. Right-click on a CANopen slave in the tree view on the left.
2. In the context menu click Add New Item.

ð Another box (virtual slave) is created.

Own variables can now be created for the virtual slave. In the next step you can set the address for the
slave.

TwinCAT

CX7050156 Version: 1.0

8.4.2 Setting the address
Once the CANopen slave was successfully added in TwinCAT, the address of the CANopen slave can be
set. This step shows how to set the address in TwinCAT so that the CANopen slave can be reached by the
CANopen master via this address.

Requirements for this step:

• An added CANopen slave in TwinCAT.

Parameterize the CANopen slave as follows:
1. Click on a slave box.
2. Click the CAN Node tab.
3. Enter a value for the CANopen address in the Node Id field, e.g. “1”.

ð You have set the address successfully. The CANopen master can reach the CANopen slave with the set
address. You can now create further PDOs.

TwinCAT

CX7050 157Version: 1.0

8.4.3 Creating further PDOs
The CANopen slave can exchange up to 16 PDOs (each with 8 bytes of process data) with the CANopen
master in input and output direction. By default 2 PDOs are created in Tx and Rx direction. Here we shown
how to create further PDOs for a CANopen slave.

Requirements for this step:

• A CANopen slave added in the tree view.

Create the PDOs as follows:
1. Right-click on a CANopen slave in the tree view.
2. Click in the context menu on Insert TxPDO or Insert RxPDO to create PDOs in Tx or Rx direction.

The new TxPDOs or RxPDOs are inserted under the already created PDOs and numbered consecutively
in the tree view. Notice From the fifth PDO in Tx or Rx direction the COB Id is no longer entered
automatically (see the following figure).

3. From the fifth PDO in Tx or Rx direction click on the PDO tab.
4. Enter the desired value in the COB Id field.
ð You have successfully created further PDOs; in the next step you can create variables for the data

exchange under the PDOs.

TwinCAT

CX7050158 Version: 1.0

8.4.4 Creating variables
In TwinCAT the PDOs are filled with variables, which can later be linked with the PLC program. A maximum
of 8 bytes of data can be created under the corresponding PDOs. It is also allowed to use different variable
types, only the limit of 8 bytes per PDO must be observed.

If it is not configured differently in the master, the data is sent automatically with every change. At the
planning stage please ensure that the data in a PDO "only" change at a moderate rate (e.g. not with ms
frequency). Failure to adhere to this can lead to CAN overload. If this is not observed, the CAN can be
overloaded, which can happen quickly, especially at low baud rates.

Requirements for this step:

• Newly created PDOs, which are to be filled with variables.

Create the variables as follows:
1. In the tree view click on a TxPDO or RxPDO to show more information.
2. Right-click on Outputs or Inputs, depending on whether a TxPDO or RxPDO is selected.

3. Click Add New Item in the context menu.
The Insert Variable window appears.

4. Click on the appropriate variable and click OK.

ð You have successfully created a variable. The new variable is shown in the tree view on the left. In this
way you can add further variables for the CANopen slave. In the next step you can specify the
transmission type, thereby specifying how the process data objects are transferred.

TwinCAT

CX7050 159Version: 1.0

8.4.5 Setting the transmission type
The transmission type determines how the process data objects are transferred. The transmission type for
the RxPDOs and TxPDOs is set on the PDO tab.

The available transmission types are: acyclic synchronous, cyclic synchronous and asynchronous.

Transmission type: Acyclic Synchronous Cyclic Synchronous Asynchronous
Name in TwinCAT: (acyc, sync) (cyc, sync) (async)

Requirements for this step:

• A CANopen slave with process data objects (PDO) added in TwinCAT

Specify the transmission type as follows:
1. In the tree view, left-click on a process data object (PDO).
2. Click the PDO tab.
3. Select the required transmission type under Trans. Type.

ð You have successfully specified a transmission type for a process data object. The transmission types
for the remaining process data objects are specified in the same way. Next, you can create a PLC project
for the CANopen slave.

TwinCAT

CX7050160 Version: 1.0

8.4.6 Receiving SDO data in the PLC
SDO data that are unknown to the CANopen part of the software and cannot be processed automatically are
transferred to the PLC, where they are evaluated and answered via ADS notification.

To this end the ADS port must be enabled in the System Manager under CAN device.

Fig. 46: Enabling of an ADS port for a CANopen slave.

SDO Read request

Data to be read must be received with ADSREADIND and answered with ADSREADRES.

Input parameter ADSREADIND Description
NETID NetID of the CAN interface
Port number 0x1000hex + Node number
IDXGRP 16#8000_0000 + SDO Index (IDXGRP.31 = ADS-

Notification)
IDXOFFS SDO Subindex
LEN not required for reading

You now have to respond to the ADS indication with an ADS Read response.

Input parameter ADSREADRES Description
NETID NetID of the CAN interface
Port number 0x1000hex + Node number
INVOKEID INVOKEID of the ADSREADIND function block
RESULT Error <> 0, error-free = 0
LEN Length of the data

SDO Write request

Data to be written must be received with ADSWRITEIND and answered with ADSWRITERES.

Output parameter ADSWRITEIND Description
NETID NetID of the CAN interface
Port number 0x1000hex + Node number
IDXGRP 16#8000_0000 + SDO Index (IDXGRP.31 = ADS

Notification)
IDXOFFS SDO Subindex

TwinCAT

CX7050 161Version: 1.0

Output parameter ADSWRITEIND Description
LEN Number of received data in bytes

You now have to respond to the ADS indication with an ADS Write Response.

Input parameter ADSWRITERES Description
NETID NetID of the CAN interface
Port number 0x1000hex + Node number
INVOKEID INVOKEID of the ADSWRITEIND function block
RESULT Error <> 0, error-free = 0

8.4.7 Switching slave node to PreOp from the PLC
The ADSWRTCTL block can be used to set individual CANopen nodes to pre-operational or operational
state. A fixed baud rate is required for this purpose.

Input parameters Description
NETID NetId of the CAN interface
Port number 0x1000hex + NodeId (slave number)
ADSSTATE ADSSTATE_RUN
DEVSTATE 0 - Pre / 1 - Operational
LEN 0
SRCADDR 0

TwinCAT

CX7050162 Version: 1.0

8.5 Reading the CAN baud rate
The baud rate can be displayed and evaluated via the variable InfoData[1]. This can be helpful for slaves
with AutoBaud, if for example the communication is not running. This can be used to check whether the
correct baud rate has been set with AutoBaud.

NodeState value Description
0x01040400 1 Mbaud
0x01040600 800 kbaud
0x01040C00 500 kbaud
0x010A0C00 250 kbaud
0x01160C00 125 kbaud
0x011C0C00 100 kbaud
0x013A0C00 50 kbaud
0x01940C00 20 kbaud
0x01941A10 10 kbaud

8.6 Sending arbitrary CAN telegrams
The ADSWRITE command can be used to send any CAN message.

Input parameters Description
NETID NetId of the CAN interface
Port number 200
IDXGRP 16#0000F921
IDXOFFS 0
LEN 11 bytes
SRCADDR Pointer to an 11 byte ARRAY

Table 17: Structure of the 11 byte CAN data

Byte Description Example Node 7 SDO 0x607
Len 8 Download Request 0x2100
(Index)
Sub Index 1 - Value "1"

1 COB-ID LowByte 0x06 (SDO Low Byte)
2 COB-ID HighByte 0x07 (SDO High Byte)
3 LEN (length) 0x08 (LEN, may be 5 in this case)
4 Data[1] 0x22 (Download Request)
5 Data[2] 0x00 (Index Low Byte)
6 Data[3] 0x21 (Index High Byte)
7 Data[4] 0x01 (Sub Index)
8 Data[5] 0x01 (Value "1")
9 Data[6] 0x00
10 Data[7] 0x00
11 Data[8] 0x00

TwinCAT

CX7050 163Version: 1.0

8.7 Reading the IP and MAC addresses
This sample shows you how to read the IP and MAC addresses. The function block FB_MDP_NIC_Read
can be used to retrieve information from the network adapter.

Sample
Var
 FB_MDP_NIC_Read : FB_MDP_NIC_Read;
END_VAR

PROGRAM:
FB_MDP_NIC_Read(
 bExecute:=TRUE ,
 tTimeout:= ,
 iModIdx:= ,
 sAmsNetId:= ,
 bBusy=> ,
 bError=> ,
 nErrID=> ,
 iErrPos=> ,
 stMDP_ModuleHeader=> ,
 stMDP_ModuleContent=>);

The output stMDP_ModuleHeader displays the header information. The output stMDP_ModuleContent
displays, among other things, the information about the IP and MAC addresses.

Fig. 47: Content of the MDP module with IP and MAC address.

8.8 Virtual Ethernet interface
The virtual Ethernet interface integrates network adapters into the TwinCAT system. This makes it possible
to establish a virtual Ethernet communication via ADS, TCP or UDP to a BK9xx0. Do not use more than two
BK9xx0 and a cycle time > 50 ms.

Fig. 48: Virtual Ethernet communication via ADS, TCP or UDP.

Proceed as follows:

TwinCAT

CX7050164 Version: 1.0

1. In the tree view on the left, right-click on Devices.

2. Click on Add New Item and select the Virtual Ethernet Interface.
ð The Virtual Ethernet Interface is created in the tree view on the left. The ADS port number can be read

out under the ADS tab. The Enable ADS Communication option must be active so that ADS
communication to the BK9xx0 is possible.

8.9 CoE access to multi-function I/Os
The FB_EcCoeSdoReadEx function block allows data to be read from an object directory of an EtherCAT
slave via SDO data (Service Data Object). The nSubIndex and nIndex parameters allow the object that is to
be read to be selected. Via bCompleteAccess := TRUE the parameter can be read with subelements.

Sample: Read the firmware version of the multi-function I/Os.
VAR
AMSNetID AT %I*:T_AmsNetIdArr;
Port AT %I*:T_AmsPort;
FB_EcCoESdoReadEx: FB_EcCoESdoReadEx;
FirmwareVersion: STRING;
END_VAR

The AmsNetId and port number are required for communication with the CX7028 interface. The inputs of the
function block FB_EcCoeSdoReadEx can be linked with the input variables netId and port under
TwinCAT, so that the function block is permanently connected to the CX7028 interface.

TwinCAT

CX7050 165Version: 1.0

Fig. 49: CoE access to multi-function I/Os, input variables "netId" and "port" under TwinCAT.

The input sNetId of the function block corresponds to the input netId under TwinCAT. The function block
requests a string and the link returns a byte array. You can convert the byte array to a string using the
F_CreateAmsNetId function. The input nSlaveAddr corresponds to the input port under TwinCAT.
FB_EcCoESdoReadEx(
sNetId:=F_CreateAmsNetId(nIds:=AMSNetID) , (* AmsNetId of the CX7028 Interface *)
nSlaveAddr:=Port , (* Port Number(nSlaveAddr): 0x1000 *)
nSubIndex:= ,
nIndex:=16#100A , (* Index Number *)
pDstBuf:=ADR(FirmwareVersion) ,
cbBufLen:=SIZEOF(FirmwareVersion) ,
bExecute:=TRUE ,
tTimeout:= ,
bCompleteAccess:= ,
bBusy=> ,
bError=> ,
nErrId=>);

The index number for the CoE object Software version is located under the CoE Online tab.

Fig. 50: CoE communication, listing of CoE objects with matching index number.

With the FB_EcCoeSdoWriteEx function block an object from the object directory of an EtherCAT slave can
be written by SDO-Download. Pay attention to whether the object can be accessed for reading; this is
displayed in the Flags column. The nSubIndex and nIndex parameters allow the object that is to be written to
be selected. Via bCompleteAccess := TRUE the parameter can be written with subelements.

TwinCAT

CX7050166 Version: 1.0

8.10 Power supply terminal
EtherCAT Terminals (E-bus) or Bus Terminals (K-bus) can optionally be connected directly on the right-hand
side; the CX7050 automatically recognizes which system is connected during the start-up phase.

K-bus interface

The CX7050 reads out the terminal types during scanning and creates them in the System Manager under a
Bus Coupler.

Fig. 51: K-bus interface of a CX7050 in the TwinCAT System Manager.

For K-bus diagnostics there is a status variable in TwinCAT under the Bus Coupler, which can be used for
diagnostic purposes and indicates the status of the K-bus communication. For more information, refer to the
chapter "Error handling and diagnostics" at K-bus [} 182].

E-bus interface

Distributed clocks
The Embedded PCs of the CX7000 series are not suitable for the use of EtherCAT slaves that use
distributed clocks or require them.

The operation of EtherCAT Terminals and EtherCAT devices is also possible at CX7050. The CX7050 also
recognizes these terminals automatically during scanning, reads out the terminal types and creates them in
the System Manager under an EtherCAT Coupler.

TwinCAT

CX7050 167Version: 1.0

Fig. 52: E-bus interface of a CX7050 in the TwinCAT System Manager.

For more information on diagnostics, refer to the chapter "Error handling and diagnostics" at E-bus [} 185].

TwinCAT

CX7050168 Version: 1.0

8.11 Cycle and processing times

8.11.1 Measuring processing time in the PLC program
This sample shows you how to determine the processing time of a program code with the help of a small
PLC program. This allows you to measure, for example, how long the PLC needs for a mathematical
function, a loop or a specific program part. The resolution is 1 ns per digit.

Sample
VAR
 MeasureStart : T_DCTIME64;
 MeasureResult : T_DCTIME64;
END_VAR

PROGRAM:
MeasureStart:=F_GetActualDcTime64(); (*Insert your program code to measure the processing time*)
MeasureResult:=F_GetActualDcTime64()-MeasureStart;

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.0 PC or CX (x86, x64, ARM) Tc2_EtherCAT

8.11.2 Real-Time Clock (RTC)
The CX7050 has an internal, capacitor-buffered real-time clock (RTC) for time and date, which continues to
run in the switched-off state. The capacitance of the capacitor is sufficient for at least 30 days and, unlike a
battery-backed solution, is maintenance-free. The time is lost and must be reset if the CX7050 is turned off
for more than 30 days

The following settings are possible in the boot.conf file:

• SNTP Server
• Update time (default = 1 hour)
• Change UTC Offset
• DHCP server

Sample

The sample below shows you how to read the time. In the sample, the time is output as UTC time and one
hour is added to get the CET time.
VAR
 FB_LocalSystemTime : FB_LocalSystemTime;
 DATEANDTIME : DATE_AND_TIME;
 DATEANDTIME_Add1h : DATE_AND_TIME;
END_VAR

PROGRAM:
FB_LocalSystemTime(
 sNetID:= ,
 bEnable:=TRUE ,
 dwCycle:= ,
 dwOpt:= ,
 tTimeout:= ,
 bValid=> ,
 systemTime=> ,
 tzID=>);

DATEANDTIME:=SYSTEMTIME_TO_DT(TIMESTR:=FB_LocalSystemTime.systemTime); (*UTC Time*)
DATEANDTIME_Add1h:=DATEANDTIME+T#1H; (*UTC Time + 1h*)

TwinCAT

CX7050 169Version: 1.0

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TwinCAT v3.1.0 PC or CX (WES7/Win7/Win10: TC
RT x86/x64, WEC6/7: TC RT x86,
WEC7: TC CE7 ARMV7, TC/BSD:
TC RT x64, TC OS ARMT2)

Tc2_Utilities (System)

8.11.3 Cycle time of 250 μs
Note that a cycle time of 250 μs on a CX7050 represents an extreme optimum and all boundary conditions
must be right. Furthermore, a cycle time of 250 μs only makes sense if the inputs and outputs are
correspondingly fast.

The CX7050 has different interfaces, including, for example, the K-bus. The K-bus can achieve perhaps
1 ms under optimal conditions and is therefore unsuitable for cycle times of 250 μs. The E-bus (EtherCAT) is
much faster, but the structure of an EtherCAT frame and the merging of the data into an EtherCAT frame is
much more complex, so that only 1 ms is possible here as well.

Of course, EtherCAT can be operated with other Industrial PCs under 100 μs. However, these are usually
equipped with more powerful CPUs and may use a DMA controller for EtherCAT processing. That is not the
case with the CX7050, however, so the CPU power and the interfaces to EtherCAT are the limiting factors.
Of course, the CX7050 as a small controller was not developed for high-speed applications and, due to its
cost-efficiency, should not be compared to more powerful Industrial PCs.

Setting a cycle time of 250 μs

A cycle time of 250 μs is possible on a CX7050 if the boundary conditions are right. The CX7050 is helped
by the multifunction I/Os, which are connected to the CPU via a fast IO connection. The connection is kept
very lean and has a correspondingly good data throughput. It is possible to reach the 250 μs with the help of
the multifunction I/Os. Of course, the PLC program may contain only very little code and the core limit must
be set to 90%, which in turn results in the described disadvantages (see: Real-time and CPU load [} 196]).

In addition, you should set the priority of the task so that the 250 μs task has the highest priority in the
system.

TwinCAT

CX7050170 Version: 1.0

If you now allow a digital output of the CX7028 interface to toggle, for example with Out_01:=not Out_01
in the 250 μs task, the task is output at a frequency of 2 kHz. In order for the output to be optimally fast, this
output should have a load. Only wire the output with a digital input; as a result, the load is very small and the
switch-off behavior of the driver is relatively slow. Slow here means in relation to the 250 μs task time. It
makes a difference whether the output requires 50 μs or 100 μs to switch off. If you now wish to measure the
response time, i.e. the time it takes for the CX7050 to react to an input, the following background is
important:

From a cycle time of 1 ms or greater, an optimal cycle is operated, i.e. the inputs of the CX7028 interface are
read by the processor of the CX7028 interface about 20% before the new task cycle. If the task time is faster
than 1 ms, the time is not sufficient for the optimized response time. In this case the inputs are read with the
task cycle. As a result, a task time of 500 μs achieves the same response time as a task time of 1 ms. With a
task time of less than 1 ms, the update needs four task cycles for a cycle. With 1 ms or slower it needs two
task cycles. This should make you aware that it is not always the shortening of the cycle time that shortens
the reaction time, but also the internal process, which plays a decisive role in the reading of the data.

Here is a sample, so that you can reproduce this behavior yourself and see and measure the differences:

1. Connect the +24 V Up and 0 V Up power supply to power the multifunction I/Os.
2. Connect output 1 to input 1 to toggle the output as described.
3. Connect output 2 to input 2.
4. Set the core limit to 90%, the base time to 250 μs, the priority of the fast task to the highest priority,

and the idle task to 10 ms.

The inputs have only a minimal filter time and are therefore well suited for the measurement. A load on the
output is not necessary in this case. For the following samples, we always leave the base time at 250 μs and
only increase the number of cycle ticks in order to set the corresponding task time.

TwinCAT

CX7050 171Version: 1.0

Sample program
PROGRAM MAIN
VAR
 bOut_1 AT %Q*:BOOL; (*toggle Output link to digital Output pin 7*)
 bOut_2 AT %Q*:BOOL; (*reaction time link to digital Output pin 14*)

 bIn_1 AT %I*: BOOL; (*toggle Output link to digital Input pin 2*)
 bIn_2 AT %I*: BOOL; (*reaction time link to digital Input pin 10*)

 fbTimer : TON;
 fbflanke1 : R_TRIG;
 fbflanke2 : R_TRIG;

 cnt1: INT; (*toggle Output*)
 cnt1_M: INT; (*toggle Output*)

 cnt2: INT; (*reaction time*)
 cnt2_M: INT; (*reaction time*)
END_VAR

PROGRAM MAIN
bOut_1:= NOT bOut_1; (*toggle Output*)
bOut_2:= NOT bIn_2; (*reaction time*)

fbflanke1(CLK:=bIn_1);
IF fbflanke1.Q THEN
 cnt1:=cnt1+1; (*toggle Output*)
END_IF

fbflanke2(CLK:=bIn_2);
IF fbflanke2.Q THEN
 cnt2:=cnt2+1; (*reaction time*)
END_IF

fbTimer(PT:=T#1S,in:=NOT fbTimer.Q);

IF fbTimer.Q THEN
 cnt2_M:=cnt2; (*reaction time*)
 cnt1_M:=cnt1; (*toggle Output*)
 cnt1:=0;
 cnt2:=0;
END_IF

The toggling of the output results in a frequency of 2 kHz – 250 μs On, 250 μs Off – i.e. a period duration of
500 μs. When measuring the positive edge, this is 2000 edge changes in one second.

TwinCAT

CX7050172 Version: 1.0

Fig. 53: Measurement at a task time of 250 μs.

In the case of the response time, it is 500 changes in one second, as the optimized access to the inputs
does not apply here.

Fig. 54: Measurement at a task time of 500 μs.

As expected, the values are only half as large with a task time that is twice as long.

Fig. 55: Measurement at a task time of 1 ms.

