BECKHOFF New Automation Technology

Manual | EN

FC1028

PCIe EtherCAT Master Card

Table of contents

1	Note	s on the documentation	5
	1.1	Representation and structure of warnings	6
	1.2	Documentation issue status	7
2	Prod	luct overview	8
	2.1	Structure	8
	2.2	Interfaces	9
3	Com	missioning	10
	3.1	Assembly	10
	3.2	Wiring	10
	3.3	Driver note	11
	3.4	BIOS settings	11
4	Twin	CAT configuration	13
	4.1	Scan card in TwinCAT	13
	4.2	Insert EtherCAT master manually	14
	4.3	Use cable redundancy	16
	4.4	Enabling Distributed Clocks	19
	4.5	Coupling distributed clocks – EtherCAT master	22
5	Erro	r handling and diagnostics	25
	5.1	Diagnostic LEDs	25
	5.2	Faults	25
6	Tech	nical data	26
7	Appe	endix	27
	7.1	Accessories	27
	7 2	Support and Sorvice	20

Version: 1.0

1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

1.1 Representation and structure of warnings

The following warnings are used in the documentation. Read and follow the warnings.

Warnings relating to personal injury:

A DANGER

Hazard with high risk of death or serious injury.

WARNING

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that can result in minor injury.

Warnings relating to damage to property or the environment:

NOTE

There is a potential hazard to the environment and equipment.

Notes showing further information or tips:

This notice provides important information that will be of assistance in dealing with the product or software. There is no immediate danger to product, people or environment.

1.2 Documentation issue status

Version	Comment
1.0	First version.

2 Product overview

The FC1028 EtherCAT card can be used to integrate an Industrial PC as a master in an EtherCAT network. The card has 16 EtherCAT channels and a total of eight ix-Industrial® type A connectors. Adapter cables type C9900-K921 are required to connect the EtherCAT devices.

With FC1028 EtherCAT card a total of 16 EtherCAT masters are available. The EtherCAT masters are fully DC synchronous. No external synchronization is necessary in order to synchronize the EtherCAT masters or EtherCAT segments with one another. This function is particularly interesting for XTS systems that require synchronously running EtherCAT masters. The FC1028 EtherCAT card can additionally be used to realize an EtherCAT redundancy.

2.1 Structure

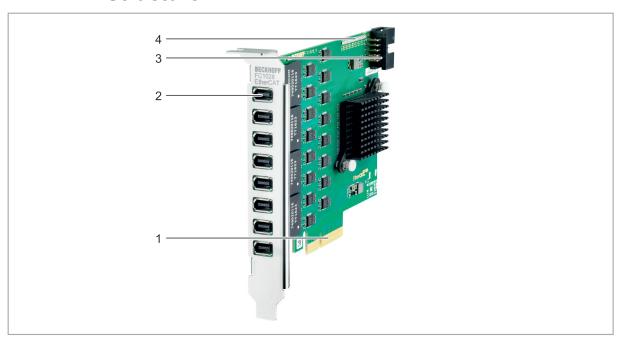


Fig. 1: Example structure of a FC1028 EtherCAT card.

Table 1: Legend for the structure of the FC1028 EtherCAT card.

No.	Component	Description
1	PCI Express x4 bus	Requires a PCIe x4 slot that meets the PCIe standard.
2	ix Industrial® interface	8 x ix-Industrial®-type A interfaces. Two EtherCAT masters can be executed per interface, i.e. a total of 16 EtherCAT masters.
3	2 x 5-pin contact strip	Synchronization interface for synchronization of multiple FC1028 EtherCAT cards.
4	Diagnostic LEDs	The LEDs P01 to P16 indicate the status of the connection (see: <u>Diagnostic LEDs [▶ 25]</u>).

2.2 Interfaces

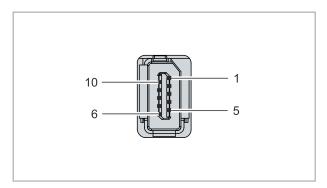


Fig. 2: EtherCAT interfaces, X1 to X8.

Table 2: EtherCAT interfaces X1 to X8, PIN assignment.

PIN	Assignment according to TIA-568B	Description
1	white/orange	Pair 1
2	orange	
3	not connected	Pair 2
4	white/blue	Pair 3
5	blue	
6	white/green	Pair 4
7	green	
8	not connected	Pair 2
9	white/brown	Pair 5
10	brown	

C9900-K921 connection cable

With the help of the C9900-K921 connection cable, two RJ45 sockets (P1 and P2) are made from one x-Industrial® plug (P3).