With a task time of 1 ms, you can clearly see that the optimized mode actually helps to reduce the response
time. While the toggle change has halved again, i.e. it is now still 500 Hz with a task time of 1 ms, the value
for the response time has remained the same.

TwinCAT

CX7050 173Version: 1.0

8.11.3.1 Cycle time ≥1 ms

Fig. 56: CX7050 CPU and PLC.

Yellow and red: Mapping and update of the IOs.
Light grey: Time remaining until the task begins again (OS).
Dark grey: PLC cycle.

Fig. 57: CPU of the CX7028 interface.

Red: Output update.
Grey: CPU processing of the multifunction IOs.
Yellow: Input update (from a cycle time of 1 ms there is a waiting period of up to approx. 80% of the cycle
time before the update of the input signals so that the inputs are read as late as possible, i.e. before the next
cycle).

8.11.3.2 Cycle time < 1 ms
From a cycle time of < 1 ms, the update of the input signals is carried out immediately and is therefore only
available with the next cycle. The input signals are therefore always one cycle old.

With this background knowledge, you should be able to make the right settings on the CX7050 for your
application.

TwinCAT

CX7050174 Version: 1.0

8.12 Function Blocks

8.12.1 FB_CX70xx_RW_EEPROM

The function block allows a maximum of 120 bytes to be written to the EEPROM (hardware) of the CX70xx.
The EEPROM may be written to a maximum of 200 times. The memory is intended for one-time writing.

This function block can be used to personalize the CX70xx. That means, in the simplest case you write your
company ID into the EEPROM. When starting the CX70xx program, read the contents of the memory. For
example, if it is empty, you cannot continue to run the program because it is no longer your original CX70xx
that you programmed.

If you want to exchange a CX70xx for a new device, the EEPROM must be written again by you.

 Inputs
VAR_INPUT
 bExecute : BOOL; // rising edge triggers process with selected mode
 eMode : E_CX70xx_EEPROM_Mode; // select RW mode
 pSrcBuf : PVOID; // pointer to WRITE EEPROM data buffer
 cbSrcBufSize : UINT; // size of WRITE EEPROM data buffer (max.120 Bytes)
 pDstBuf : PVOID; // pointer to READ EEPROM data buffer
 cbDstBufSize : UINT; // max.size of READ EEPROM data buffer (max.120 Bytes)
END_VAR

Name Type Description
bExecute BOOL A positive edge starts the function block.
eMode E_CX70xx_

EEPROM_M
ode

ReadOnly: EEPROM read
WriteOnly: EEPROM write
WriteAndRead: EEPROM write and read

pSrcBuf PVOID Pointer to the data buffer to be written.
cbSrcBufLen UINT Length of data to be written (max. 120 bytes)
pDstBuf PVOID Pointer to the data buffer into which the contents of the EEPROM

are to be copied.
cbDstBufLen UINT Length of data to be read. (maximum 120 bytes)

When reading, the length information must be greater than or
equal to the data contained in the EEPROM.

 Outputs
VAR_OUTPUT
 bBusy : BOOL; // FB is working
 bError : BOOL; // FB has an Error
 nErrorID : UDINT; (* Error Code
 If nErrorID=DEVICE_INVALIDACCESS the EEPROM write cycles reached max. value.
 If nErrorID=DEVICE_INVALIDPARM the given pointer parameter is invalid/null.
 If nErrorID=DEVICE_INVALIDSIZE the given buffer size is too small or too big.
 If nErrorID=DEVICE_SRVNOTSUPP probably the image version need to be updated to support this feat
ure. *)
 nDataSizeEEPROM : UINT; // current size of (read) EEPROM data in bytes (max.120 Bytes)
 nWritesCycles : UINT; // already performed EEPROM write cycles (maximum possible = 20
0)
END_VAR

Name Type Description
bBusy BOOL The function block is active and working.

TwinCAT

CX7050 175Version: 1.0

Name Type Description
bError BOOL The function block has an error.
nErrorID UDINT ADS Error Code

Examples:
DEVICE_INVALIDACCESS: the EEPROM write cycles have
reached the maximum value. The EEPROM cannot be rewritten.
DEVICE_INVALIDPARM: the allocated pointers are invalid/NULL.
DEVICE_INVALIDSIZE: the allocated buffer size is too small or
too large.
DEVICE_SRVNOTSUPP: the image version of the CX70xx does
not support this feature. An update (>=35695) is necessary.

nDataSizeEEPROM UINT Current size in bytes of the read EEPROM data
nWritesCycles UINT Number of write operations still available

8.12.2 FB_CX70xx_ResetOnBoardIO

The function block allows to execute a reset from the OnBoard I/O of the CX70xx Embedded PC.

Typical use case is after an error in the communication to the OnBoard I/Os (CX7028). Such an error occurs
when the power supply (Up) of the OnBoard I/Os is interrupted.

NOTICE
State of the I/Os
Outputs that are still set in the process image are switched on again immediately after a reset.

Further details on the OnBoard I/O can be found in the documentation of the CX70xx Embedded PC.

 Inputs
VAR_INPUT
 bExecute : BOOL; // rising edge triggers process
 sNetId : T_AmsNetID; // AMS Net ID of the OnBoard IOs
 tTimeout : TIME := DEFAULT_ADS_TIMEOUT; // maximum time allowed for execution of this ADS c
ommand
END_VAR

Name Type Description
bExecute BOOL A positive edge starts the function block.
sNetId T_AmsNetID AMS Net ID of the OnBoard I/Os
tTimeout TIME States the length of the timeout that may not be exceeded by execution of

the ADS command.

 Outputs
VAR_OUTPUT
 bBusy : BOOL; // FB is working
 bError : BOOL; // FB has an Error
 nErrorID : UDINT; (* Error Code. If nErrorID=DEVICE_SRVNOTSUPP probably the image versio
n need to be updated to support this feature. *)
END_VAR

Name Type Description
bBusy BOOL The function block is active and working.
bError BOOL The function block has an error.

https://infosys.beckhoff.com/content/1033/cx7000/981352551510374264587.html?id=6432051110933484151

TwinCAT

CX7050176 Version: 1.0

Name Type Description
nErrorID UDINT ADS Error Code

Examples:
DEVICE_SRVNOTSUPP: the image version of the CX70xx does not
support this feature. An update (>=47912) is necessary.

Sample:
FUNCTION_BLOCK FB_Test_ResetOnboardIO
VAR
 AMSNetID : T_AmsNetIdArr; // link to the AMS Net ID of the OnBoard IOs
 State : WORD; // link to the State of the OnBoard IOs
 bReset : BOOL; // if Ready to Reset you can reset the OnBoard IOs
 fbReset : FB_CX70xx_ResetOnBoardIO;
END_VAR

IF State<>8 AND NOT State.8 AND State.4 THEN // if OnBoard IO device signals an error and is not OP
but present
 bReset := TRUE;
ELSE
 bReset := FALSE;
END_IF

IF NOT fbReset.bBusy AND bReset THEN
 fbReset(bExecute:=TRUE, sNetId:=F_CreateAmsNetId(AMSNetID));
ELSE
 fbReset(bExecute:=FALSE);
END_IF

8.13 Important attribute pragmas
Attribute pragmas are used to influence compilation and pre-compilation. TwinCAT supports a number of
predefined attribute pragmas. Attributes are defined in the declaration part.

8.13.1 Attribute 'Tc2GvlVarNames'
The pragma has the effect that symbols, which are declared in a GVL, are addressed via ADS just like in
TwinCAT 2 (without the use of the GVL name as namespace).

Syntax: {attribute ‘Tc2GvlVarNames‘}

Sample:
{attribute 'Tc2GvlVarNames'}
VAR_GLOBAL
 Test : INT;
END_VAR

GVL.Test:=GVL.Test+1; (*without attribute*)
Test:=Test+1; (*with attribute*)

8.13.2 Attribute 'pack_mode'
This attribute pragma specifies how a data structure is packaged during allocation. The attribute must be
inserted above the data structure and affects the packing of the whole structure.

Syntax: {attribute 'pack_mode' := '<Value>'}

Sample
{attribute 'pack_mode' := '0'}
TYPE str_Test :
STRUCT
 byTest1 : BYTE;
 iTest : DINT;
 byTest2 : BYTE;
 nValue : INT;
END_STRUCT
END_TYPE

TwinCAT

CX7050 177Version: 1.0

In this sample, the pack mode has been set to 0. If you determine the size of the structure in the sample with
SIZEOF, you get the value 8.

1 byte + 4 bytes (DINT) + 1 byte + 2 bytes (INT) = 8 bytes

If you set the pack mode to 2 (WordAlignment), you get the value 10 because a padding byte is inserted
after each byte. If you set the pack mode to 4 (DWordAlignment), then you get the value 12, because this
time three padding bytes are inserted after each byte. A pack mode of 8 (LWordAlignment) does not change
anything, because the sample does not use variables that require 8 bytes.

The CX7050 works with the DWordAlignment (pack mode 4) if you do not use the attribute.

For more information about the pack_mode attribute, see: Attribute 'pack_mode'

8.13.3 Attribute 'TcCallAfterOutputUpdate'
The attribute pragma TcCallAfterOutputUpdate causes the IO update to take place before the PLC
cycle and not after the PLC program as is set by default.

Fig. 58: Default calling of a PLC task.

Fig. 59: Calling a PLC task with the attribute tcCallAfterOutputUpdate.

This function can be used for projects with strongly fluctuating cycle times. In projects with strongly
fluctuating cycle times, the outputs, since they are written after the PLC cycle, are sometimes written earlier
(short PLC cycle time) and sometimes later (long PLC cycle time). These fluctuations cause jitter in the
outputs. The disadvantage is that the attribute cannot react quite as quickly and a cycle is always lost. You
have to decide whether you want to react quickly to an input (default setting) or whether you prefer to have a
deterministic behavior of the outputs (setting of the attribute).

Syntax: {attribute 'TcCallAfterOutputUpdate'}

Insertion location: This attribute must be added to all program POUs, which are to be called after the output
update.

Sample:

To illustrate the behavior, you need a digital output terminal such as an EL2008 and an oscilloscope.

Write a small PLC program and link the variable bOut with a digital output:
bOut:=not bOut;

The PLC program is very simple and does not cause any fluctuations. The pulse is displayed on the
oscilloscope as follows:

TwinCAT

CX7050178 Version: 1.0

Fig. 60: Pulse of a digital output without load.

Now extend the PLC program with a For loop to create a program load. The mathematical function used
does not matter and is intended only to generate a load:
bOut:=not bOut;

IF bOut THEN
 For loop:=1 to 2000 do
 lrTest:=SIN(INT_TO_LREAL(loop)*3.14);
 END_FOR
END_IF

Whenever the output is set to TRUE, the loop is run through and a load is generated. As a result, more time
is needed to run the PLC and the output is written later than usual. During the next cycle, the output is set
back to FALSE, the loop is not run through and the output is set to FALSE faster, because the PLC program
is finished faster without a For loop. The result is that the pulse is very much shorter.

Fig. 61: Shortened pulse of a digital output with load.

If the For loop is called upon FALSE instead of TRUE, the result is inverted.
bOut:=not bOut;

IF not bOut THEN
 For loop:=1 to 2000 do
 lrTest:=SIN(INT_TO_LREAL(loop)*3.14);
 END_FOR
END_IF

TwinCAT

CX7050 179Version: 1.0

Fig. 62: Inverted representation of a digital output.

With the attribute pragma TcCallAfterOutputUpdate, the pulse is constant and is independent of how
long the For loop takes or whether it is called. The whole thing only works if the PLC task is not exceeded.
Therefore, when reproducing the sample, pay attention to the exceed counters of the task.

Detecting a PLC program with different runtimes

The PLC program must be supplemented in order to detect PLC programs with different runtimes. Different
runtimes are not recognizable in the online view, since an average value is always formed over several
cycles. Therefore, outliers can only be detected if they lie above the task time. If the outliers are still within
the task time, they are not easily visible.

For this we then use the system variable: PlcTaskSystemInfo
VAR
 bOut : BOOL;
 PlcTaskSystemInfo : PlcTaskSystemInfo;
 udiValue : ARRAY[0..19] of UDINT;
 Cnt : INT;
END_VAR

Program:
bOut:=not bOut;

IF bOut THEN
 For loop:=1 to 2000 do
 lrTest:=SIN(INT_TO_LREAL(loop)*3.14);
 END_FOR
END_IF

PlcTaskSystemInfo:=_TaskInfo[1];

udiValue[Cnt]:= PlcTaskSystemInfo.LastExecTime;
cnt:=cnt+1;
IF Cnt >19 THEN
 Cnt:=0;
END_IF

With this program extension you can see that the PLC program with a For loop requires 7.7 ms and without a
For loop 1.1 ms. The specification is 100 ns per digit.

TwinCAT

CX7050180 Version: 1.0

Fig. 63: Determination of different running times in the PLC program.

The measurement coincides with the displays on the oscilloscope, on which it can be seen that a pulse is
sometimes 6.5 ms longer or 6.5 ms shorter. You can measure the processing time of the For loop
(Measuring processing time in the PLC program [} 168]). The result of this measurement will coincide with
the observed values through the program extension, with a certain inaccuracy and jitter.

Error handling and diagnostics

CX7050 181Version: 1.0

9 Error handling and diagnostics

9.1 Diagnostic LEDs
Display LED Color Description

TC Green TwinCAT is in Run mode.
Red TwinCAT is in Stop mode.

Additionally indicates errors during system startup by error code
and error argument (see table: TC-LED, error description and
remedy). The red LED flashes with two different frequencies.

Blue TwinCAT is in Config mode.
Yellow Error or crash of the PLC.

FB Green CAN is OK.
Red CAN in bus-off.
Green and red
flashing, 200 ms

CAN warning.

Off CAN not configured.
DIAG Green All nodes have NodeState = 0

Green and red
flashing, 200 ms

All boxes in OP mode, but the task has not yet started.

Red 200 ms Not all nodes in OP mode.
Off No boxes configured.
Red If only the DIAG LED lights up when starting the CX70xx, then the

bootloader is damaged and the device must be sent in for repair.

The TC-LED flashes at a specified frequency and in a specified order, thus indicating the error code and
argument.

Table 18: TC LED, order and meaning.

Sequence Meaning
Fast flashing Starting the sequence
First slow sequence Error code
No display Pause, the LED is off
Second slow sequence Error argument

Count how many times the red TC LED flashes in order to determine the error code and argument.

Table 19: TC LED, error description and remedy.

Error code Error argument Description Remedy
1 1 microSD card not recognized Check the microSD card.

2 Card init failed - preloader Image is defective. Install a new image on
the microSD card.3 No partition found - preloader

4 Filesystem mount failed -
preloader

5 Card init failed - loader
6 No partition found - loader
7 Filesystem mount failed -

loader
2 1 Loader not found

2 Loader file invalid (checksum,
size, read error)

3 TC dll not found

Error handling and diagnostics

CX7050182 Version: 1.0

Error code Error argument Description Remedy
4 TC dll checksum error
5 EEPROM file missing or

invalid
6 TcOsSys.dll version not

compatible with loader
3 1 Rbf not found

2 CCAT 1 init failed
3 CCAT 2 init failed
4 CCAT EEPROM writing failed
5 CCAT 1 EEPROM reloaded

failed
6 CCAT 2 EEPROM reloaded

failed
4 1 Peripheral not working Hardware defective, replace the CX

2 Voltage Vo not reached
3 Low speed external oscillator

not running
4 High speed external oscillator

not running
5 Flash failed
6 Device overclocked (old

Hardware)
5 5 RAM error detected

9.1.1 K-bus
The power supply unit checks the connected Bus Terminals for errors. The red LED "K-bus ERR" is off if no
error is present. The red LED "K-bus ERR" flashes if Bus Terminal errors are present.

Table 20: Diagnostic LEDs in K-Bus mode.

Display LED Meaning
Us 24 V Power supply for basic CPU module. The LED lights green if the

power supply is correct.
Up 24V Power supply for terminal bus. The LED lights green if the power

supply is correct.
K-BUS RUN Diagnostic K-bus. The green LED lights up in order to indicate

error-free operation. "Error-free" means that the communication
with the fieldbus system is also running.

K-BUS ERR Diagnostic K-bus. The red LED flashes to indicate an error. The
red LED flashes with two different frequencies.

The frequency and number of the flashes can be used to determine the error code and the error argument.
An error is indicated by the "K-bus ERR" LED in a particular order.

Table 21: K-bus ERR LED, fault indication sequence through the LED.

Order Meaning
Fast flashing Starting the sequence
First slow sequence Error code
No display Pause, the LED is off
Second slow sequence Error code argument

Error handling and diagnostics

CX7050 183Version: 1.0

Count how often the red LED K-bus ERR flashes, in order to determine the error code and the error
argument. In the error argument the number of pulses shows the position of the last Bus Terminal before the
error. Passive Bus Terminals, such as a power feed terminal, are not included in the count.

Table 22: K-BUS ERR LED, fault description and troubleshooting.

Error code Error code argu-
ment

Description Remedy

Persistent,
continuous
flashing

EMC problems. • Check power supply for undervoltage or
overvoltage peaks.

• Implement EMC measures.
• If a K-bus error is present, it can be

localized by a restart of the power supply
unit (by switching it off and then on
again).

3 pulses 0 K-bus command error. • No Bus Terminal inserted.
• One of the Bus Terminals is defective;

halve the number of Bus Terminals
attached and check whether the error is
still present with the remaining Bus
Terminals. Repeat this procedure until
the faulty Bus Terminal has been found.

4 pulses 0 K-bus data error, break
behind the power supply
unit.

Check whether the Bus End Terminal 9010
is connected.

n Break behind Bus
Terminal n.

Check whether Bus Terminal n+1 after the
power supply unit is connected correctly;
replace if necessary.

5 pulses n K-bus error in register
communication with Bus
Terminal n.

Replace Bus Terminal at location n.

6 pulses 0 Error at initialization. Replace Embedded PC.
1 Internal data error. Hardware reset of the Embedded PC

(switch off and back on again).
8 Internal data error. Hardware reset of the Embedded PC

(switch off and back on again).
7 pulses 0 Process data lengths of

the set and actual
configurations do not
correspond.

Check the configuration and the Bus
Terminals for consistency.

For some error the LED "K-BUS ERR" does not go out, even if the error was rectified. Switch the power
supply for the power supply unit off and back on again to switch off the LED after the error has been rectified.

Error handling and diagnostics

CX7050184 Version: 1.0

State variable

In TwinCAT there is a State variable under the Bus Coupler for K-bus diagnostics.

Fig. 64: Status variable for error handling and diagnostics under TwinCAT.

If the value is "0", the K-bus operates synchronous and without error. If the value is <> "0" there may be a
fault, or it may only be an indication that the K-bus cycle is longer than the task. In which case it would no
longer be synchronous with the task. The task time should be faster than 100 ms. We recommend a task
time of less than 50 ms. The K-bus update time typically lies between one and five ms.

Table 23: Description of the State variable values.

Bit Description
Bit 0 K-bus error.
Bit 1 Terminal configuration has changed since the start.
Bit 2 Process image lengths do not match.
Bit 8 (still) no valid inputs.
Bit 9 K-bus input update not yet complete.
Bit 10 K-bus output update not yet complete.
Bit 11 Watchdog.
Bit 15 Acyclic K-bus function active (e.g. K-bus reset).

If there is a K-bus error, this can be reset via the IOF_DeviceReset function block (in the TcIoFunctions.lib).

Error handling and diagnostics

CX7050 185Version: 1.0

9.1.2 E-bus
The power supply unit checks the connected EtherCAT Terminals. In E-bus mode the "Link/Act IO" LED is lit.
When data are transferred, the "Link/Act IO" LED flashes.

Table 24: Diagnostic LEDs in K-Bus mode.

Display LED Meaning
Us Power supply for basic CPU module. The LED lights

green if the power supply is correct.
Up Power supply for terminal bus. The LED lights green if the

power supply is correct.
Link/Act
IO

off E-bus not connected.
on E-bus connected / no data traffic.
flashes E-bus connected / data traffic on the E-bus.

Error handling and diagnostics

CX7050186 Version: 1.0

9.2 CANopen diagnostics

9.2.1 Status messages
The CANopen status messages provide additional information and can be used for diagnostic purposes.

The following table shows which values the variables can assume:

Inputs Meaning
CycleInfo Cycle Counter:

This counter is incremented by one after each cycle.
Error:
Displays the number of boxes with a non-null BoxState.
ActualCycle Time:
Reserved for future use

DiagFlag This variable provides information on changes to the diagnostic data.
• 0: Data unchanged.
• 1: Data changed. Use ADS Read to read the data.

GlobalState This variable provides information on the status of the master.
GlobalState[0]:
0: Device is in RUN state.
1: Device is in RESET state.
2: Device is in OFFLINE state.
3: Device is in STOP state.
GlobalState[1] (FW V02.14 and higher):
Bit 0-7: RxError counter of the CAN controller.
Bit 8-15: TxError counter of the CAN controller.
GlobalState[2]:
Bit 0: CAN controller is in BUS-OFF.
Bit 1: CAN controller warning limit reached.
Bit 2: Rx-Queue exceeded.
Bit 3: Hi-Prio Tx-Queue exceeded.
Bit 4: Lo-Prio Tx-Queue exceeded.
Bit 5: CAN-Send Error (FW V02.14 and higher).
Bit 6-14: reserved for future use.
Bit 15: switches on every SYNC message sent.
GlobalState[3]:
Bus utilization in %.

CycleFailedCounter This counter is incremented by one whenever the last bus cycle is
incomplete at the start of a TwinCAT cycle.

BusLoad Bus load in %.
InfoData

Error handling and diagnostics

CX7050 187Version: 1.0

9.2.2 Communication
In the tree view, input variables are listed under the Inputs menu item, which provide information about a
CANopen device.

The NodeState variable can be used to show the state of the CANopen communication, to indicate whether
the slave is in data exchange or an error is present.

Fig. 65: Diagnosis of the CANopen communication with the variables NodeState, DiagFlag and
EmergencyCounter.

NodeState

The following table shows which values the variable NodeState can assume:

Value Meaning
0 No error
1 Node deactivated
2 Node not found
4 SDO syntax error at StartUp
5 SDO data mismatch at StartUp
8 Node StartUp in progress
11 FC510x Bus-OFF
12 Pre-Operational
13 Severe bus fault
14 Guarding: toggle error
20 TxPDO too short
22 Expected TxPDO is missing
23 Node is Operational but not all TxPDOs were received
31 only for EtherCAT gateways: WC-State of cyclic

EtherCAT frame is 1
128 Node is Operational but not all RxPDOs were received
129 Node is Pre-Operational
130 Node is Stopped

DiagFlag

The following table shows which values the variable DiagFlag can assume. This variable provides
information on changes to the diagnostic data.

Value Meaning
0 Data unchanged.
1 Data changed. Use ADS Read to read the data.

EmergencyCounter

The EmergencyCounter variable is incremented by one if an emergency telegram was received.

Error handling and diagnostics

CX7050188 Version: 1.0

Table 25: Reading the emergency telegrams with the ADSREAD function block.

Input parameters Description
NETID NetId of the CAN interface
Port number 200
IDXGRP 16#xxxxF180 (xxxx) Node-Id, the Diag flag is only

reset when reading at least 106 bytes
16#xxxxF181 (xxxx) Node-Id, the Diag flag is reset
immediately

IDXOFFS Byte Offset

Table 26: Description of the array

Offset Bit Value / description
0 - 1 Bit 0 reserved

Bit 1 Boot up message not received or incorrect
Bit 2 Emergency-Overflow
Bit 3 - 15 reserved

2 - 3 Bit 0 - 14 TX-PDO (i+1) received
Bit 15 All TX PDOs 16-n received

4 - 5 Bit 0 - 4 1: Incorrect TX PDO length
2: synchronous TX PDO missing
3: Node signaling PRE-OPERATIONAL
4: Event timer expired for a TX PDO
5: no response during guarding
6: toggling missed several times during guarding

Bit 5 - 15 Associated COB ID
6 Bit 0 - 7 1: incorrect value during SDO upload

2: incorrect length during SDO upload
3: Abort during SDO up/download
4: incorrect date during a boot-up message
5: timeout while waiting for a boot-up message

7 Bit 0 - 7 2: incorrect SDO command specifier
3: SDO toggle bit has not changed
4: SDO length too great
5: SDO-Abort
6: SDO-Timeout

8 - 9 Bit 0 - 7 SDO up/download index
10 Bit 0 - 7 SDO up/download subindex
11 Bit 0 - 7 reserved
12 Bit 0 - 7 Abort errorClass
13 Bit 0 - 7 Abort errorCode
14 - 15 Bit 0 - 15 Abort additionalCode
16 - 19 Read value (if offset 6 = 1)
20 - 23 Expected value (if offset 6 = 1)
24 - 25 Number of consecutive emergencies
26 - n Emergencies (8 bytes each)

Error handling and diagnostics

CX7050 189Version: 1.0

9.2.3 PDOs

SendCounter

TxPDOs feature an additional SendCounter variable under the Control menu item.

Fig. 66: Diagnostic variable SendCounter of a CANopen slave.

By default, PDOs are sent automatically when a change is made. This variable can be used if the data is to
be sent not only when a change is made, but also when nothing has changed in the data in the PDO.

The variable must therefore be incremented by one if the data in the PDO is to be sent even without a
change. If the variable is incremented in the same cycle and a change of data is made in parallel, only one
telegram is sent.

Apart from this scenario, this variable can be used to monitor whether the corresponding PDO was sent
when the data changed.

ReceiveCounter

RxPDOs feature an additional ReceiveCounter variable under the Status menu item.

Fig. 67: Diagnostic variable ReceiveCounter of a CANopen slave.

The input variable is incremented by one whenever a PDO is received. In this way newly arrived PDO are
always logged, even if the data in the PDO are unchanged. The variable also indicates whether a device is
still sending data on a regular basis. It is useful to link variable with the PLC and monitor it.

Error handling and diagnostics

CX7050190 Version: 1.0

9.2.4 Troubleshooting

Error Frames

One sign of errors in the CAN wiring, the address assignment or the setting of the baud rate is an increased
number of error frames: the diagnostic LEDs then show Warning Limit exceeded or Bus-off state entered.

Error Frames
Warning limit exceeded, passive error or bus-off state are indicated first of all at those nodes that
have detected the most errors. These nodes are not necessarily the cause for the occurrence of
error frames!
If, for instance, one node contributes unusually heavily to the bus traffic (e.g. because it is the only
one with analog inputs, the data for which triggers event-driven PDOs at a high rate), then the
probability of its telegrams being damaged increases. Its error counter will, correspondingly, be the
first to reach a critical level.

Node ID / Setting the Baud Rate

Care must be taken to ensure that node addresses are not assigned twice: there may only be one sender for
each CAN data telegram.

Test 1

Check node addresses. If the CAN communication works at least temporarily and all devices support the
boot-up message, the address assignment can also be checked by recording the boot-up messages after
switching on the devices - but this does not detect any swapping of node addresses.

Test 2

Check that the same baud rate has been set everywhere. For special devices, if the bit timing parameters
are accessible, do they agree with the CANopen definitions (sampling time, SJW, oscillator).

Testing the CAN wiring

These tests should not be carried out if the network is active: No communication should take place during
the tests. The following tests should be carried out in the stated sequence, because some of the tests
assume that the previous test was successful. Not all the tests are generally necessary.

Network terminator and signal leads

The nodes should be switched off or the CAN cable unplugged for this test, because the results of the
measurements can otherwise be distorted by the active CAN transceiver.

Error handling and diagnostics

CX7050 191Version: 1.0

Fig. 68: Wiring diagram for test setup

Test 3

Determine the resistance between CAN high and CAN low - at each device, if necessary.

If the measured value is greater than 65 Ohms, it indicates the absence of a terminating resistor or a break
in a signal lead. If the measured value is less than 50 Ohms, look for a short circuit between the CAN lines,
more than the correct number of terminating resistors, or faulty transceivers.

Test 4

Check for a short circuit between the CAN ground and the signal leads, or between the screen and signal
leads.

Test 5

Remove the earth connection from the CAN ground and screen. Check for a short circuit between the CAN
ground and screen.

Topology

The cable length for CAN networks depends strongly on the selected baud rate. CAN will tolerate short drop
lines - although this again depends on the baud rate. The maximum permitted drop line length should not be
exceeded. The length of cable that has been installed is often underestimated - estimates can even be a
factor of 10 less than the actual length. The following test is therefore recommended:

Test 6

Measure the lengths of the drop lines and the total bus lengths (do not just make rough estimates!) and
compare them with the topology rules for the relevant baud rate.

Screening and earthing

The power supply and the screen should be carefully earthed at the power supply unit, once only and with
low resistance. At all connecting points, branches and so forth the screen of the CAN cable (and possibly the
CAN GND) must also be connected, as well as the signal leads. In the Beckhoff IP20 Bus Couplers, the
screen is grounded for high frequencies via an R/C element.

Error handling and diagnostics

CX7050192 Version: 1.0

Test 7

Use a DC ammeter (16 amp max.) to measure the current between the power supply ground and the shield
at the end of the network most remote from the power supply unit. An equalization current should be present.
If there is no current, then either the screen is not connected all the way through, or the power supply unit is
not properly earthed. If the power supply unit is somewhere in the middle of the network, the measurement
should be performed at both ends. When appropriate, this test can also be carried out at the ends of the drop
line.

Test 8

Interrupt the screen at a number of locations and measure the connection current. If current is flowing, the
screen is earthed at more than one place, creating a ground loop.

Potential differences

The screen must be connected all the way through for this test, and must not be carrying any current - this
has previously been tested.

Test 9

Measure and record the voltage between the screen and the power supply ground at each node. The
maximum potential difference between any two devices should be less than 5 volts.

Detect and localize faults

The "low-tech approach" usually works best: disconnect parts of the network and observe when the error
disappears.

However, this does not work well for problems such as excessive potential differences, ground loops, EMC
or signal distortion, since the reduction in the size of the network often solves the problem without the
"missing" piece being the cause. The bus load also changes as the network is reduced in size, which can
mean that external interference "hits" CAN telegrams less often.

Diagnosis by means of an oscilloscope usually does not lead to success: CAN signals sometimes look quite
confused even in an undisturbed state. It may be possible to trigger on error frames using a storage
oscilloscope - this type of diagnosis, however, is only possible for expert technicians.

Protocol problems

In rare cases, protocol problems (e.g. faulty or incomplete CANopen implementation, unfavorable timing at
boot up, etc.) can be the cause of faults. In this case, a trace of the bus traffic with subsequent evaluation by
CANopen experts is required - the Beckhoff support team can help here.
A free channel of a Beckhoff FC5102 CANopen PCI card is suitable for such a trace - Beckhoff provides the
necessary trace software on the Internet. Alternatively, it is of course possible to use a normal commercial
CAN analysis tool.

Protocol problems can be avoided if devices that have not been conformance tested are not used. The
official CANopen Conformance Test (and the appropriate certificate) can be obtained from the CAN in
Automation Association (https://www.can-cia.org).

https://www.can-cia.org

Error handling and diagnostics

CX7050 193Version: 1.0

9.3 Diagnosis of the multi-function I/Os
This chapter describes the diagnostic options for multi-function I/O communication. This is important, for
example, if the 24 V power supply for the multi-function I/Os fails or the circuit breaker has triggered.

Status variable

The status variable state can be used for diagnostic purposes. In the normal state, the status variable
takes the value 0x___8 (OP, Operational) and thus indicates that everything is error-free.

Fig. 69: Multi-function I/O status variable.

The following table shows which values the variables can assume:

Value Meaning
0x___1 Slave in 'INIT' state
0x___2 Slave in 'PREOP' state
0x___3 Slave in 'BOOT' state
0x___4 Slave in 'SAFEOP' state
0x___8 Slave in 'OP' state
0x001_ Slave signals error
0x002_ Invalid vendorId, productCode... read
0x004_ Initialization error occurred
0x010_ Slave not present

If there is a power supply failure, the multi-function I/Os do not automatically go back into data exchange. To
do this, the multi-function I/Os must be reset. A function block that can be used to reset the multi-function I/
Os is the FB_CX70xx_ResetOnBoardIO [} 175] function block.

Notice : If outputs are still set in the PLC, the outputs of the multi-function I/Os are immediately reactivated
as soon as the multi-function I/Os are reset with the function block.

Other diagnostic variables

The diagnostic variables Diag and TxPDO State are currently not in use and are reserved for future use.
The variable Input cycle counter, on the other hand, increments with each cycle and indicates the
number of I/O cycles exchanged with the multi-function I/Os. As soon as the variable is no longer
incremented, no more I/O cycles are exchanged with the multi-function I/Os.

Fig. 70: Further diagnostic variables for multi-function I/Os

Error handling and diagnostics

CX7050194 Version: 1.0

Variable Meaning
Diag Reserved, currently not used.
TxPDO State Reserved, currently not used.
Input cycle counter Incremented by 1 with each cycle. If this counter stops, then no more I/O

cycles are exchanged with the multi-function I/Os.

9.4 Memory usage
The CX7050 has 32 MB of RAM that is used by the firmware (TC/RTOS) and TwinCAT (TwinCAT memory).
The TwinCAT memory is further divided into the router memory and the PLC memory. The router memory is
used for ADS communication and the PLC memory for the actual PLC program including TcConfiguration,
mapping and data.

19.1 MB of TwinCAT memory are available to the CX7050. Because the size of the memory is limited, it is
important to control the memory usage and to adapt your PLC project if it is exceeded.

Router memory

On the one hand, you can adjust the size of the router memory in TwinCAT and set a smaller router memory
depending on the ADS communication actually used.

Fig. 71: Settings for router memory in the TwinCAT System Manager.

By default, a value of 32 MB is entered in TwinCAT, which in turn is limited to 9 MB for the CX7050 because
of the small RAM in the CX7050. A router memory of 9 MB is usually much too large for a small controller. A
router memory of 4 MB is recommended for the CX7050 and can be even smaller if little to no ADS
communication is used. However, a router memory of at least 1 MB should be adhered to and should not be
any smaller. You can determine how much router memory is used with the function block
FB_GetRouterStatusInfo or alternatively with the Beckhoff Device Manager.

Note that the router memory is only re-created with a power off/on of the CX7050. A TwinCAT restart is not
sufficient. The rule of thumb is: The smaller the router memory for ADS communication is set, the larger the
application can be, i.e. the PLC program, TcConfiguration, mapping and data.

Determining the memory usage

With the function block FB_GetRouterStatusInfo, or alternatively with the Beckhoff Device Manager, it is
possible to determine how large the memory requirement of the router memory is.

Error handling and diagnostics

CX7050 195Version: 1.0

Fig. 72: Utilization of the router and TwinCAT memory.

The Router display can be used to determine the memory requirements of the router memory. In this
example, 20.5 kB of a maximum of 4 MB are occupied. The TcOs display shows the total memory
consumption of the TwinCAT memory including router memory and PLC program. In this example, 7.1 MB
are occupied in total.

With the help of this display, the size of the PLC program can also be calculated, since the router memory is
fixed at 4 MB and is part of the TwinCAT memory. If you subtract the 4 MB from 7.1 MB, therefore, the PLC
program occupies 3.1 MB.

Memory reserve

Since in this example the TwinCAT memory occupies 7.1 MB of 19.1 MB, a reserve of 12 MB remains for the
PLC program. Note that more memory is needed for a short time for an Online Change in TwinCAT. If you
want to use the Online Change function, it is advisable to always have a certain reserve. In the most extreme
case, twice the currently consumed PLC program may be required to perform an Online Change. An error
message is displayed in TwinCAT if there is not enough memory available for the Online Change.

Error handling and diagnostics

CX7050196 Version: 1.0

9.5 Real-time and CPU load
For the proper functioning of the CX7050, it is important to keep an eye on CPU load and real-time
compliance. Otherwise, the CX7050 will no longer work reliably in the event of an overload. Note that in the
event of an overload, the load indicator is also affected and no longer provides current values. For example,
a load of 40% can be incorrectly displayed, but the PLCs are no longer working in real time and the system
is overloaded. You should therefore gradually approach the load limit with a small controller.

What is meant by real-time in this context? By default, the PLC works in synchronization with the cycle,
which means that a task time is always defined and called at a fixed time. The PLC works in synchronization
with the cycle if the task time is not exceeded. For example, if you define a task time of 10 ms and the PLC
only needs 2 ms for processing, the selected task time is fine and the PLCs work in synchronization with the
cycle.

Even if you do not need the real-time, it is recommended to adhere to the real-time, because otherwise
negative effects can occur. These could be connection problems or problems with subsystems such as K-
bus or EtherCAT. You can perform the following steps to check whether the CX7050 is optimally set or
rather overloaded:

• Observe the exceed counter.
• Check the CPU load.

Observe the exceed counter

The exceed counter is incremented as soon as the PLC no longer works in synchronization with the cycle
and the defined task time is exceeded. Ideally, the counter value should be zero.

Fig. 73: Display of the exceed counter in TwinCAT.

It is possible for the exceed counter to be incremented at the start of the PLC, for example, because the PLC
is called for the first time or certain components are initialized. Observe the exceed counter over a period of
several hours. One can only speak of a stable state when the exceed counter is no longer incremented over
a longer period of time.

Check the CPU load

In TwinCAT, the CPU load is displayed under Realtime and on the Online tab. Check the value to determine
whether you can run additional program code or reduce the task time.

Error handling and diagnostics

CX7050 197Version: 1.0

Fig. 74: Display of the CPU load in TwinCAT.

The light green line indicates the preset CPU limit. If the load is ≥ 65%, the CX7050 is already very busy and
no more code should be executed or the task time shortened. You should not go to the limit and use the
CX7050 to full capacity.

Measures in the event of overload

If an overload is detected with the help of the steps shown, the load can be reduced by improving the
programming or increasing the task time. To find places in the program code with long processing times, the
sample in Measuring processing time in the PLC program [} 168] can be used.

The selected terminal system also has an influence on the real-time. Depending on the number of terminals,
the K-bus, for example, can also take several milliseconds and must be taken into account when choosing
the task time. It may well be that, with a set task time of 10 ms, the PLC program only needs 5 ms, but the
exceed counter still increments. This is due to the fact that the K-bus requires more than 5 ms for processing
and the task time of 10 ms including PLC program and K-bus is exceeded. This problem can be solved by
reducing the number of terminals or increasing the task time.

By default, the real-time is set to 80%. This is already the maximum value and an increase to 90% is
equivalent to an increase to 100%.

Fig. 75: Setting the real-time load in TwinCAT.

TwinCAT would then consume all the CPU power, and services that the operating system serves would no
longer work or would not work adequately. If you increase the real-time load to 90%, you should be aware of
the potential consequences for the operating system.

Technical data

CX7050198 Version: 1.0

10 Technical data
Table 27: Technical data, dimensions and weights.

CX7050
Dimensions (W x H x D) 49 mm x 100 mm x 73 mm
Weight 142 g

Table 28: Technical data, general data.

Technical data CX7050
Processor ARM Cortex™ M7, 480 MHz
Number of cores 1
Flash memory 512 MB microSD (optionally 1 GB, 2 GB, 4 GB or 8 GB)
Main memory 32 MB SDR (internal, non-extendable)
Number of inputs 8 multifunction inputs (24 V DC)
Number of outputs 4 multifunction outputs (24 V DC, 0.5 A, 1-wire technique)
NOVRAM 4 kB
Interfaces 1 x RJ45 10/100 Mbit/s, 1x USB (max 12 Mbit/s, max 100 mA)
Bus interface D-sub connector, 9-pin, 1 x CANopen commander (master), CAN 2.0A/

2.0B
Data transfer rate 10, 20, 50, 100, 125, 250, 500, 800, 1000 kbaud
Diagnostic LED 1 x TC Status, 1 x WD LED, 1 x ERR LED
Clock internal, capacitor-buffered real-time clock for time and date (memory >

21 days)
Operating system TC/RTOS
Control software TwinCAT 3 Runtime (XAR)
Power supply 24 VDC (-15 %/+20 %)
Max. power consumption < 2 W (max. 12 W with E-bus/K-bus)
TwinCAT 3 functions included TC1000 TwinCAT 3 ADS, TC1100 TwinCAT 3 I/O, TC1200 TwinCAT 3

PLC, TF4100 TwinCAT 3 Controller Toolbox, TF4110 TwinCAT 3
Temperature Controller, TF6255 TwinCAT 3 Modbus RTU, TF6340
TwinCAT 3 Serial Communication, TF6701 TwinCAT 3 IoT
Communication (MQTT), TF6730 TwinCAT 3 IoT Communicator

Approvals CE, UL

Table 29: Technical data, I/O terminals.

Technical data CX7050
I/O connection via power supply terminal (E-bus or K-bus, automatic recognition)
Power supply for I/O terminals max. 1.5 A (installation position any, temp. -25...45 °C)

max. 1.3 A (installation position horizontal, temp. -25...55 °C)
max. 1 A (installation position any, temp. -25...55 °C)
max. 1 A (installation position horizontal, temp. -25...60 °C)

Power contacts current load max. 10 A
Process data on the K-bus max. 512 bytes In and 512 bytes Out
max. number of terminals (K-bus) 64 (255 with K-bus extension)
E-bus process data max. 4 kB In and 4 kB Out
max. number of terminals (E-bus) up to 65534 terminals.

Table 30: Technical data, environmental conditions.