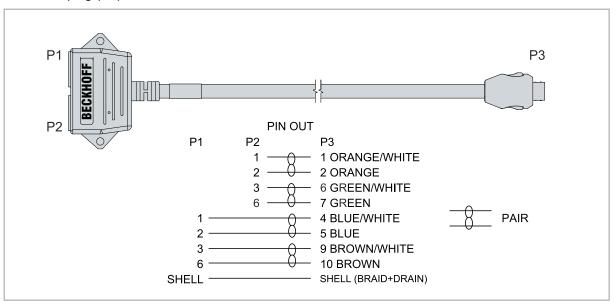


Fig. 3: Connection cable C9900-K921, structure and PIN assignment.

3 Commissioning

3.1 Assembly

NOTE

Electrostatic discharge

Electrical components can be damaged by electrostatic discharges. Observe ESD protection measures during assembly. Ensure the environment is well grounded with ESD compliant floors, gloves, clothing and workstations.

The FC1028 EtherCAT card requires a PCIe x4 slot that complies with the PCIe standard. In principle, the card can also be operated in longer slots, i.e. also in PCIe x8 or PCIe x16 slots. It is only important that the slots support four PCIe lanes.

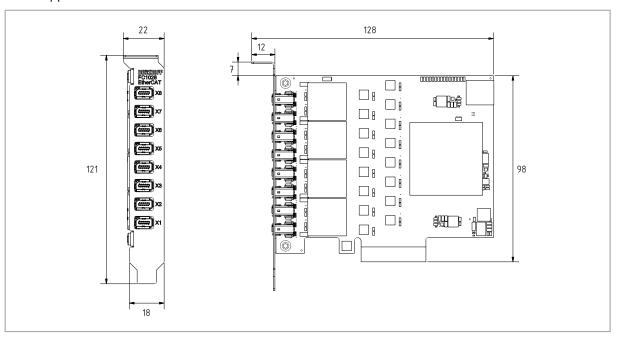


Fig. 4: FC1028 EtherCAT card, dimensions.

The EtherCAT card does not require an external power supply. The card is supplied directly from the Industrial PC via the PCIe bus. The power supply of the Industrial PC has to be adequate for meeting the power requirement of the EtherCAT cards, particularly if several EtherCAT cards are installed.

Proceed as follows:

- 1. Before installing the EtherCAT card, switch off the Industrial PC and any external power supplies, and separate the PC from the mains.
- 2. Open the housing of the Industrial PC and remove the cover plate in the housing wall of the Industrial PC at a free PCIe slot of the motherboard.
- 3. Insert the EtherCAT card into the free PCle slot and fix it with the screw or device provided. Make sure that there is enough space between the EtherCAT card and other PC components so that the EtherCAT card cannot touch any other plug-in cards or motherboard components.
- ⇒ After a restart, the EtherCAT card is automatically detected. No additional drivers need to be installed.

3.2 Wiring

Connection cables type C9900-K921 are required for the connection of the EtherCAT devices. The connection cable is a breakout cable with an ix-Industrial® type A plug to 2 x Cat.6 RJ45 socket.

Table 3: Accessories connection cable, ordering information.

Ordering information	Description
	Connection cable ix Industrial® type A 10-pin plug to 2 x Cat.6 RJ45 socket, 1 m Cat.6 cable, suitable for FC1028

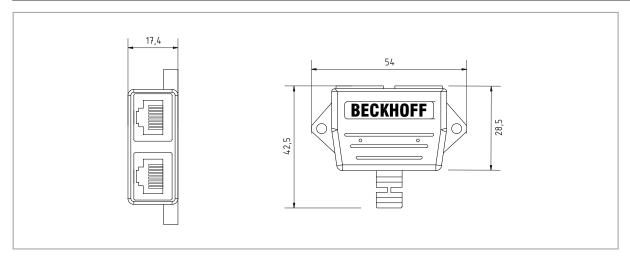


Fig. 5: Connection cable C9900-K921, dimensions.

The card has a total of eight ix-Industrial® type A interfaces, thus up to 16 EtherCAT devices can be connected to the eight interfaces.