Technical data CX7050
Ambient temperature during
operation

-25° C ... +60° C

Technical data

CX7050 199Version: 1.0

Technical data CX7050
Ambient temperature during
storage

-40° C ... +85° C
see notes under: Transport and storage [} 12]

Relative humidity 95 % no condensation
Vibration resistance conforms to EN 60068-2-6
Shock resistance conforms to EN 60068-2-27
EMC immunity conforms to EN 61000-6-2
EMC emission conforms to EN 61000-6-4
Protection rating IP20

Table 31: Technical data, Ethernet interface X001.

Technical data CX7050
Data transfer medium 4 x 2 twisted pair copper cables category 5 (100 Mbit/s)
Cable length 100 m from switch to CX7050
Data transfer rate 10/100 Mbit/s
Topology star wiring
Protocols all non-real-time-capable protocols that are based on TCP or UDP and

do not require a real-time extension

Table 32: Technical data, CANopen interface X003.

Technical data CX7050
Fieldbus CANopen
Data transfer rate 10, 20, 50, 100, 125, 250, 500, 800, 1,000 kbaud
Bus interface 1 x D sub-socket, 9-pin
Bus devices max. 64
max. process image 512 Tx PDOs / 512 Rx PDOs
Autobaud -
Electrical isolation Yes
Protocol
CANopen slave Yes
CAN (virtual slave) Yes
ADS Interface yes (only via Ethernet)
Services
CAN Layer 2 Yes
CAN 2.0A Yes
CAN 2.0B Yes, can only be used via the CAN interface

Table 33: Technical data, CANopen interface X003 parameterized as slave.

Technical data CX7050 parameterized as slave
Fieldbus CANopen
Data transfer rate 10, 20, 50, 100, 125, 250, 500, 800, 1,000 kbaud
Bus interface 1 x D sub-socket, 9-pin
Extendable process image Up to 3 virtual slaves in addition
max. process image 4 slaves x (16 Tx PDOs / 16 Rx PDOs (8 bytes per PDO))
Autobaud Yes
Electrical isolation Yes
Protocol
CANopen slave Yes
CAN (virtual slave) 4 (3 virtual CANopen nodes)
ADS Interface yes (only via Ethernet)

Technical data

CX7050200 Version: 1.0

Technical data CX7050 parameterized as slave
Services
CAN Layer 2 No
CAN 2.0A acc. to CANopen
CAN 2.0B No

Appendix

CX7050 201Version: 1.0

11 Appendix

11.1 CAN Identifier list
The list provided here should assist in identifying and assigning CANopen messages. All the identifiers
allocated by the CANopen default identifier allocation are listed, as well as the manufacturer-specific default
identifiers issued by BECKHOFF via object 0x5500 (only to be used in networks with node addresses less
than 64).

The following values can be used as search aids and "entry points" in the extensive identifier table in the
*chm edition of the documentation:

Decimal: 400 [} 202], 500 [} 207], 600 [} 207], 700 [} 203], 800 [} 203], 900 [} 204], 1000 [} 208], 1100
[} 209], 1200 [} 205], 1300 [} 205], 1400 [} 209], 1500 [} 210], 1600 [} 210], 1700 [} 206], 1800 [} 212], 1900
[} 206]

Hexadecimal: 0x181 [} 202], 0x1C1 [} 207], 0x201 [} 202], 0x301 [} 203], 0x401 [} 205], 0x501 [} 205], 0x601
[} 212], 0x701 [} 212]

The identifier distribution via object 0x5500 follows this pattern:

Object Resulting COB ID (dec) Resulting COB ID (hex)
Emergency [} 202] 129 to 191 [255] 0x81 to 0xBF [0xFF]

TxPDO1 [} 202] 385 to 447 [511] 0x181 to 0x1BF [0x1FF]

RxPDO1 [} 202] 513 to 575 [639] 0x201 to 0x23F [0x27F]

TxPDO2 [} 203] 641 to 676 [767] 0x281 to 0x2BF [0x2FF]

RxPDO2 [} 203] 769 to 831 [895] 0x301 to 0x33F [0x37F]

TxDPO3 [} 204] 897 to 959 [1023] 0x381 to 0x3BF [0x3FF]

RxPDO3 [} 205] 1025 to 1087 [1151] 0x401 to 0x43F [0x47F]

TxPDO4 [} 205] 1153 to 1215 [1279] 0x481 to 0x4BF [0x4FF]

RxPDO4 [} 205] 1281 to 1343 [1407] 0x501 to 0x53F [0x57F]

TxPDO5 [} 206] 1665 to 1727 0x681 to 0x6BF

RxPDO5 [} 206] 1921 to 1983 0x781 to 0x7BF

TxPDO6 [} 207] 449 to 511 0x1C1 to 0x1FF

RxPDO6 [} 207] 577 to 639 0x241 to 0x27F

TxDPO7 [} 207] 705 to 767 0x2C1 to 0x2FF

RxPDO7 [} 208] 833 to 895 0x341 to 0x37F

TxPDO8 [} 208] 961 to 1023 0x3C1 to 0x3FF

RxPDO8 [} 209] 1089 to 1151 0x441 to 0x47F

TxPDO9 [} 209] 1217 to 1279 0x4C1 to 0x4FF

RxPDO9 [} 209] 1345 to 1407 0x541 to 0x57F

TxDPO10 [} 210] 1473 to 1535 0x5C1 to 0x5FF

RxPDO10 [} 210] 1601 to 1663 0x641 to 0x67F

TxPDO11 [} 211] 1729 to 1791 0x6C1 to 0x6FF

RxPDO11 [} 211] 1857 to 1919 0x741 to 0x77F

SDO (Tx) [} 211] 1409 to 1471 [1535] 0x581 to 0x5BF [0x5FF]

SDO (Rx) [} 212] 1537 to 1599 [1663] 0x601 to 0x63F [0x67F]

Guarding / Heartbeat/ Bootup
[} 212]

1793 to 1855 [1919] 0x701 to 0x73F [0x77F]

Appendix

CX7050202 Version: 1.0

Identifier List

Identifiers marked with * are given manufacturer-specific assignments on the Bus Couplers after writing
index 0x5500
dec hex Telegram type dec hex Telegram type dec hex Telegram type
0 0x00 NMT 149 0x95 EMCY Nd.21 171 0xAB EMCY Nd.43
128 0x80 SYNC 150 0x96 EMCY Nd.22 172 0xAC EMCY Nd.44
129 0x81 EMCY Nd.1 151 0x97 EMCY Nd.23 173 0xAD EMCY Nd.45
130 0x82 EMCY Nd.2 152 0x98 EMCY Nd.24 174 0xAE EMCY Nd.46
131 0x83 EMCY Nd.3 153 0x99 EMCY Nd.25 175 0xAF EMCY Nd.47
132 0x84 EMCY Nd.4 154 0x9A EMCY Nd.26 176 0xB0 EMCY Nd.48
133 0x85 EMCY Nd.5 155 0x9B EMCY Nd.27 177 0xB1 EMCY Nd.49
134 0x86 EMCY Nd.6 156 0x9C EMCY Nd.28 178 0xB2 EMCY Nd.50
135 0x87 EMCY Nd.7 157 0x9D EMCY Nd.29 179 0xB3 EMCY Nd.51
136 0x88 EMCY Nd.8 158 0x9E EMCY Nd.30 180 0xB4 EMCY Nd.52
137 0x89 EMCY Nd.9 159 0x9F EMCY Nd.31 181 0xB5 EMCY Nd.53
138 0x8A EMCY Nd.10 160 0xA0 EMCY Nd.32 182 0xB6 EMCY Nd.54
139 0x8B EMCY Nd.11 161 0xA1 EMCY Nd.33 183 0xB7 EMCY Nd.55
140 0x8C EMCY Nd.12 162 0xA2 EMCY Nd.34 184 0xB8 EMCY Nd.56
141 0x8D EMCY Nd.13 163 0xA3 EMCY Nd.35 185 0xB9 EMCY Nd.57
142 0x8E EMCY Nd.14 164 0xA4 EMCY Nd.36 186 0xBA EMCY Nd.58
143 0x8F EMCY Nd.15 165 0xA5 EMCY Nd.37 187 0xBB EMCY Nd.59
144 0x90 EMCY Nd.16 166 0xA6 EMCY Nd.38 188 0xBC EMCY Nd.60
145 0x91 EMCY Nd.17 167 0xA7 EMCY Nd.39 189 0xBD EMCY Nd.61
146 0x92 EMCY Nd.18 168 0xA8 EMCY Nd.40 190 0xBE EMCY Nd.62
147 0x93 EMCY Nd.19 169 0xA9 EMCY Nd.41 191 0xBF EMCY Nd.63
148 0x94 EMCY Nd.20 170 0xAA EMCY Nd.42

dec hex Telegram type dec hex Telegram type dec hex Telegram type
385 0x181 TxPDO1, DI, Nd.1 406 0x196 TxPDO1, DI, Nd.22 427 0x1AB TxPDO1, DI, Nd.43
386 0x182 TxPDO1, DI, Nd.2 407 0x197 TxPDO1, DI, Nd.23 428 0x1AC TxPDO1, DI, Nd.44
387 0x183 TxPDO1, DI, Nd.3 408 0x198 TxPDO1, DI, Nd.24 429 0x1AD TxPDO1, DI, Nd.45
388 0x184 TxPDO1, DI, Nd.4 409 0x199 TxPDO1, DI, Nd.25 430 0x1AE TxPDO1, DI, Nd.46
389 0x185 TxPDO1, DI, Nd.5 410 0x19A TxPDO1, DI, Nd.26 431 0x1AF TxPDO1, DI, Nd.47
390 0x186 TxPDO1, DI, Nd.6 411 0x19B TxPDO1, DI, Nd.27 432 0x1B0 TxPDO1, DI, Nd.48
391 0x187 TxPDO1, DI, Nd.7 412 0x19C TxPDO1, DI, Nd.28 433 0x1B1 TxPDO1, DI, Nd.49
392 0x188 TxPDO1, DI, Nd.8 413 0x19D TxPDO1, DI, Nd.29 434 0x1B2 TxPDO1, DI, Nd.50
393 0x189 TxPDO1, DI, Nd.9 414 0x19E TxPDO1, DI, Nd.30 435 0x1B3 TxPDO1, DI, Nd.51
394 0x18A TxPDO1, DI, Nd.10 415 0x19F TxPDO1, DI, Nd.31 436 0x1B4 TxPDO1, DI, Nd.52
395 0x18B TxPDO1, DI, Nd.11 416 0x1A0 TxPDO1, DI, Nd.32 437 0x1B5 TxPDO1, DI, Nd.53
396 0x18C TxPDO1, DI, Nd.12 417 0x1A1 TxPDO1, DI, Nd.33 438 0x1B6 TxPDO1, DI, Nd.54
397 0x18D TxPDO1, DI, Nd.13 418 0x1A2 TxPDO1, DI, Nd.34 439 0x1B7 TxPDO1, DI, Nd.55
398 0x18E TxPDO1, DI, Nd.14 419 0x1A3 TxPDO1, DI, Nd.35 440 0x1B8 TxPDO1, DI, Nd.56
399 0x18F TxPDO1, DI, Nd.15 420 0x1A4 TxPDO1, DI, Nd.36 441 0x1B9 TxPDO1, DI, Nd.57
400 0x190 TxPDO1, DI, Nd.16 421 0x1A5 TxPDO1, DI, Nd.37 442 0x1BA TxPDO1, DI, Nd.58
401 0x191 TxPDO1, DI, Nd.17 422 0x1A6 TxPDO1, DI, Nd.38 443 0x1BB TxPDO1, DI, Nd.59
402 0x192 TxPDO1, DI, Nd.18 423 0x1A7 TxPDO1, DI, Nd.39 444 0x1BC TxPDO1, DI, Nd.60
403 0x193 TxPDO1, DI, Nd.19 424 0x1A8 TxPDO1, DI, Nd.40 445 0x1BD TxPDO1, DI, Nd.61
404 0x194 TxPDO1, DI, Nd.20 425 0x1A9 TxPDO1, DI, Nd.41 446 0x1BE TxPDO1, DI, Nd.62
405 0x195 TxPDO1, DI, Nd.21 426 0x1AA TxPDO1, DI, Nd.42 447 0x1BF TxPDO1, DI, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
513 0x201 RxPDO1, DO, Nd.1 534 0x216 RxPDO1, DO, Nd.22 555 0x22B RxPDO1, DO,

Nd.43
514 0x202 RxPDO1, DO, Nd.2 535 0x217 RxPDO1, DO, Nd.23 556 0x22C RxPDO1, DO,

Nd.44
515 0x203 RxPDO1, DO, Nd.3 536 0x218 RxPDO1, DO, Nd.24 557 0x22D RxPDO1, DO,

Nd.45
516 0x204 RxPDO1, DO, Nd.4 537 0x219 RxPDO1, DO, Nd.25 558 0x22E RxPDO1, DO,

Nd.46

Appendix

CX7050 203Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
517 0x205 RxPDO1, DO, Nd.5 538 0x21A RxPDO1, DO, Nd.26 559 0x22F RxPDO1, DO,

Nd.47
518 0x206 RxPDO1, DO, Nd.6 539 0x21B RxPDO1, DO, Nd.27 560 0x230 RxPDO1, DO,

Nd.48
519 0x207 RxPDO1, DO, Nd.7 540 0x21C RxPDO1, DO, Nd.28 561 0x231 RxPDO1, DO,

Nd.49
520 0x208 RxPDO1, DO, Nd.8 541 0x21D RxPDO1, DO, Nd.29 562 0x232 RxPDO1, DO,

Nd.50
521 0x209 RxPDO1, DO, Nd.9 542 0x21E RxPDO1, DO, Nd.30 563 0x233 RxPDO1, DO,

Nd.51
522 0x20A RxPDO1, DO, Nd.10 543 0x21F RxPDO1, DO, Nd.31 564 0x234 RxPDO1, DO,

Nd.52
523 0x20B RxPDO1, DO, Nd.11 544 0x220 RxPDO1, DO, Nd.32 565 0x235 RxPDO1, DO,

Nd.53
524 0x20C RxPDO1, DO, Nd.12 545 0x221 RxPDO1, DO, Nd.33 566 0x236 RxPDO1, DO,

Nd.54
525 0x20D RxPDO1, DO, Nd.13 546 0x222 RxPDO1, DO, Nd.34 567 0x237 RxPDO1, DO,

Nd.55
526 0x20E RxPDO1, DO, Nd.14 547 0x223 RxPDO1, DO, Nd.35 568 0x238 RxPDO1, DO,

Nd.56
527 0x20F RxPDO1, DO, Nd.15 548 0x224 RxPDO1, DO, Nd.36 569 0x239 RxPDO1, DO,

Nd.57
528 0x210 RxPDO1, DO, Nd.16 549 0x225 RxPDO1, DO, Nd.37 570 0x23A RxPDO1, DO,

Nd.58
529 0x211 RxPDO1, DO, Nd.17 550 0x226 RxPDO1, DO, Nd.38 571 0x23B RxPDO1, DO,

Nd.59
530 0x212 RxPDO1, DO, Nd.18 551 0x227 RxPDO1, DO, Nd.39 572 0x23C RxPDO1, DO,

Nd.60
531 0x213 RxPDO1, DO, Nd.19 552 0x228 RxPDO1, DO, Nd.40 573 0x23D RxPDO1, DO,

Nd.61
532 0x214 RxPDO1, DO, Nd.20 553 0x229 RxPDO1, DO, Nd.41 574 0x23E RxPDO1, DO,

Nd.62
533 0x215 RxPDO1, DO, Nd.21 554 0x22A RxPDO1, DO, Nd.42 575 0x23F RxPDO1, DO,

Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
641 0x281 TxPDO2, AI, Nd.1 662 0x296 TxPDO2, AI, Nd.22 683 0x2AB TxPDO2, AI, Nd.43
642 0x282 TxPDO2, AI, Nd.2 663 0x297 TxPDO2, AI, Nd.23 684 0x2AC TxPDO2, AI, Nd.44
643 0x283 TxPDO2, AI, Nd.3 664 0x298 TxPDO2, AI, Nd.24 685 0x2AD TxPDO2, AI, Nd.45
644 0x284 TxPDO2, AI, Nd.4 665 0x299 TxPDO2, AI, Nd.25 686 0x2AE TxPDO2, AI, Nd.46
645 0x285 TxPDO2, AI, Nd.5 666 0x29A TxPDO2, AI, Nd.26 687 0x2AF TxPDO2, AI, Nd.47
646 0x286 TxPDO2, AI, Nd.6 667 0x29B TxPDO2, AI, Nd.27 688 0x2B0 TxPDO2, AI, Nd.48
647 0x287 TxPDO2, AI, Nd.7 668 0x29C TxPDO2, AI, Nd.28 689 0x2B1 TxPDO2, AI, Nd.49
648 0x288 TxPDO2, AI, Nd.8 669 0x29D TxPDO2, AI, Nd.29 690 0x2B2 TxPDO2, AI, Nd.50
649 0x289 TxPDO2, AI, Nd.9 670 0x29E TxPDO2, AI, Nd.30 691 0x2B3 TxPDO2, AI, Nd.51
650 0x28A TxPDO2, AI, Nd.10 671 0x29F TxPDO2, AI, Nd.31 692 0x2B4 TxPDO2, AI, Nd.52
651 0x28B TxPDO2, AI, Nd.11 672 0x2A0 TxPDO2, AI, Nd.32 693 0x2B5 TxPDO2, AI, Nd.53
652 0x28C TxPDO2, AI, Nd.12 673 0x2A1 TxPDO2, AI, Nd.33 694 0x2B6 TxPDO2, AI, Nd.54
653 0x28D TxPDO2, AI, Nd.13 674 0x2A2 TxPDO2, AI, Nd.34 695 0x2B7 TxPDO2, AI, Nd.55
654 0x28E TxPDO2, AI, Nd.14 675 0x2A3 TxPDO2, AI, Nd.35 696 0x2B8 TxPDO2, AI, Nd.56
655 0x28F TxPDO2, AI, Nd.15 676 0x2A4 TxPDO2, AI, Nd.36 697 0x2B9 TxPDO2, AI, Nd.57
656 0x290 TxPDO2, AI, Nd.16 677 0x2A5 TxPDO2, AI, Nd.37 698 0x2BA TxPDO2, AI, Nd.58
657 0x291 TxPDO2, AI, Nd.17 678 0x2A6 TxPDO2, AI, Nd.38 699 0x2BB TxPDO2, AI, Nd.59
658 0x292 TxPDO2, AI, Nd.18 679 0x2A7 TxPDO2, AI, Nd.39 700 0x2BC TxPDO2, AI, Nd.60
659 0x293 TxPDO2, AI, Nd.19 680 0x2A8 TxPDO2, AI, Nd.40 701 0x2BD TxPDO2, AI, Nd.61
660 0x294 TxPDO2, AI, Nd.20 681 0x2A9 TxPDO2, AI, Nd.41 702 0x2BE TxPDO2, AI, Nd.62
661 0x295 TxPDO2, AI, Nd.21 682 0x2AA TxPDO2, AI, Nd.42 703 0x2BF TxPDO2, AI, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
769 0x301 RxPDO2, AO, Nd.1 790 0x316 RxPDO2, AO, Nd.22 811 0x32B RxPDO2, AO,

Nd.43

Appendix

CX7050204 Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
770 0x302 RxPDO2, AO, Nd.2 791 0x317 RxPDO2, AO, Nd.23 812 0x32C RxPDO2, AO,

Nd.44
771 0x303 RxPDO2, AO, Nd.3 792 0x318 RxPDO2, AO, Nd.24 813 0x32D RxPDO2, AO,

Nd.45
772 0x304 RxPDO2, AO, Nd.4 793 0x319 RxPDO2, AO, Nd.25 814 0x32E RxPDO2, AO,

Nd.46
773 0x305 RxPDO2, AO, Nd.5 794 0x31A RxPDO2, AO, Nd.26 815 0x32F RxPDO2, AO,

Nd.47
774 0x306 RxPDO2, AO, Nd.6 795 0x31B RxPDO2, AO, Nd.27 816 0x330 RxPDO2, AO,

Nd.48
775 0x307 RxPDO2, AO, Nd.7 796 0x31C RxPDO2, AO, Nd.28 817 0x331 RxPDO2, AO,

Nd.49
776 0x308 RxPDO2, AO, Nd.8 797 0x31D RxPDO2, AO, Nd.29 818 0x332 RxPDO2, AO,

Nd.50
777 0x309 RxPDO2, AO, Nd.9 798 0x31E RxPDO2, AO, Nd.30 819 0x333 RxPDO2, AO,

Nd.51
778 0x30A RxPDO2, AO, Nd.10 799 0x31F RxPDO2, AO, Nd.31 820 0x334 RxPDO2, AO,

Nd.52
779 0x30B RxPDO2, AO, Nd.11 800 0x320 RxPDO2, AO, Nd.32 821 0x335 RxPDO2, AO,

Nd.53
780 0x30C RxPDO2, AO, Nd.12 801 0x321 RxPDO2, AO, Nd.33 822 0x336 RxPDO2, AO,

Nd.54
781 0x30D RxPDO2, AO, Nd.13 802 0x322 RxPDO2, AO, Nd.34 823 0x337 RxPDO2, AO,

Nd.55
782 0x30E RxPDO2, AO, Nd.14 803 0x323 RxPDO2, AO, Nd.35 824 0x338 RxPDO2, AO,

Nd.56
783 0x30F RxPDO2, AO, Nd.15 804 0x324 RxPDO2, AO, Nd.36 825 0x339 RxPDO2, AO,

Nd.57
784 0x310 RxPDO2, AO, Nd.16 805 0x325 RxPDO2, AO, Nd.37 826 0x33A RxPDO2, AO,

Nd.58
785 0x311 RxPDO2, AO, Nd.17 806 0x326 RxPDO2, AO, Nd.38 827 0x33B RxPDO2, AO,

Nd.59
786 0x312 RxPDO2, AO, Nd.18 807 0x327 RxPDO2, AO, Nd.39 828 0x33C RxPDO2, AO,

Nd.60
787 0x313 RxPDO2, AO, Nd.19 808 0x328 RxPDO2, AO, Nd.40 829 0x33D RxPDO2, AO,

Nd.61
788 0x314 RxPDO2, AO, Nd.20 809 0x329 RxPDO2, AO, Nd.41 830 0x33E RxPDO2, AO,

Nd.62
789 0x315 RxPDO2, AO, Nd.21 810 0x32A RxPDO2, AO, Nd.42 831 0x33F RxPDO2, AO,

Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
897 0x381 TxPDO3*, Nd.1 918 0x396 TxPDO3*, Nd.22 939 0x3AB TxPDO3*, Nd.43
898 0x382 TxPDO3*, Nd.2 919 0x397 TxPDO3*, Nd.23 940 0x3AC TxPDO3*, Nd.44
899 0x383 TxPDO3*, Nd.3 920 0x398 TxPDO3*, Nd.24 941 0x3AD TxPDO3*, Nd.45
900 0x384 TxPDO3*, Nd.4 921 0x399 TxPDO3*, Nd.25 942 0x3AE TxPDO3*, Nd.46
901 0x385 TxPDO3*, Nd.5 922 0x39A TxPDO3*, Nd.26 943 0x3AF TxPDO3*, Nd.47
902 0x386 TxPDO3*, Nd.6 923 0x39B TxPDO3*, Nd.27 944 0x3B0 TxPDO3*, Nd.48
903 0x387 TxPDO3*, Nd.7 924 0x39C TxPDO3*, Nd.28 945 0x3B1 TxPDO3*, Nd.49
904 0x388 TxPDO3*, Nd.8 925 0x39D TxPDO3*, Nd.29 946 0x3B2 TxPDO3*, Nd.50
905 0x389 TxPDO3*, Nd.9 926 0x39E TxPDO3*, Nd.30 947 0x3B3 TxPDO3*, Nd.51
906 0x38A TxPDO3*, Nd.10 927 0x39F TxPDO3*, Nd.31 948 0x3B4 TxPDO3*, Nd.52
907 0x38B TxPDO3*, Nd.11 928 0x3A0 TxPDO3*, Nd.32 949 0x3B5 TxPDO3*, Nd.53
908 0x38C TxPDO3*, Nd.12 929 0x3A1 TxPDO3*, Nd.33 950 0x3B6 TxPDO3*, Nd.54
909 0x38D TxPDO3*, Nd.13 930 0x3A2 TxPDO3*, Nd.34 951 0x3B7 TxPDO3*, Nd.55
910 0x38E TxPDO3*, Nd.14 931 0x3A3 TxPDO3*, Nd.35 952 0x3B8 TxPDO3*, Nd.56
911 0x38F TxPDO3*, Nd.15 932 0x3A4 TxPDO3*, Nd.36 953 0x3B9 TxPDO3*, Nd.57
912 0x390 TxPDO3*, Nd.16 933 0x3A5 TxPDO3*, Nd.37 954 0x3BA TxPDO3*, Nd.58
913 0x391 TxPDO3*, Nd.17 934 0x3A6 TxPDO3*, Nd.38 955 0x3BB TxPDO3*, Nd.59
914 0x392 TxPDO3*, Nd.18 935 0x3A7 TxPDO3*, Nd.39 956 0x3BC TxPDO3*, Nd.60
915 0x393 TxPDO3*, Nd.19 936 0x3A8 TxPDO3*, Nd.40 957 0x3BD TxPDO3*, Nd.61
916 0x394 TxPDO3*, Nd.20 937 0x3A9 TxPDO3*, Nd.41 958 0x3BE TxPDO3*, Nd.62
917 0x395 TxPDO3*, Nd.21 938 0x3AA TxPDO3*, Nd.42 959 0x3BF TxPDO3*, Nd.63

Appendix

CX7050 205Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1025 0x401 RxPDO3*, Nd.1 1046 0x416 RxPDO3*, Nd.22 1067 0x42B RxPDO3*, Nd.43
1026 0x402 RxPDO3*, Nd.2 1047 0x417 RxPDO3*, Nd.23 1068 0x42C RxPDO3*, Nd.44
1027 0x403 RxPDO3*, Nd.3 1048 0x418 RxPDO3*, Nd.24 1069 0x42D RxPDO3*, Nd.45
1028 0x404 RxPDO3*, Nd.4 1049 0x419 RxPDO3*, Nd.25 1070 0x42E RxPDO3*, Nd.46
1029 0x405 RxPDO3*, Nd.5 1050 0x41A RxPDO3*, Nd.26 1071 0x42F RxPDO3*, Nd.47
1030 0x406 RxPDO3*, Nd.6 1051 0x41B RxPDO3*, Nd.27 1072 0x430 RxPDO3*, Nd.48
1031 0x407 RxPDO3*, Nd.7 1052 0x41C RxPDO3*, Nd.28 1073 0x431 RxPDO3*, Nd.49
1032 0x408 RxPDO3*, Nd.8 1053 0x41D RxPDO3*, Nd.29 1074 0x432 RxPDO3*, Nd.50
1033 0x409 RxPDO3*, Nd.9 1054 0x41E RxPDO3*, Nd.30 1075 0x433 RxPDO3*, Nd.51
1034 0x40A RxPDO3*, Nd.10 1055 0x41F RxPDO3*, Nd.31 1076 0x434 RxPDO3*, Nd.52
1035 0x40B RxPDO3*, Nd.11 1056 0x420 RxPDO3*, Nd.32 1077 0x435 RxPDO3*, Nd.53
1036 0x40C RxPDO3*, Nd.12 1057 0x421 RxPDO3*, Nd.33 1078 0x436 RxPDO3*, Nd.54
1037 0x40D RxPDO3*, Nd.13 1058 0x422 RxPDO3*, Nd.34 1079 0x437 RxPDO3*, Nd.55
1038 0x40E RxPDO3*, Nd.14 1059 0x423 RxPDO3*, Nd.35 1080 0x438 RxPDO3*, Nd.56
1039 0x40F RxPDO3*, Nd.15 1060 0x424 RxPDO3*, Nd.36 1081 0x439 RxPDO3*, Nd.57
1040 0x410 RxPDO3*, Nd.16 1061 0x425 RxPDO3*, Nd.37 1082 0x43A RxPDO3*, Nd.58
1041 0x411 RxPDO3*, Nd.17 1062 0x426 RxPDO3*, Nd.38 1083 0x43B RxPDO3*, Nd.59
1042 0x412 RxPDO3*, Nd.18 1063 0x427 RxPDO3*, Nd.39 1084 0x43C RxPDO3*, Nd.60
1043 0x413 RxPDO3*, Nd.19 1064 0x428 RxPDO3*, Nd.40 1085 0x43D RxPDO3*, Nd.61
1044 0x414 RxPDO3*, Nd.20 1065 0x429 RxPDO3*, Nd.41 1086 0x43E RxPDO3*, Nd.62
1045 0x415 RxPDO3*, Nd.21 1066 0x42A RxPDO3*, Nd.42 1087 0x43F RxPDO3*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1153 0x481 TxPDO4*, Nd.1 1174 0x496 TxPDO4*, Nd.22 1195 0x4AB TxPDO4*, Nd.43
1154 0x482 TxPDO4*, Nd.2 1175 0x497 TxPDO4*, Nd.23 1196 0x4AC TxPDO4*, Nd.44
1155 0x483 TxPDO4*, Nd.3 1176 0x498 TxPDO4*, Nd.24 1197 0x4AD TxPDO4*, Nd.45
1156 0x484 TxPDO4*, Nd.4 1177 0x499 TxPDO4*, Nd.25 1198 0x4AE TxPDO4*, Nd.46
1157 0x485 TxPDO4*, Nd.5 1178 0x49A TxPDO4*, Nd.26 1199 0x4AF TxPDO4*, Nd.47
1158 0x486 TxPDO4*, Nd.6 1179 0x49B TxPDO4*, Nd.27 1200 0x4B0 TxPDO4*, Nd.48
1159 0x487 TxPDO4*, Nd.7 1180 0x49C TxPDO4*, Nd.28 1201 0x4B1 TxPDO4*, Nd.49
1160 0x488 TxPDO4*, Nd.8 1181 0x49D TxPDO4*, Nd.29 1202 0x4B2 TxPDO4*, Nd.50
1161 0x489 TxPDO4*, Nd.9 1182 0x49E TxPDO4*, Nd.30 1203 0x4B3 TxPDO4*, Nd.51
1162 0x48A TxPDO4*, Nd.10 1183 0x49F TxPDO4*, Nd.31 1204 0x4B4 TxPDO4*, Nd.52
1163 0x48B TxPDO4*, Nd.11 1184 0x4A0 TxPDO4*, Nd.32 1205 0x4B5 TxPDO4*, Nd.53
1164 0x48C TxPDO4*, Nd.12 1185 0x4A1 TxPDO4*, Nd.33 1206 0x4B6 TxPDO4*, Nd.54
1165 0x48D TxPDO4*, Nd.13 1186 0x4A2 TxPDO4*, Nd.34 1207 0x4B7 TxPDO4*, Nd.55
1166 0x48E TxPDO4*, Nd.14 1187 0x4A3 TxPDO4*, Nd.35 1208 0x4B8 TxPDO4*, Nd.56
1167 0x48F TxPDO4*, Nd.15 1188 0x4A4 TxPDO4*, Nd.36 1209 0x4B9 TxPDO4*, Nd.57
1168 0x490 TxPDO4*, Nd.16 1189 0x4A5 TxPDO4*, Nd.37 1210 0x4BA TxPDO4*, Nd.58
1169 0x491 TxPDO4*, Nd.17 1190 0x4A6 TxPDO4*, Nd.48 1211 0x4BB TxPDO4*, Nd.59
1170 0x492 TxPDO4*, Nd.18 1191 0x4A7 TxPDO4*, Nd.49 1212 0x4BC TxPDO4*, Nd.60
1171 0x493 TxPDO4*, Nd.19 1192 0x4A8 TxPDO4*, Nd.40 1213 0x4BD TxPDO4*, Nd.61
1172 0x494 TxPDO4*, Nd.20 1193 0x4A9 TxPDO4*, Nd.41 1214 0x4BE TxPDO4*, Nd.62
1173 0x495 TxPDO4*, Nd.21 1194 0x4AA TxPDO4*, Nd.42 1215 0x4BF TxPDO4*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1281 0x501 RxPDO4*, Nd.1 1302 0x516 RxPDO4*, Nd.22 1323 0x52B RxPDO4*, Nd.43
1282 0x502 RxPDO4*, Nd.2 1303 0x517 RxPDO4*, Nd.23 1324 0x52C RxPDO4*, Nd.44
1283 0x503 RxPDO4*, Nd.3 1304 0x518 RxPDO4*, Nd.24 1325 0x52D RxPDO4*, Nd.45
1284 0x504 RxPDO4*, Nd.4 1305 0x519 RxPDO4*, Nd.25 1326 0x52E RxPDO4*, Nd.46
1285 0x505 RxPDO4*, Nd.5 1306 0x51A RxPDO4*, Nd.26 1327 0x52F RxPDO4*, Nd.47
1286 0x506 RxPDO4*, Nd.6 1307 0x51B RxPDO4*, Nd.27 1328 0x530 RxPDO4*, Nd.48
1287 0x507 RxPDO4*, Nd.7 1308 0x51C RxPDO4*, Nd.28 1329 0x531 RxPDO4*, Nd.49
1288 0x508 RxPDO4*, Nd.8 1309 0x51D RxPDO4*, Nd.29 1330 0x532 RxPDO4*, Nd.50
1289 0x509 RxPDO4*, Nd.9 1310 0x51E RxPDO4*, Nd.30 1331 0x533 RxPDO4*, Nd.51
1290 0x50A RxPDO4*, Nd.10 1311 0x51F RxPDO4*, Nd.31 1332 0x534 RxPDO4*, Nd.52
1291 0x50B RxPDO4*, Nd.11 1312 0x520 RxPDO4*, Nd.32 1333 0x535 RxPDO4*, Nd.53

Appendix

CX7050206 Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1292 0x50C RxPDO4*, Nd.12 1313 0x521 RxPDO4*, Nd.33 1334 0x536 RxPDO4*, Nd.54
1293 0x50D RxPDO4*, Nd.13 1314 0x522 RxPDO4*, Nd.34 1335 0x537 RxPDO4*, Nd.55
1294 0x50E RxPDO4*, Nd.14 1315 0x523 RxPDO4*, Nd.35 1336 0x538 RxPDO4*, Nd.56
1295 0x50F RxPDO4*, Nd.15 1316 0x524 RxPDO4*, Nd.36 1337 0x539 RxPDO4*, Nd.57
1296 0x510 RxPDO4*, Nd.16 1317 0x525 RxPDO4*, Nd.37 1338 0x53A RxPDO4*, Nd.58
1297 0x511 RxPDO4*, Nd.17 1318 0x526 RxPDO4*, Nd.38 1339 0x53B RxPDO4*, Nd.59
1298 0x512 RxPDO4*, Nd.18 1319 0x527 RxPDO4*, Nd.39 1340 0x53C RxPDO4*, Nd.60
1299 0x513 RxPDO4*, Nd.19 1320 0x528 RxPDO4*, Nd.40 1341 0x53D RxPDO4*, Nd.61
1300 0x514 RxPDO4*, Nd.20 1321 0x529 RxPDO4*, Nd.41 1342 0x53E RxPDO4*, Nd.62
1301 0x515 RxPDO4*, Nd.21 1322 0x52A RxPDO4*, Nd.42 1343 0x53F RxPDO4*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1665 0x681 TxPDO5*, Nd.1 1686 0x696 TxPDO5*, Nd.22 1707 0x6AB TxPDO5*, Nd.43
1666 0x682 TxPDO5*, Nd.2 1687 0x697 TxPDO5*, Nd.23 1708 0x6AC TxPDO5*, Nd.44
1667 0x683 TxPDO5*, Nd.3 1688 0x698 TxPDO5*, Nd.24 1709 0x6AD TxPDO5*, Nd.45
1668 0x684 TxPDO5*, Nd.4 1689 0x699 TxPDO5*, Nd.25 1710 0x6AE TxPDO5*, Nd.46
1669 0x685 TxPDO5*, Nd.5 1690 0x69A TxPDO5*, Nd.26 1711 0x6AF TxPDO5*, Nd.47
1670 0x686 TxPDO5*, Nd.6 1691 0x69B TxPDO5*, Nd.27 1712 0x6B0 TxPDO5*, Nd.48
1671 0x687 TxPDO5*, Nd.7 1692 0x69C TxPDO5*, Nd.28 1713 0x6B1 TxPDO5*, Nd.49
1672 0x688 TxPDO5*, Nd.8 1693 0x69D TxPDO5*, Nd.29 1714 0x6B2 TxPDO5*, Nd.50
1673 0x689 TxPDO5*, Nd.9 1694 0x69E TxPDO5*, Nd.30 1715 0x6B3 TxPDO5*, Nd.51
1674 0x68A TxPDO5*, Nd.10 1695 0x69F TxPDO5*, Nd.31 1716 0x6B4 TxPDO5*, Nd.52
1675 0x68B TxPDO5*, Nd.11 1696 0x6A0 TxPDO5*, Nd.32 1717 0x6B5 TxPDO5*, Nd.53
1676 0x68C TxPDO5*, Nd.12 1697 0x6A1 TxPDO5*, Nd.33 1718 0x6B6 TxPDO5*, Nd.54
1677 0x68D TxPDO5*, Nd.13 1698 0x6A2 TxPDO5*, Nd.34 1719 0x6B7 TxPDO5*, Nd.55
1678 0x68E TxPDO5*, Nd.14 1699 0x6A3 TxPDO5*, Nd.35 1720 0x6B8 TxPDO5*, Nd.56
1679 0x68F TxPDO5*, Nd.15 1700 0x6A4 TxPDO5*, Nd.36 1721 0x6B9 TxPDO5*, Nd.57
1680 0x690 TxPDO5*, Nd.16 1701 0x6A5 TxPDO5*, Nd.37 1722 0x6BA TxPDO5*, Nd.58
1681 0x691 TxPDO5*, Nd.17 1702 0x6A6 TxPDO5*, Nd.38 1723 0x6BB TxPDO5*, Nd.59
1682 0x692 TxPDO5*, Nd.18 1703 0x6A7 TxPDO5*, Nd.39 1724 0x6BC TxPDO5*, Nd.60
1683 0x693 TxPDO5*, Nd.19 1704 0x6A8 TxPDO5*, Nd.40 1725 0x6BD TxPDO5*, Nd.61
1684 0x694 TxPDO5*, Nd.20 1705 0x6A9 TxPDO5*, Nd.41 1726 0x6BE TxPDO5*, Nd.62
1685 0x695 TxPDO5*, Nd.21 1706 0x6AA TxPDO5*, Nd.42 1727 0x6BF TxPDO5*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1921 0x781 RxPDO5*, Nd.1 1942 0x796 RxPDO5*, Nd.22 1963 0x7AB RxPDO5*, Nd.43
1922 0x782 RxPDO5*, Nd.2 1943 0x797 RxPDO5*, Nd.23 1964 0x7AC RxPDO5*, Nd.44
1923 0x783 RxPDO5*, Nd.3 1944 0x798 RxPDO5*, Nd.24 1965 0x7AD RxPDO5*, Nd.45
1924 0x784 RxPDO5*, Nd.4 1945 0x799 RxPDO5*, Nd.25 1966 0x7AE RxPDO5*, Nd.46
1925 0x785 RxPDO5*, Nd.5 1946 0x79A RxPDO5*, Nd.26 1967 0x7AF RxPDO5*, Nd.47
1926 0x786 RxPDO5*, Nd.6 1947 0x79B RxPDO5*, Nd.27 1968 0x7B0 RxPDO5*, Nd.48
1927 0x787 RxPDO5*, Nd.7 1948 0x79C RxPDO5*, Nd.28 1969 0x7B1 RxPDO5*, Nd.49
1928 0x788 RxPDO5*, Nd.8 1949 0x79D RxPDO5*, Nd.29 1970 0x7B2 RxPDO5*, Nd.50
1929 0x789 RxPDO5*, Nd.9 1950 0x79E RxPDO5*, Nd.30 1971 0x7B3 RxPDO5*, Nd.51
1930 0x78A RxPDO5*, Nd.10 1951 0x79F RxPDO5*, Nd.31 1972 0x7B4 RxPDO5*, Nd.52
1931 0x78B RxPDO5*, Nd.11 1952 0x7A0 RxPDO5*, Nd.32 1973 0x7B5 RxPDO5*, Nd.53
1932 0x78C RxPDO5*, Nd.12 1953 0x7A1 RxPDO5*, Nd.33 1974 0x7B6 RxPDO5*, Nd.54
1933 0x78D RxPDO5*, Nd.13 1954 0x7A2 RxPDO5*, Nd.34 1975 0x7B7 RxPDO5*, Nd.55
1934 0x78E RxPDO5*, Nd.14 1955 0x7A3 RxPDO5*, Nd.35 1976 0x7B8 RxPDO5*, Nd.56
1935 0x78F RxPDO5*, Nd.15 1956 0x7A4 RxPDO5*, Nd.36 1977 0x7B9 RxPDO5*, Nd.57
1936 0x790 RxPDO5*, Nd.16 1957 0x7A5 RxPDO5*, Nd.37 1978 0x7BA RxPDO5*, Nd.58
1937 0x791 RxPDO5*, Nd.17 1958 0x7A6 RxPDO5*, Nd.38 1979 0x7BB RxPDO5*, Nd.59
1938 0x792 RxPDO5*, Nd.18 1959 0x7A7 RxPDO5*, Nd.39 1980 0x7BC RxPDO5*, Nd.60
1939 0x793 RxPDO5*, Nd.19 1960 0x7A8 RxPDO5*, Nd.40 1981 0x7BD RxPDO5*, Nd.61
1940 0x794 RxPDO5*, Nd.20 1961 0x7A9 RxPDO5*, Nd.41 1982 0x7BE RxPDO5*, Nd.62
1941 0x795 RxPDO5*, Nd.21 1962 0x7AA RxPDO5*, Nd.42 1983 0x7BF RxPDO5*, Nd.63

Appendix

CX7050 207Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
449 0x1C1 TxPDO6*, Nd.1 470 0x1D6 TxPDO6*, Nd.22 491 0x1EB TxPDO6*, Nd.43
450 0x1C2 TxPDO6*, Nd.2 471 0x1D7 TxPDO6*, Nd.23 492 0x1EC TxPDO6*, Nd.44
451 0x1C3 TxPDO6*, Nd.3 472 0x1D8 TxPDO6*, Nd.24 493 0x1ED TxPDO6*, Nd.45
452 0x1C4 TxPDO6*, Nd.4 473 0x1D9 TxPDO6*, Nd.25 494 0x1EE TxPDO6*, Nd.46
453 0x1C5 TxPDO6*, Nd.5 474 0x1DA TxPDO6*, Nd.26 495 0x1EF TxPDO6*, Nd.47
454 0x1C6 TxPDO6*, Nd.6 475 0x1DB TxPDO6*, Nd.27 496 0x1F0 TxPDO6*, Nd.48
455 0x1C7 TxPDO6*, Nd.7 476 0x1DC TxPDO6*, Nd.28 497 0x1F1 TxPDO6*, Nd.49
456 0x1C8 TxPDO6*, Nd.8 477 0x1DD TxPDO6*, Nd.29 498 0x1F2 TxPDO6*, Nd.50
457 0x1C9 TxPDO6*, Nd.9 478 0x1DE TxPDO6*, Nd.30 499 0x1F3 TxPDO6*, Nd.51
458 0x1CA TxPDO6*, Nd.10 479 0x1DF TxPDO6*, Nd.31 500 0x1F4 TxPDO6*, Nd.52
459 0x1CB TxPDO6*, Nd.11 480 0x1E0 TxPDO6*, Nd.32 501 0x1F5 TxPDO6*, Nd.53
460 0x1CC TxPDO6*, Nd.12 481 0x1E1 TxPDO6*, Nd.33 502 0x1F6 TxPDO6*, Nd.54
461 0x1CD TxPDO6*, Nd.13 482 0x1E2 TxPDO6*, Nd.34 503 0x1F7 TxPDO6*, Nd.55
462 0x1CE TxPDO6*, Nd.14 483 0x1E3 TxPDO6*, Nd.35 504 0x1F8 TxPDO6*, Nd.56
463 0x1CF TxPDO6*, Nd.15 484 0x1E4 TxPDO6*, Nd.36 505 0x1F9 TxPDO6*, Nd.57
464 0x1D0 TxPDO6*, Nd.16 485 0x1E5 TxPDO6*, Nd.37 506 0x1FA TxPDO6*, Nd.58
465 0x1D1 TxPDO6*, Nd.17 486 0x1E6 TxPDO6*, Nd.38 507 0x1FB TxPDO6*, Nd.59
466 0x1D2 TxPDO6*, Nd.18 487 0x1E7 TxPDO6*, Nd.39 508 0x1FC TxPDO6*, Nd.60
467 0x1D3 TxPDO6*, Nd.19 488 0x1E8 TxPDO6*, Nd.40 509 0x1FD TxPDO6*, Nd.61
468 0x1D4 TxPDO6*, Nd.20 489 0x1E9 TxPDO6*, Nd.41 510 0x1FE TxPDO6*, Nd.62
469 0x1D5 TxPDO6*, Nd.21 490 0x1EA TxPDO6*, Nd.42 511 0x1FF TxPDO6*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
577 0x241 RxPDO6*, Nd.1 598 0x256 RxPDO6*, Nd.22 619 0x26B RxPDO6* Nd.43
578 0x242 RxPDO6*, Nd.2 599 0x257 RxPDO6*, Nd.23 620 0x26C RxPDO6, Nd.44
579 0x243 RxPDO6*, Nd.3 600 0x258 RxPDO6*, Nd.24 621 0x26D RxPDO6*, Nd.45
580 0x244 RxPDO6*, Nd.4 601 0x259 RxPDO6*, Nd.25 622 0x26E RxPDO6*, Nd.46
581 0x245 RxPDO6*, Nd.5 602 0x25A RxPDO6*, Nd.26 623 0x26F RxPDO6*, Nd.47
582 0x246 RxPDO6*, Nd.6 603 0x25B RxPDO6*, Nd.27 624 0x270 RxPDO6*, Nd.48
583 0x247 RxPDO6*, Nd.7 604 0x25C RxPDO6*, Nd.28 625 0x271 RxPDO6*, Nd.49
584 0x248 RxPDO6*, Nd.8 605 0x25D RxPDO6*, Nd.29 626 0x272 RxPDO6*, Nd.50
585 0x249 RxPDO6*, Nd.9 606 0x25E RxPDO6*, Nd.30 627 0x273 RxPDO6*, Nd.51
586 0x24A RxPDO6*, Nd.10 607 0x25F RxPDO6*, Nd.31 628 0x274 RxPDO6*, Nd.52
587 0x24B RxPDO6*, Nd.11 608 0x260 RxPDO6*, Nd.32 629 0x275 RxPDO6*, Nd.53
588 0x24C RxPDO6*, Nd.12 609 0x261 RxPDO6*, Nd.33 630 0x276 RxPDO6*, Nd.54
589 0x24D RxPDO6*, Nd.13 610 0x262 RxPDO6*, Nd.34 631 0x277 RxPDO6*, Nd.55
590 0x24E RxPDO6*, Nd.14 611 0x263 RxPDO6*, Nd.35 632 0x278 RxPDO6*, Nd.56
591 0x24F RxPDO6*, Nd.15 612 0x264 RxPDO6*, Nd.36 633 0x279 RxPDO6*, Nd.57
592 0x250 RxPDO6*, Nd.16 613 0x265 RxPDO6*, Nd.3 634 0x27A RxPDO6*, Nd.58
593 0x251 RxPDO6*, Nd.17 614 0x266 RxPDO6*, Nd.8 635 0x27B RxPDO6*, Nd.59
594 0x252 RxPDO6*, Nd.18 615 0x267 RxPDO6*, Nd39 636 0x27C RxPDO6*, Nd.60
595 0x253 RxPDO6*, Nd.19 616 0x268 RxPDO6*, N.40 637 0x27D RxPDO6*, Nd.61
596 0x254 RxPDO6*, Nd.20 617 0x269 RxPDO6*, d.41 638 0x27E RxPDO6*, Nd.62
597 0x255 RxPDO6*, Nd.21 618 0x26A RxPDO6*,Nd.42 639 0x27F RxPDO6*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
705 0x2C1 TxPDO7*, Nd.1 726 0x2D6 TxPDO7*, Nd.22 747 0x2EB TxPDO7*, Nd.43
706 0x2C2 TxPDO7*, Nd.2 727 0x2D7 TxPDO7*, Nd.23 748 0x2EC TxPDO7*, Nd.44
707 0x2C3 TxPDO7*, Nd.3 728 0x2D8 TxPDO7*, Nd.24 749 0x2ED TxPDO7*, Nd.45
708 0x2C4 TxPDO7*, Nd.4 729 0x2D9 TxPDO7*, Nd.25 750 0x2EE TxPDO7*, Nd.46
709 0x2C5 TxPDO7*, Nd.5 730 0x2DA TxPDO7*, Nd.26 751 0x2EF TxPDO7*, Nd.47
710 0x2C6 TxPDO7*, Nd.6 731 0x2DB TxPDO7*, Nd.27 752 0x2F0 TxPDO7*, Nd.48
711 0x2C7 TxPDO7*, Nd.7 732 0x2DC TxPDO7*, Nd.28 753 0x2F1 TxPDO7*, Nd.49
712 0x2C8 TxPDO7*, Nd.8 733 0x2DD TxPDO7*, Nd.29 754 0x2F2 TxPDO7*, Nd.50
713 0x2C9 TxPDO7*, Nd.9 734 0x2DE TxPDO7*, Nd.30 755 0x2F3 TxPDO7*, Nd.51
714 0x2CA TxPDO7*, Nd.10 735 0x2DF TxPDO7*, Nd.31 756 0x2F4 TxPDO7*, Nd.52
715 0x2CB TxPDO7*, Nd.11 736 0x2E0 TxPDO7*, Nd.32 757 0x2F5 TxPDO7*, Nd.53

Appendix

CX7050208 Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
716 0x2CC TxPDO7*, Nd.12 737 0x2E1 TxPDO7*, Nd.33 758 0x2F6 TxPDO7*, Nd.54
717 0x2CD TxPDO7*, Nd.13 738 0x2E2 TxPDO7*, Nd.34 759 0x2F7 TxPDO7*, Nd.55
718 0x2CE TxPDO7*, Nd.14 739 0x2E3 TxPDO7*, Nd.35 760 0x2F8 TxPDO7*, Nd.56
719 0x2CF TxPDO7*, Nd.15 740 0x2E4 TxPDO7*, Nd.36 761 0x2F9 TxPDO7*, Nd.57
720 0x2D0 TxPDO7*, Nd.16 741 0x2E5 TxPDO7*, Nd.37 762 0x2FA TxPDO7*, Nd.58
721 0x2D1 TxPDO7*, Nd.17 742 0x2E6 TxPDO7*, Nd.38 763 0x2FB TxPDO7*, Nd.59
722 0x2D2 TxPDO7*, Nd.18 743 0x2E7 TxPDO7*, Nd.39 764 0x2FC TxPDO7*, Nd.60
723 0x2D3 TxPDO7*, Nd.19 744 0x2E8 TxPDO7*, Nd.40 765 0x2FD TxPDO7*, Nd.61
724 0x2D4 TxPDO7*, Nd.20 745 0x2E9 TxPDO7*, Nd.41 766 0x2FE TxPDO7*, Nd.62
725 0x2D5 TxPDO7*, Nd.21 746 0x2EA TxPDO7*, Nd.42 767 0x2FF TxPDO7*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
833 0x341 RxPDO7*, Nd.1 854 0x356 RxPDO7*, Nd.22 875 0x36B RxPDO7*, Nd.43
834 0x342 RxPDO7*, Nd.2 855 0x357 RxPDO7*, Nd.23 876 0x36C RxPDO7*, Nd.44
835 0x343 RxPDO7*, Nd.3 856 0x358 RxPDO7*, Nd.24 877 0x36D RxPDO7*, Nd.45
836 0x344 RxPDO7*, Nd.4 857 0x359 RxPDO7*, Nd.25 878 0x36E RxPDO7*, Nd.46
837 0x345 RxPDO7*, Nd.5 858 0x35A RxPDO7*, Nd.26 879 0x36F RxPDO7*, Nd.47
838 0x346 RxPDO7*, Nd.6 859 0x35B RxPDO7*, Nd.27 880 0x370 RxPDO7*, Nd.48
839 0x347 RxPDO7*, Nd.7 860 0x35C RxPDO7*, Nd.28 881 0x371 RxPDO7*, Nd.49
840 0x348 RxPDO7*, Nd.8 861 0x35D RxPDO7*, Nd.29 882 0x372 RxPDO7*, Nd.50
841 0x349 RxPDO7*, Nd.9 862 0x35E RxPDO7*, Nd.30 883 0x373 RxPDO7*, Nd.51
842 0x34A RxPDO7*, Nd.10 863 0x35F RxPDO7*, Nd.31 884 0x374 RxPDO7*, Nd.52
843 0x34B RxPDO7*, Nd.11 864 0x360 RxPDO7*, Nd.32 885 0x375 RxPDO7*, Nd.53
844 0x34C RxPDO7*, Nd.12 865 0x361 RxPDO7*, Nd.33 886 0x376 RxPDO7*, Nd.54
845 0x34D RxPDO7*, Nd.13 866 0x362 RxPDO7*, Nd.34 887 0x377 RxPDO7*, Nd.55
846 0x34E RxPDO7*, Nd.14 867 0x363 RxPDO7*, Nd.35 888 0x378 RxPDO7*, Nd.56
847 0x34F RxPDO7*, Nd.15 868 0x364 RxPDO7*, Nd.36 889 0x379 RxPDO7*, Nd.57
848 0x350 RxPDO7*, Nd.16 869 0x365 RxPDO7*, Nd.37 890 0x37A RxPDO7*, Nd.58
849 0x351 RxPDO7*, Nd.17 870 0x366 RxPDO7*, Nd.38 891 0x37B RxPDO7*, Nd.59
850 0x352 RxPDO7*, Nd.18 871 0x367 RxPDO7*, Nd.39 892 0x37C RxPDO7*, Nd.60
851 0x353 RxPDO7*, Nd.19 872 0x368 RxPDO7*, Nd.40 893 0x37D RxPDO7*, Nd.61
852 0x354 RxPDO7*, Nd.20 873 0x369 RxPDO7*, Nd.41 894 0x37E RxPDO7*, Nd.62
853 0x355 RxPDO7*, Nd.21 874 0x36A RxPDO7*, Nd.42 895 0x37F RxPDO7*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
961 0x3C1 TxPDO8*, Nd.1 982 0x3D6 TxPDO8*, Nd.22 1003 0x3EB TxPDO8*, Nd.43
962 0x3C2 TxPDO8*, Nd.2 983 0x3D7 TxPDO8*, Nd.23 1004 0x3EC TxPDO8*, Nd.44
963 0x3C3 TxPDO8*, Nd.3 984 0x3D8 TxPDO8*, Nd.24 1005 0x3ED TxPDO8*, Nd.45
964 0x3C4 TxPDO8*, Nd.4 985 0x3D9 TxPDO8*, Nd.25 1006 0x3EE TxPDO8*, Nd.46
965 0x3C5 TxPDO8*, Nd.5 986 0x3DA TxPDO8*, Nd.26 1007 0x3EF TxPDO8*, Nd.47
966 0x3C6 TxPDO8*, Nd.6 987 0x3DB TxPDO8*, Nd.27 1008 0x3F0 TxPDO8*, Nd.48
967 0x3C7 TxPDO8*, Nd.7 988 0x3DC TxPDO8*, Nd.28 1009 0x3F1 TxPDO8*, Nd.49
968 0x3C8 TxPDO8*, Nd.8 989 0x3DD TxPDO8*, Nd.29 1010 0x3F2 TxPDO8*, Nd.50
969 0x3C9 TxPDO8*, Nd.9 990 0x3DE TxPDO8*, Nd.30 1011 0x3F3 TxPDO8*, Nd.51
970 0x3CA TxPDO8*, Nd.10 991 0x3DF TxPDO8*, Nd.31 1012 0x3F4 TxPDO8*, Nd.52
971 0x3CB TxPDO8*, Nd.11 992 0x3E0 TxPDO8*, Nd.32 1013 0x3F5 TxPDO8*, Nd.53
972 0x3CC TxPDO8*, Nd.12 993 0x3E1 TxPDO8*, Nd.33 1014 0x3F6 TxPDO8*, Nd.54
973 0x3CD TxPDO8*, Nd.13 994 0x3E2 TxPDO8*, Nd.34 1015 0x3F7 TxPDO8*, Nd.55
974 0x3CE TxPDO8*, Nd.14 995 0x3E3 TxPDO8*, Nd.35 1016 0x3F8 TxPDO8*, Nd.56
975 0x3CF TxPDO8*, Nd.15 996 0x3E4 TxPDO8*, Nd.36 1017 0x3F9 TxPDO8*, Nd.57
976 0x3D0 TxPDO8*, Nd.16 997 0x3E5 TxPDO8*, Nd.37 1018 0x3FA TxPDO8*, Nd.58
977 0x3D1 TxPDO8*, Nd.17 998 0x3E6 TxPDO8*, Nd.38 1019 0x3FB TxPDO8*, Nd.59
978 0x3D2 TxPDO8*, Nd.18 999 0x3E7 TxPDO8*, Nd.39 1020 0x3FC TxPDO8*, Nd.60
979 0x3D3 TxPDO8*, Nd.19 1000 0x3E8 TxPDO8*, Nd.40 1021 0x3FD TxPDO8*, Nd.61
980 0x3D4 TxPDO8*, Nd.20 1001 0x3E9 TxPDO8*, Nd.41 1022 0x3FE TxPDO8*, Nd.62
981 0x3D5 TxPDO8*, Nd.21 1002 0x3EA TxPDO8*, Nd.42 1023 0x3FF TxPDO8*, Nd.63

Appendix

CX7050 209Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1089 0x441 RxPDO8*, Nd.1 1110 0x456 RxPDO8*, Nd.22 1131 0x46B RxPDO8*, Nd.43
1090 0x442 RxPDO8*, Nd.2 1111 0x457 RxPDO8*, Nd.23 1132 0x46C RxPDO8*, Nd.44
1091 0x443 RxPDO8*, Nd.3 1112 0x458 RxPDO8*, Nd.24 1133 0x46D RxPDO8*, Nd.45
1092 0x444 RxPDO8*, Nd.4 1113 0x459 RxPDO8*, Nd.25 1134 0x46E RxPDO8*, Nd.46
1093 0x445 RxPDO8*, Nd.5 1114 0x45A RxPDO8*, Nd.26 1135 0x46F RxPDO8*, Nd.47
1094 0x446 RxPDO8*, Nd.6 1115 0x45B RxPDO8*, Nd.27 1136 0x470 RxPDO8*, Nd.48
1095 0x447 RxPDO8*, Nd.7 1116 0x45C RxPDO8*, Nd.28 1137 0x471 RxPDO8*, Nd.49
1096 0x448 RxPDO8*, Nd.8 1117 0x45D RxPDO8*, Nd.29 1138 0x472 RxPDO8*, Nd.50
1097 0x449 RxPDO8*, Nd.9 1118 0x45E RxPDO8*, Nd.30 1139 0x473 RxPDO8*, Nd.51
1098 0x44A RxPDO8*, Nd.10 1119 0x45F RxPDO8*, Nd.31 1140 0x474 RxPDO8*, Nd.52
1099 0x44B RxPDO8*, Nd.11 1120 0x460 RxPDO8*, Nd.32 1141 0x475 RxPDO8*, Nd.53
1100 0x44C RxPDO8*, Nd.12 1121 0x461 RxPDO8*, Nd.33 1142 0x476 RxPDO8*, Nd.54
1101 0x44D RxPDO8*, Nd.13 1122 0x462 RxPDO8*, Nd.34 1143 0x477 RxPDO8*, Nd.55
1102 0x44E RxPDO8*, Nd.14 1123 0x463 RxPDO8*, Nd.35 1144 0x478 RxPDO8*, Nd.56
1103 0x44F RxPDO8*, Nd.15 1124 0x464 RxPDO8*, Nd.36 1145 0x479 RxPDO8*, Nd.57
1104 0x450 RxPDO8*, Nd.16 1125 0x465 RxPDO8*, Nd.37 1146 0x47A RxPDO8*, Nd.58
1105 0x451 RxPDO8*, Nd.17 1126 0x466 RxPDO8*, Nd.38 1147 0x47B RxPDO8*, Nd.59
1106 0x452 RxPDO8*, Nd.18 1127 0x467 RxPDO8*, Nd.39 1148 0x47C RxPDO8*, Nd.60
1107 0x453 RxPDO8*, Nd.19 1128 0x468 RxPDO8*, Nd.40 1149 0x47D RxPDO8*, Nd.61
1108 0x454 RxPDO8*, Nd.20 1129 0x469 RxPDO8*, Nd.41 1150 0x47E RxPDO8*, Nd.62
1109 0x455 RxPDO8*, Nd.21 1130 0x46A RxPDO8*, Nd.42 1151 0x47F RxPDO8*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1217 0x4C1 TxPDO9*, Nd.1 1238 0x4D6 TxPDO9*, Nd.22 1259 0x4EB TxPDO9*, Nd.43
1218 0x4C2 TxPDO9*, Nd.2 1239 0x4D7 TxPDO9*, Nd.23 1260 0x4EC TxPDO9*, Nd.44
1219 0x4C3 TxPDO9*, Nd.3 1240 0x4D8 TxPDO9*, Nd.24 1261 0x4ED TxPDO9*, Nd.45
1220 0x4C4 TxPDO9*, Nd.4 1241 0x4D9 TxPDO9*, Nd.25 1262 0x4EE TxPDO9*, Nd.46
1221 0x4C5 TxPDO9*, Nd.5 1242 0x4DA TxPDO9*, Nd.26 1263 0x4EF TxPDO9*, Nd.47
1222 0x4C6 TxPDO9*, Nd.6 1243 0x4DB TxPDO9*, Nd.27 1264 0x4F0 TxPDO9*, Nd.48
1223 0x4C7 TxPDO9*, Nd.7 1244 0x4DC TxPDO9*, Nd.28 1265 0x4F1 TxPDO9*, Nd.49
1224 0x4C8 TxPDO9*, Nd.8 1245 0x4DD TxPDO9*, Nd.29 1266 0x4F2 TxPDO9*, Nd.50
1225 0x4C9 TxPDO9*, Nd.9 1246 0x4DE TxPDO9*, Nd.30 1267 0x4F3 TxPDO9*, Nd.51
1226 0x4CA TxPDO9*, Nd.10 1247 0x4DF TxPDO9*, Nd.31 1268 0x4F4 TxPDO9*, Nd.52
1227 0x4CB TxPDO9*, Nd.11 1248 0x4E0 TxPDO9*, Nd.32 1269 0x4F5 TxPDO9*, Nd.53
1228 0x4CC TxPDO9*, Nd.12 1249 0x4E1 TxPDO9*, Nd.33 1270 0x4F6 TxPDO9*, Nd.54
1229 0x4CD TxPDO9*, Nd.13 1250 0x4E2 TxPDO9*, Nd.34 1271 0x4F7 TxPDO9*, Nd.55
1230 0x4CE TxPDO9*, Nd.14 1251 0x4E3 TxPDO9*, Nd.35 1272 0x4F8 TxPDO9*, Nd.56
1231 0x4CF TxPDO9*, Nd.15 1252 0x4E4 TxPDO9*, Nd.36 1273 0x4F9 TxPDO9*, Nd.57
1232 0x4D0 TxPDO9*, Nd.16 1253 0x4E5 TxPDO9*, Nd.37 1274 0x4FA TxPDO9*, Nd.58
1233 0x4D1 TxPDO9*, Nd.17 1254 0x4E6 TxPDO9*, Nd.38 1275 0x4FB TxPDO9*, Nd.59
1234 0x4D2 TxPDO9*, Nd.18 1255 0x4E7 TxPDO9*, Nd.39 1276 0x4FC TxPDO9*, Nd.60
1235 0x4D3 TxPDO9*, Nd.19 1256 0x4E8 TxPDO9*, Nd.40 1277 0x4FD TxPDO9*, Nd.61
1236 0x4D4 TxPDO9*, Nd.20 1257 0x4E9 TxPDO9*, Nd.41 1278 0x4FE TxPDO9*, Nd.62
1237 0x4D5 TxPDO9*, Nd.21 1258 0x4EA TxPDO9*, Nd.42 1279 0x4FF TxPDO9*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1345 0x541 RxPDO9*, Nd.1 1366 0x556 RxPDO9*, Nd.22 1387 0x56B RxPDO9*, Nd.43
1346 0x542 RxPDO9*, Nd.2 1367 0x557 RxPDO9*, Nd.23 1388 0x56C RxPDO9*, Nd.44
1347 0x543 RxPDO9*, Nd.3 1368 0x558 RxPDO9*, Nd.24 1389 0x56D RxPDO9*, Nd.45
1348 0x544 RxPDO9*, Nd.4 1369 0x559 RxPDO9*, Nd.25 1390 0x56E RxPDO9*, Nd.46
1349 0x545 RxPDO9*, Nd.5 1370 0x55A RxPDO9*, Nd.26 1391 0x56F RxPDO9*, Nd.47
1350 0x546 RxPDO9*, Nd.6 1371 0x55B RxPDO9*, Nd.27 1392 0x570 RxPDO9*, Nd.48
1351 0x547 RxPDO9*, Nd.7 1372 0x55C RxPDO9*, Nd.28 1393 0x571 RxPDO9*, Nd.49
1352 0x548 RxPDO9*, Nd.8 1373 0x55D RxPDO9*, Nd.29 1394 0x572 RxPDO9*, Nd.50
1353 0x549 RxPDO9*, Nd.9 1374 0x55E RxPDO9*, Nd.30 1395 0x573 RxPDO9*, Nd.51
1354 0x54A RxPDO9*, Nd.10 1375 0x55F RxPDO9*, Nd.31 1396 0x574 RxPDO9*, Nd.52
1355 0x54B RxPDO9*, Nd.11 1376 0x560 RxPDO9*, Nd.32 1397 0x575 RxPDO9*, Nd.53

Appendix

CX7050210 Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1356 0x54C RxPDO9*, Nd.12 1377 0x561 RxPDO9*, Nd.33 1398 0x576 RxPDO9*, Nd.54
1357 0x54D RxPDO9*, Nd.13 1378 0x562 RxPDO9*, Nd.34 1399 0x577 RxPDO9*, Nd.55
1358 0x54E RxPDO9*, Nd.14 1379 0x563 RxPDO9*, Nd.35 1400 0x578 RxPDO9*, Nd.56
1359 0x54F RxPDO9*, Nd.15 1380 0x564 RxPDO9*, Nd.36 1401 0x579 RxPDO9*, Nd.57
1360 0x550 RxPDO9*, Nd.16 1381 0x565 RxPDO9*, Nd.37 1402 0x57A RxPDO9*, Nd.58
1361 0x551 RxPDO9*, Nd.17 1382 0x566 RxPDO9*, Nd.38 1403 0x57B RxPDO9*, Nd.59
1362 0x552 RxPDO9*, Nd.18 1383 0x567 RxPDO9*, Nd.39 1404 0x57C RxPDO9*, Nd.60
1363 0x553 RxPDO9*, Nd.19 1384 0x568 RxPDO9*, Nd.40 1405 0x57D RxPDO9*, Nd.61
1364 0x554 RxPDO9*, Nd.20 1385 0x569 RxPDO9*, Nd.41 1406 0x57E RxPDO9*, Nd.62
1365 0x555 RxPDO9*, Nd.21 1386 0x56A RxPDO9*, Nd.42 1407 0x57F RxPDO9*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1473 0x5C1 TxPDO10*, Nd.1 1494 0x5D6 TxPDO10*, Nd.22 1515 0x5EB TxPDO10*, Nd.43
1474 0x5C2 TxPDO10*, Nd.2 1495 0x5D7 TxPDO10*, Nd.23 1516 0x5EC TxPDO10*, Nd.44
1475 0x5C3 TxPDO10*, Nd.3 1496 0x5D8 TxPDO10*, Nd.24 1517 0x5ED TxPDO10*, Nd.45
1476 0x5C4 TxPDO10*, Nd.4 1497 0x5D9 TxPDO10*, Nd.25 1518 0x5EE TxPDO10*, Nd.46
1477 0x5C5 TxPDO10*, Nd.5 1498 0x5DA TxPDO10*, Nd.26 1519 0x5EF TxPDO10*, Nd.47
1478 0x5C6 TxPDO10*, Nd.6 1499 0x5DB TxPDO10*, Nd.27 1520 0x5F0 TxPDO10*, Nd.48
1479 0x5C7 TxPDO10*, Nd.7 1500 0x5DC TxPDO10*, Nd.28 1521 0x5F1 TxPDO10*, Nd.49
1480 0x5C8 TxPDO10*, Nd.8 1501 0xDE TxPDO10*, Nd.29 1522 0x5F2 TxPDO10*, Nd.50
1481 0x5C9 TxPDO10*, Nd.9 1502 0x5DE TxPDO10*, Nd.30 1523 0x5F3 TxPDO10*, Nd.51
1482 0x5CA TxPDO10*, Nd.10 1503 0x5DF TxPDO10*, Nd.31 1524 0x5F4 TxPDO10*, Nd.52
1483 0x5CB TxPDO10*, Nd.11 1504 0x5E0 TxPDO10*, Nd.32 1525 0x5F5 TxPDO10*, Nd.53
1484 0x5CC TxPDO10*, Nd.12 1505 0x5E1 TxPDO10*, Nd.33 1526 0x5F6 TxPDO10*, Nd.54
1485 0x5CD TxPDO10*, Nd.13 1506 0x5E2 TxPDO10*, Nd.34 1527 0x5F7 TxPDO10*, Nd.55
1486 0x5CE TxPDO10*, Nd.14 1507 0x5E3 TxPDO10*, Nd.35 1528 0x5F8 TxPDO10*, Nd.56
1487 0x5CF TxPDO10*, Nd.15 1508 0x5E4 TxPDO10*, Nd.36 1529 0x5F9 TxPDO10*, Nd.57
1488 0x5D0 TxPDO10*, Nd.16 1509 0x5E5 TxPDO10*, Nd.37 1530 0x5FA TxPDO10*, Nd.58
1489 0x5D1 TxPDO10*, Nd.17 1510 0x5E6 TxPDO10*, Nd.38 1531 0x5FB TxPDO10*, Nd.59
1490 0x5D2 TxPDO10*, Nd.18 1511 0x5E7 TxPDO10*, Nd.39 1532 0x5FC TxPDO10*, Nd.60
1491 0x5D3 TxPDO10*, Nd.19 1512 0x5E8 TxPDO10*, Nd.40 1533 0x5FD TxPDO10*, Nd.61
1492 0x5D4 TxPDO10*, Nd.20 1513 0x5E9 TxPDO10*, Nd.41 1534 0x5FE TxPDO10*, Nd.62
1493 0x5D5 TxPDO10*, Nd.21 1514 0x5EA TxPDO10*, Nd.42 1535 0x5FF TxPDO10*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1601 0x641 RxPDO10*, Nd.1 1622 0x656 RxPDO10*, Nd.22 1643 0x66B RxPDO10*, Nd.43
1602 0x642 RxPDO10*, Nd.2 1623 0x657 RxPDO10*, Nd.23 1644 0x66C RxPDO10*, Nd.44
1603 0x643 RxPDO10*, Nd.3 1624 0x658 RxPDO10*, Nd.24 1645 0x66D RxPDO10*, Nd.45
1604 0x644 RxPDO10*, Nd.4 1625 0x659 RxPDO10*, Nd.25 1646 0x66E RxPDO10*, Nd.46
1605 0x645 RxPDO10*, Nd.5 1626 0x65A RxPDO10*, Nd.26 1647 0x66F RxPDO10*, Nd.47
1606 0x646 RxPDO10*, Nd.6 1627 0x65B RxPDO10*, Nd.27 1648 0x670 RxPDO10*, Nd.48
1607 0x647 RxPDO10*, Nd.7 1628 0x65C RxPDO10*, Nd.28 1649 0x671 RxPDO10*, Nd.49
1608 0x648 RxPDO10*, Nd.8 1629 0x65D RxPDO10*, Nd.29 1650 0x672 RxPDO10*, Nd.50
1609 0x649 RxPDO10*, Nd.9 1630 0x65E RxPDO10*, Nd.30 1651 0x673 RxPDO10*, Nd.51
1610 0x64A RxPDO10*, Nd.10 1631 0x65F RxPDO10*, Nd.31 1652 0x674 RxPDO10*, Nd.52
1611 0x64B RxPDO10*, Nd.11 1632 0x660 RxPDO10*, Nd.32 1653 0x675 RxPDO10*, Nd.53
1612 0x64C RxPDO10*, Nd.12 1633 0x661 RxPDO10*, Nd.33 1654 0x676 RxPDO10*, Nd.54
1613 0x64D RxPDO10*, Nd.13 1634 0x662 RxPDO10*, Nd.34 1655 0x677 RxPDO10*, Nd.55
1614 0x64E RxPDO10*, Nd.14 1635 0x663 RxPDO10*, Nd.35 1656 0x678 RxPDO10*, Nd.56
1615 0x64F RxPDO10*, Nd.15 1636 0x664 RxPDO10*, Nd.36 1657 0x679 RxPDO10*, Nd.57
1616 0x650 RxPDO10*, Nd.16 1637 0x665 RxPDO10*, Nd.37 1658 0x67A RxPDO10*, Nd.58
1617 0x651 RxPDO10*, Nd.17 1638 0x666 RxPDO10*, Nd.38 1659 0x67B RxPDO10*, Nd.59
1618 0x652 RxPDO10*, Nd.18 1639 0x667 RxPDO10*, Nd.39 1660 0x67C RxPDO10*, Nd.60
1619 0x653 RxPDO10*, Nd.19 1640 0x668 RxPDO10*, Nd.40 1661 0x67D RxPDO10*, Nd.61
1620 0x654 RxPDO10*, Nd.20 1641 0x669 RxPDO10*, Nd.41 1662 0x67E RxPDO10*, Nd.62
1621 0x655 RxPDO10*, Nd.21 1642 0x66A RxPDO10*, Nd.42 1663 0x67F RxPDO10*, Nd.63

Appendix

CX7050 211Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1729 0x6C1 TxPDO11*, Nd.1 1750 0x6D6 TxPDO11*, Nd.22 1771 0x6EB TxPDO11*, Nd.43
1730 0x6C2 TxPDO11*, Nd.2 1751 0x6D7 TxPDO11*, Nd.23 1772 0x6EC TxPDO11*, Nd.44
1731 0x6C3 TxPDO11*, Nd.3 1752 0x6D8 TxPDO11*, Nd.24 1773 0x6ED TxPDO11*, Nd.45
1732 0x6C4 TxPDO11*, Nd.4 1753 0x6D9 TxPDO11*, Nd.25 1774 0x6EE TxPDO11*, Nd.46
1733 0x6C5 TxPDO11*, Nd.5 1754 0x6DA TxPDO11*, Nd.26 1775 0x6EF TxPDO11*, Nd.47
1734 0x6C6 TxPDO11*, Nd.6 1755 0x6DB TxPDO11*, Nd.27 1776 0x6F0 TxPDO11*, Nd.48
1735 0x6C7 TxPDO11*, Nd.7 1756 0x6DC TxPDO11*, Nd.28 1777 0x6F1 TxPDO11*, Nd.49
1736 0x6C8 TxPDO11*, Nd.8 1757 0x6DD TxPDO11*, Nd.29 1778 0x6F2 TxPDO11*, Nd.50
1737 0x6C9 TxPDO11*, Nd.9 1758 0x6DE TxPDO11*, Nd.30 1779 0x6F3 TxPDO11*, Nd.51
1738 0x6CA TxPDO11*, Nd.10 1759 0x6DF TxPDO11*, Nd.31 1780 0x6F4 TxPDO11*, Nd.52
1739 0x6CB TxPDO11*, Nd.11 1760 0x6E0 TxPDO11*, Nd.32 1781 0x6F5 TxPDO11*, Nd.53
1740 0x6CC TxPDO11*, Nd.12 1761 0x6E1 TxPDO11*, Nd.33 1782 0x6F6 TxPDO11*, Nd.54
1741 0x6CD TxPDO11*, Nd.13 1762 0x6E2 TxPDO11*, Nd.34 1783 0x6F7 TxPDO11*, Nd.55
1742 0x6CE TxPDO11*, Nd.14 1763 0x6E3 TxPDO11*, Nd.35 1784 0x6F8 TxPDO11*, Nd.56
1743 0x6CF TxPDO11*, Nd.15 1764 0x6E4 TxPDO11*, Nd.36 1785 0x6F9 TxPDO11*, Nd.57
1744 0x6D0 TxPDO11*, Nd.16 1765 0x6E5 TxPDO11*, Nd.37 1786 0x6FA TxPDO11*, Nd.58
1745 0x6D1 TxPDO11*, Nd.17 1766 0x6E6 TxPDO11*, Nd.38 1787 0x6FB TxPDO11*, Nd.59
1746 0x6D2 TxPDO11*, Nd.18 1767 0x6E7 TxPDO11*, Nd.39 1788 0x6FC TxPDO11*, Nd.60
1747 0x6D3 TxPDO11*, Nd.19 1768 0x6E8 TxPDO11*, Nd.40 1789 0x6FD TxPDO11*, Nd.61
1748 0x6D4 TxPDO11*, Nd.20 1769 0x6E9 TxPDO11*, Nd.41 1790 0x6FE TxPDO11*, Nd.62
1749 0x6D5 TxPDO11*, Nd.21 1770 0x6EA TxPDO11*, Nd.42 1791 0x6FF TxPDO11*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1857 0x741 RxPDO11*, Nd.1 1878 0x756 RxPDO11*, Nd.22 1899 0x76B RxPDO11*, Nd.43
1858 0x742 RxPDO11*, Nd.2 1879 0x757 RxPDO11*, Nd.23 1900 0x76C RxPDO11*, Nd.44
1859 0x743 RxPDO11*, Nd.3 1880 0x758 RxPDO11*, Nd.24 1901 0x76D RxPDO11*, Nd.45
1860 0x744 RxPDO11*, Nd.4 1881 0x759 RxPDO11*, Nd.25 1902 0x76E RxPDO11*, Nd.46
1861 0x745 RxPDO11*, Nd.5 1882 0x75A RxPDO11*, Nd.26 1903 0x76F RxPDO11*, Nd.47
1862 0x746 RxPDO11*, Nd.6 1883 0x75B RxPDO11*, Nd.27 1904 0x770 RxPDO11*, Nd.48
1863 0x747 RxPDO11*, Nd.7 1884 0x75C RxPDO11*, Nd.28 1905 0x771 RxPDO11*, Nd.49
1864 0x748 RxPDO11*, Nd.8 1885 0x75D RxPDO11*, Nd.29 1906 0x772 RxPDO11*, Nd.50
1865 0x749 RxPDO11*, Nd.9 1886 0x75E RxPDO11*, Nd.30 1907 0x773 RxPDO11*, Nd.51
1866 0x74A RxPDO11*, Nd.10 1887 0x75F RxPDO11*, Nd.31 1908 0x774 RxPDO11*, Nd.52
1867 0x74B RxPDO11*, Nd.11 1888 0x760 RxPDO11*, Nd.32 1909 0x775 RxPDO11*, Nd.53
1868 0x74C RxPDO11*, Nd.12 1889 0x761 RxPDO11*, Nd.33 1910 0x776 RxPDO11*, Nd.54
1869 0x74D RxPDO11*, Nd.13 1890 0x762 RxPDO11*, Nd.34 1911 0x777 RxPDO11*, Nd.55
1870 0x74E RxPDO11*, Nd.14 1891 0x763 RxPDO11*, Nd.35 1912 0x778 RxPDO11*, Nd.56
1871 0x74F RxPDO11*, Nd.15 1892 0x764 RxPDO11*, Nd.36 1913 0x779 RxPDO11*, Nd.57
1872 0x750 RxPDO11*, Nd.16 1893 0x765 RxPDO11*, Nd.37 1914 0x77A RxPDO11*, Nd.58
1873 0x751 RxPDO11*, Nd.17 1894 0x766 RxPDO11*, Nd.38 1915 0x77B RxPDO11*, Nd.59
1874 0x752 RxPDO11*, Nd.18 1895 0x767 RxPDO11*, Nd.39 1916 0x77C RxPDO11*, Nd.60
1875 0x753 RxPDO11*, Nd.19 1896 0x768 RxPDO11*, Nd.40 1917 0x77D RxPDO11*, Nd.61
1876 0x754 RxPDO11*, Nd.20 1897 0x769 RxPDO11*, Nd.41 1918 0x77E RxPDO11*, Nd.62
1877 0x755 RxPDO11*, Nd.21 1898 0x76A RxPDO11*, Nd.42 1919 0x77F RxPDO11*, Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1409 0x581 SDO Tx Nd.1 1430 0x596 SDO Tx Nd.22 1451 0x5AB SDO Tx Nd.43
1410 0x582 SDO Tx Nd.2 1431 0x597 SDO Tx Nd.23 1452 0x5AC SDO Tx Nd.44
1411 0x583 SDO Tx Nd.3 1432 0x598 SDO Tx Nd.24 1453 0x5AD SDO Tx Nd.45
1412 0x584 SDO Tx Nd.4 1433 0x599 SDO Tx Nd.25 1454 0x5AE SDO Tx Nd.46
1413 0x585 SDO Tx Nd.5 1434 0x59A SDO Tx Nd.26 1455 0x5AF SDO Tx Nd.47
1414 0x586 SDO Tx Nd.6 1435 0x59B SDO Tx Nd.27 1456 0x5B0 SDO Tx Nd.48
1415 0x587 SDO Tx Nd.7 1436 0x59C SDO Tx Nd.28 1457 0x5B1 SDO Tx Nd.49
1416 0x588 SDO Tx Nd.8 1437 0x59D SDO Tx Nd.29 1458 0x5B2 SDO Tx Nd.50
1417 0x589 SDO Tx Nd.9 1438 0x59E SDO Tx Nd.30 1459 0x5B3 SDO Tx Nd.51
1418 0x58A SDO Tx Nd.10 1439 0x59F SDO Tx Nd.31 1460 0x5B4 SDO Tx Nd.52
1419 0x58B SDO Tx Nd.11 1440 0x5A0 SDO Tx Nd.32 1461 0x5B5 SDO Tx Nd.53

Appendix

CX7050212 Version: 1.0

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1420 0x58C SDO Tx Nd.12 1441 0x5A1 SDO Tx Nd.33 1462 0x5B6 SDO Tx Nd.54
1421 0x58D SDO Tx Nd.13 1442 0x5A2 SDO Tx Nd.34 1463 0x5B7 SDO Tx Nd.55
1422 0x58E SDO Tx Nd.14 1443 0x5A3 SDO Tx Nd.35 1464 0x5B8 SDO Tx Nd.56
1423 0x58F SDO Tx Nd.15 1444 0x5A4 SDO Tx Nd.36 1465 0x5B9 SDO Tx Nd.57
1424 0x590 SDO Tx Nd.16 1445 0x5A5 SDO Tx Nd.37 1466 0x5BA SDO Tx Nd.58
1425 0x591 SDO Tx Nd.17 1446 0x5A6 SDO Tx Nd.38 1467 0x5BB SDO Tx Nd.59
1426 0x592 SDO Tx Nd.18 1447 0x5A7 SDO Tx Nd.39 1468 0x5BC SDO Tx Nd.60
1427 0x593 SDO Tx Nd.19 1448 0x5A8 SDO Tx Nd.40 1469 0x5BD SDO Tx Nd.61
1428 0x594 SDO Tx Nd.20 1449 0x5A9 SDO Tx Nd.41 1470 0x5BE SDO Tx Nd.62
1429 0x595 SDO Tx Nd.21 1450 0x5AA SDO Tx Nd.42 1471 0x5BF SDO Tx Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1537 0x601 SDO Rx Nd.1 1558 0x616 SDO Rx Nd.22 1579 0x62B SDO Rx Nd.43
1538 0x602 SDO Rx Nd.2 1559 0x617 SDO Rx Nd.23 1580 0x62C SDO Rx Nd.44
1539 0x603 SDO Rx Nd.3 1560 0x618 SDO Rx Nd.24 1581 0x62D SDO Rx Nd.45
1540 0x604 SDO Rx Nd.4 1561 0x619 SDO Rx Nd.25 1582 0x62E SDO Rx Nd.46
1541 0x605 SDO Rx Nd.5 1562 0x61A SDO Rx Nd.26 1583 0x62F SDO Rx Nd.47
1542 0x606 SDO Rx Nd.6 1563 0x61B SDO Rx Nd.27 1584 0x630 SDO Rx Nd.48
1543 0x607 SDO Rx Nd.7 1564 0x61C SDO Rx Nd.28 1585 0x631 SDO Rx Nd.49
1544 0x608 SDO Rx Nd.8 1565 0x61D SDO Rx Nd.29 1586 0x632 SDO Rx Nd.50
1545 0x609 SDO Rx Nd.9 1566 0x61E SDO Rx Nd.30 1587 0x633 SDO Rx Nd.51
1546 0x60A SDO Rx Nd.10 1567 0x61F SDO Rx Nd.31 1588 0x634 SDO Rx Nd.52
1547 0x60B SDO Rx Nd.11 1568 0x620 SDO Rx Nd.32 1589 0x635 SDO Rx Nd.53
1548 0x60C SDO Rx Nd.12 1569 0x621 SDO Rx Nd.33 1590 0x636 SDO Rx Nd.54
1549 0x60D SDO Rx Nd.13 1570 0x622 SDO Rx Nd.34 1591 0x637 SDO Rx Nd.55
1550 0x60E SDO Rx Nd.14 1571 0x623 SDO Rx Nd.35 1592 0x638 SDO Rx Nd.56
1551 0x60F SDO Rx Nd.15 1572 0x624 SDO Rx Nd.36 1593 0x639 SDO Rx Nd.57
1552 0x610 SDO Rx Nd.16 1573 0x625 SDO Rx Nd.37 1594 0x63A SDO Rx Nd.58
1553 0x611 SDO Rx Nd.17 1574 0x626 SDO Rx Nd.38 1595 0x63B SDO Rx Nd.59
1554 0x612 SDO Rx Nd.18 1575 0x627 SDO Rx Nd.39 1596 0x63C SDO Rx Nd.60
1555 0x613 SDO Rx Nd.19 1576 0x628 SDO Rx Nd.40 1597 0x63D SDO Rx Nd.61
1556 0x614 SDO Rx Nd.20 1577 0x629 SDO Rx Nd.41 1598 0x63E SDO Rx Nd.62
1557 0x615 SDO Rx Nd.21 1578 0x62A SDO Rx Nd.42 1599 0x63F SDO Rx Nd.63

dec hex Telegram type dec hex Telegram type dec hex Telegram type
1793 0x701 Guarding Nd.1 1814 0x716 Guarding Nd.22 1835 0x72B Guarding Nd.43
1794 0x702 Guarding Nd.2 1815 0x717 Guarding Nd.23 1836 0x72C Guarding Nd.44
1795 0x703 Guarding Nd.3 1816 0x718 Guarding Nd.24 1837 0x72D Guarding Nd.45
1796 0x704 Guarding Nd.4 1817 0x719 Guarding Nd.25 1838 0x72E Guarding Nd.46
1797 0x705 Guarding Nd.5 1818 0x71A Guarding Nd.26 1839 0x72F Guarding Nd.47
1798 0x706 Guarding Nd.6 1819 0x71B Guarding Nd.27 1840 0x730 Guarding Nd.48
1799 0x707 Guarding Nd.7 1820 0x71C Guarding Nd.28 1841 0x731 Guarding Nd.49
1800 0x708 Guarding Nd.8 1821 0x71D Guarding Nd.29 1842 0x732 Guarding Nd.50
1801 0x709 Guarding Nd.9 1822 0x71E Guarding Nd.30 1843 0x733 Guarding Nd.51
1802 0x70A Guarding Nd.10 1823 0x71F Guarding Nd.31 1844 0x734 Guarding Nd.52
1803 0x70B Guarding Nd.11 1824 0x720 Guarding Nd.32 1845 0x735 Guarding Nd.53
1804 0x70C Guarding Nd.12 1825 0x721 Guarding Nd.33 1846 0x736 Guarding Nd.54
1805 0x70D Guarding Nd.13 1826 0x722 Guarding Nd.34 1847 0x737 Guarding Nd.55
1806 0x70E Guarding Nd.14 1827 0x723 Guarding Nd.35 1848 0x738 Guarding Nd.56
1807 0x70F Guarding Nd.15 1828 0x724 Guarding Nd.36 1849 0x739 Guarding Nd.57
1808 0x710 Guarding Nd.16 1829 0x725 Guarding Nd.37 1850 0x73A Guarding Nd.58
1809 0x711 Guarding Nd.17 1830 0x726 Guarding Nd.38 1851 0x73B Guarding Nd.59
1810 0x712 Guarding Nd.18 1831 0x727 Guarding Nd.39 1852 0x73C Guarding Nd.60
1811 0x713 Guarding Nd.19 1832 0x728 Guarding Nd.40 1853 0x73D Guarding Nd.61
1812 0x714 Guarding Nd.20 1833 0x729 Guarding Nd.41 1854 0x73E Guarding Nd.62
1813 0x715 Guarding Nd.21 1834 0x72A Guarding Nd.42 1855 0x73F Guarding Nd.63

Appendix

CX7050 213Version: 1.0

11.2 Third-Party components
This device contains Beckhoff software and third-party software.
Please refer to the license file on the storage medium.

11.3 Accessories
Table 34: microSD cards.

Order number Description
CX1900-0122 512 MB microSD card
CX1900-0132 16 GB microSD card

Table 35: Further spare parts.

Order number Description
ZB8701 Slotted screwdriver 2.0 x 40 mm, HD terminals

Appendix

CX7050214 Version: 1.0

11.4 Certifications
FCC Approvals for the United States of America

FCC: Federal Communications Commission Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates, uses,
and can radiate radio frequency energy and, if not installed and used in accordance with the instruction
manual, may cause harmful interference to radio communications. Operation of this equipment in a
residential area is likely to cause harmful interference in which case the user will be required to correct the
interference at his own expense.

FCC Approval for Canada

FCC: Canadian Notice

This equipment does not exceed the Class A limits for radiated emissions as described in the Radio
Interference Regulations of the Canadian Department of Communications.

List of tables

CX7050 215Version: 1.0

List of tables
Table 1 Dimensions and weight. ... 12
Table 2 Legend for the configuration of the basic CPU module.. 14
Table 3 Information on the name plate. .. 15
Table 4 Ethernet interface X001, pin assignment. .. 16
Table 5 Maximum E-bus/K-bus current depending on the selected installation position and the ambi-

ent temperature.. 82
Table 6 Key for the connection example... 86
Table 7 Required wire cross-sections and strip lengths.. 87
Table 8 Technical data, multi-function I/Os as digital inputs. .. 97
Table 9 Technical data, multi-function I/Os as digital outputs... 98
Table 10 Technical data, multi-function I/Os in counter mode. ... 101
Table 11 Technical data, multi-function I/Os in encoder mode. .. 107
Table 12 Technical data, multi-function I/Os in analog mode. .. 111
Table 13 Technical data, multi-function I/Os in PWM mode. .. 112
Table 14 PWM output (duty cycle), representation of the PWM signal in the delivery state....................... 114
Table 15 PWM period (PWM clock frequency), representation of the PWM signal in the delivery state. ... 114
Table 16 Access data for the Beckhoff Device Manager on delivery.. 116
Table 17 Structure of the 11 byte CAN data ... 162
Table 18 TC LED, order and meaning. ... 181
Table 19 TC LED, error description and remedy. ... 181
Table 20 Diagnostic LEDs in K-Bus mode. ... 182
Table 21 K-bus ERR LED, fault indication sequence through the LED. ... 182
Table 22 K-BUS ERR LED, fault description and troubleshooting.. 183
Table 23 Description of the State variable values... 184
Table 24 Diagnostic LEDs in K-Bus mode. ... 185
Table 25 Reading the emergency telegrams with the ADSREAD function block. 188
Table 26 Description of the array .. 188
Table 27 Technical data, dimensions and weights. .. 198
Table 28 Technical data, general data.. 198
Table 29 Technical data, I/O terminals. .. 198
Table 30 Technical data, environmental conditions. ... 198
Table 31 Technical data, Ethernet interface X001. ... 199
Table 32 Technical data, CANopen interface X003. ... 199
Table 33 Technical data, CANopen interface X003 parameterized as slave.. 199
Table 34 microSD cards.. 213
Table 35 Further spare parts... 213

List of figures

CX7050216 Version: 1.0

List of figures
Fig. 1 Sample configuration of a CX7050 Embedded PC. ... 14
Fig. 2 Name plate example. ... 15
Fig. 3 Ethernet interface X001. .. 16
Fig. 4 CANopen interface X003. .. 18
Fig. 5 CANopen Device Model... 21
Fig. 6 CANopen bootup state diagram... 23
Fig. 7 Schematic diagram: "Guarding procedure".. 25
Fig. 8 Schematic diagram: "Heartbeat procedure"... 26
Fig. 9 Default identifier allocation: Master/Slave .. 28
Fig. 10 PDO linking: Peer to Peer .. 28
Fig. 11 Diagram: CAN process data transmission ... 29
Fig. 12 Diagram: CAN "SYNC" telegram ... 30
Fig. 13 Timing diagram: "Inhibit time" .. 31
Fig. 14 Time representation of the event timer .. 32
Fig. 15 Mapping representation ... 32
Fig. 16 SDO protocol: access to the object directory ... 35
Fig. 17 CX70xx Embedded PC, dimensions. ... 81
Fig. 18 CX70xx Embedded PC, permissible installation position... 82
Fig. 19 Identifying a passive EtherCAT Terminal in TwinCAT. .. 85
Fig. 20 Passive EtherCAT Terminals, permissible installation... 85
Fig. 21 Connections for system voltage (Us) and power contacts (Up). .. 86
Fig. 22 Connection example with a CX7000. ... 87
Fig. 23 Connection example for areas with special UL requirements. ... 88
Fig. 24 CANopen interface X003. .. 92
Fig. 25 CX7028 interface, slot and module configuration under TwinCAT. ... 95
Fig. 26 Supported modules when using slot 1. .. 95
Fig. 27 Supported modules when using slot 2. .. 96
Fig. 28 Supported modules when using slot 3. .. 96
Fig. 29 Supported modules when using slot 4. .. 96
Fig. 30 Configurable digital inputs.. 97
Fig. 31 Configurable digital outputs.. 98
Fig. 32 Configurable inputs and outputs in counter mode.. 100
Fig. 33 Configurable inputs and outputs in incremental encoder mode. .. 106
Fig. 34 Configurable analog inputs. ... 111
Fig. 35 Configurable inputs and outputs in PWM signal mode .. 112
Fig. 36 Controller behavior with and without NOVRAM. .. 118
Fig. 37 Changing the password in the Beckhoff Device Manager. .. 124
Fig. 38 CANopen master and CANopen slave in the TwinCAT tree view with tabs. 140
Fig. 39 CANopen slave in the TwinCAT tree view with associated tabs.. 141
Fig. 40 General tab of a CANopen master in TwinCAT. .. 142
Fig. 41 CCAT-CNM tab of a CANopen master in TwinCAT... 143
Fig. 42 ADS tab of a CANopen master in TwinCAT... 144
Fig. 43 CAN Node tab of a CANopen slave in TwinCAT. .. 145
Fig. 44 SDO tab of a CANopen slave in TwinCAT... 147

List of figures

CX7050 217Version: 1.0

Fig. 45 PDO tab of a CANopen slave in TwinCAT... 148
Fig. 46 Enabling of an ADS port for a CANopen slave. ... 160
Fig. 47 Content of the MDP module with IP and MAC address. .. 163
Fig. 48 Virtual Ethernet communication via ADS, TCP or UDP. .. 163
Fig. 49 CoE access to multi-function I/Os, input variables "netId" and "port" under TwinCAT. 165
Fig. 50 CoE communication, listing of CoE objects with matching index number.................................... 165
Fig. 51 K-bus interface of a CX7050 in the TwinCAT System Manager. ... 166
Fig. 52 E-bus interface of a CX7050 in the TwinCAT System Manager. ... 167
Fig. 53 Measurement at a task time of 250 μs. .. 172
Fig. 54 Measurement at a task time of 500 μs. .. 172
Fig. 55 Measurement at a task time of 1 ms. ... 172
Fig. 56 CX7050 CPU and PLC... 173
Fig. 57 CPU of the CX7028 interface... 173
Fig. 58 Default calling of a PLC task. ... 177
Fig. 59 Calling a PLC task with the attribute tcCallAfterOutputUpdate. ... 177
Fig. 60 Pulse of a digital output without load.. 178
Fig. 61 Shortened pulse of a digital output with load. .. 178
Fig. 62 Inverted representation of a digital output.. 179
Fig. 63 Determination of different running times in the PLC program. ... 180
Fig. 64 Status variable for error handling and diagnostics under TwinCAT. .. 184
Fig. 65 Diagnosis of the CANopen communication with the variables NodeState, DiagFlag and Emer-

gencyCounter... 187
Fig. 66 Diagnostic variable SendCounter of a CANopen slave.. 189
Fig. 67 Diagnostic variable ReceiveCounter of a CANopen slave. .. 189
Fig. 68 Wiring diagram for test setup ... 191
Fig. 69 Multi-function I/O status variable.. 193
Fig. 70 Further diagnostic variables for multi-function I/Os.. 193
Fig. 71 Settings for router memory in the TwinCAT System Manager... 194
Fig. 72 Utilization of the router and TwinCAT memory. ... 195
Fig. 73 Display of the exceed counter in TwinCAT. ... 196
Fig. 74 Display of the CPU load in TwinCAT. .. 197
Fig. 75 Setting the real-time load in TwinCAT.. 197

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/CX7050

mailto:info@beckhoff.de?subject=CX7050
https://www.beckhoff.com
https://www.beckhoff.com/CX7050

	 Table of contents
	1 Notes on the documentation
	1.1 Representation and structure of warnings
	1.2 Documentation issue status

	2 For your safety
	2.1 Intended use
	2.2 Staff qualification
	2.3 Safety instructions
	2.4 Notes on information security

	3 Transport and storage
	4 Product overview
	4.1 Structure
	4.2 Name plate
	4.3 Ethernet interface (X001)
	4.4 USB interface (X002)
	4.5 D-sub connector (X003)
	4.6 MicroSD card
	4.7 CANopen system overview
	4.7.1 Network Management
	4.7.2 Process Data Objects (PDO)
	4.7.3 PDO Parameterization
	4.7.4 Service Data Objects (SDO)
	4.7.5 Objekt dictionary
	4.7.5.1 Object Directory - Structure
	4.7.5.2 Object List
	4.7.5.3 Objects and Data

	5 Commissioning
	5.1 Mounting
	5.1.1 Note the permissible installation positions
	5.1.2 Fastening to the DIN rail
	5.1.3 Changing the MicroSD card
	5.1.4 Installing passive EtherCAT Terminals

	5.2 Power supply
	5.2.1 Connect Embedded PC
	5.2.2 UL requirements

	5.3 CANopen: Connection and wiring
	5.3.1 D-sub connector (X003)
	5.3.2 Cable and shielding

	6 Multifunction I/Os
	6.1 Digital inputs
	6.2 Digital outputs
	6.3 Counter mode
	6.3.1 Select operation mode
	6.3.2 Switching outputs
	6.3.3 Set counter value
	6.3.4 Setting the limit value for counters

	6.4 Incremental encoder mode
	6.4.1 Switching outputs
	6.4.2 Latching the counter value
	6.4.3 Setting the limit value for counters

	6.5 Analog signal mode
	6.6 PWM signal mode
	6.6.1 Setting the PWM clock frequency and duty cycle
	6.6.2 Setting the channel synchronization

	7 Configuration
	7.1 Starting the Beckhoff Device Manager
	7.2 Persistent data
	7.3 NOVRAM
	7.3.1 Creating a Retain Handler
	7.3.2 Creating and linking variables
	7.3.3 Deleting variables under the Retain Handler

	7.4 Software configuration
	7.4.1 User name and password
	7.4.2 Setting the IP address
	7.4.3 Update image
	7.4.4 Updating the firmware for multifunction I/Os
	7.4.5 Updating the ESI device description

	8 TwinCAT
	8.1 First Steps
	8.1.1 Connect to the CX70x0
	8.1.2 Scan multifunction I/Os
	8.1.3 Establishing ADS communication
	8.1.4 Creating a PLC project
	8.1.5 Linking variables
	8.1.6 Load configuration to CX

	8.2 TwinCAT tabs
	8.2.1 Tree view
	8.2.2 CANopen master
	8.2.2.1 General
	8.2.2.2 CCAT CNM
	8.2.2.3 ADS

	8.2.3 CANopen slave
	8.2.3.1 CAN node
	8.2.3.2 SDOs
	8.2.3.3 PDO

	8.3 Creating CX7050 as master
	8.3.1 SDO communication from the PLC
	8.3.2 CAN interface

	8.4 Creating CX705x as slave
	8.4.1 Creating a virtual slave
	8.4.2 Setting the address
	8.4.3 Creating further PDOs
	8.4.4 Creating variables
	8.4.5 Setting the transmission type
	8.4.6 Receiving SDO data in the PLC
	8.4.7 Switching slave node to PreOp from the PLC

	8.5 Reading the CAN baud rate
	8.6 Sending arbitrary CAN telegrams
	8.7 Reading the IP and MAC addresses
	8.8 Virtual Ethernet interface
	8.9 CoE access to multi-function I/Os
	8.10 Power supply terminal
	8.11 Cycle and processing times
	8.11.1 Measuring processing time in the PLC program
	8.11.2 Real-Time Clock (RTC)
	8.11.3 Cycle time of 250 μs
	8.11.3.1 Cycle time ≥1 ms
	8.11.3.2 Cycle time < 1 ms

	8.12 Function Blocks
	8.12.1 FB_CX70xx_RW_EEPROM
	8.12.2 FB_CX70xx_ResetOnBoardIO

	8.13 Important attribute pragmas
	8.13.1 Attribute 'Tc2GvlVarNames'
	8.13.2 Attribute 'pack_mode'
	8.13.3 Attribute 'TcCallAfterOutputUpdate'

	9 Error handling and diagnostics
	9.1 Diagnostic LEDs
	9.1.1 K-bus
	9.1.2 E-bus

	9.2 CANopen diagnostics
	9.2.1 Status messages
	9.2.2 Communication
	9.2.3 PDOs
	9.2.4 Troubleshooting

	9.3 Diagnosis of the multi-function I/Os
	9.4 Memory usage
	9.5 Real-time and CPU load

	10 Technical data
	11 Appendix
	11.1 CAN Identifier list
	11.2 Third-Party components
	11.3 Accessories
	11.4 Certifications

	 List of tables
	 List of figures

		documentation@beckhoff.com
	2024-05-08T11:00:00+0200
	Beckhoff Automation, Verl
	Documentation Publishing