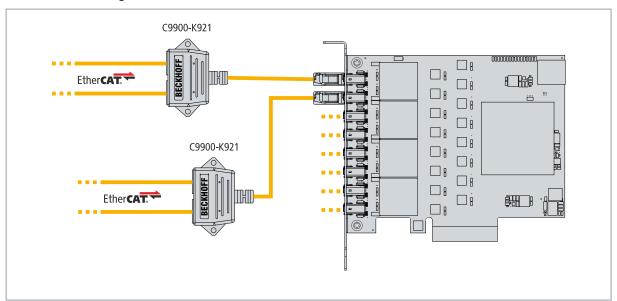


Fig. 6: Connection example with two adapter cables of type C9900-K921.

3.3 Driver note

No drivers have to be installed for the operation of the FC1028 EtherCAT card. The card is ready for operation immediately after mounting. Note that the card is not displayed in the Device Manager or as a network interface under Windows, but the card can be used under TwinCAT (see: TwinCAT configuration [1).

3.4 BIOS settings

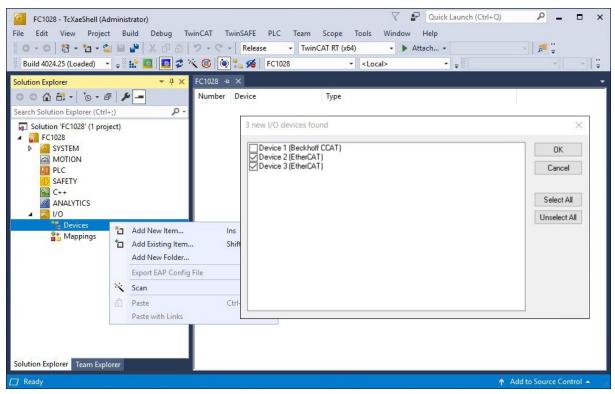
For Industrial PCs that are delivered ex factory with the FC1028 EtherCAT card, the BIOS is configured appropriately so that the card functions properly.

If you retrofit a Beckhoff Industrial PC with a FC1028, you must adjust or check the settings in the BIOS to ensure that the EtherCAT card functions properly. Without the appropriate BIOS settings the card is not ready for operation and cannot be used in TwinCAT.

Adjust BIOS settings:

- 1. Restart your Industrial PC and press [Del] to start the BIOS setup.
- 2. If the **[Del]** key does not work, another key is displayed on the screen in any case, which can be used to access the BIOS setup.
- 3. Navigate to the PCI Configuration menu
- 4. Disable the Memory Mapped I/O above 4 GB option.
- 5. Press [F4] to save the settings and exit the BIOS setup.
- ⇒ The Industrial PC is restarted. With these settings the FC1028 EtherCAT card is ready for operation and can be used under TwinCAT.

4 TwinCAT configuration


4.1 Scan card in TwinCAT

This step shows how to scan an FC1028 EtherCAT card in TwinCAT and how to create the EtherCAT masters automatically. For the scan to be successful, active EtherCAT slaves must already be connected to the interfaces of the card. Otherwise the EtherCAT telegram from an inactive slave is not answered and the EtherCAT master is not created in TwinCAT.

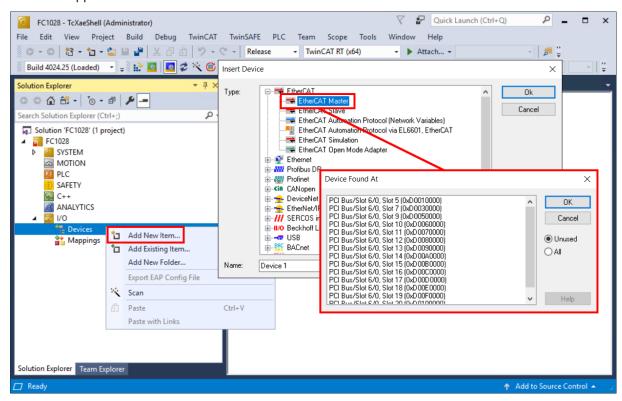
You should have completed the hardware configuration, so that the scan runs successfully and all EtherCAT masters and the EtherCAT slaves connected to them are created in TwinCAT.

Proceed as follows:

- 1. Start TwinCAT and open an empty project.
- 2. In the tree view on the left, right-click on I/O Devices.
- 3. Click in the context menu on Scan.

In this example two EtherCAT masters are found because active EtherCAT slaves are connected to them.

- 4. Select the devices that you want to use and confirm the selection with **OK**. Devices that are actually available are always available for selection.
- 5. Confirm the request with Yes, in order to look for boxes.
- 6. Confirm the request whether to enable FreeRun with Yes.
- ⇒ The FC1028 card has been scanned successfully in TwinCAT and is displayed with the available EtherCAT masters.

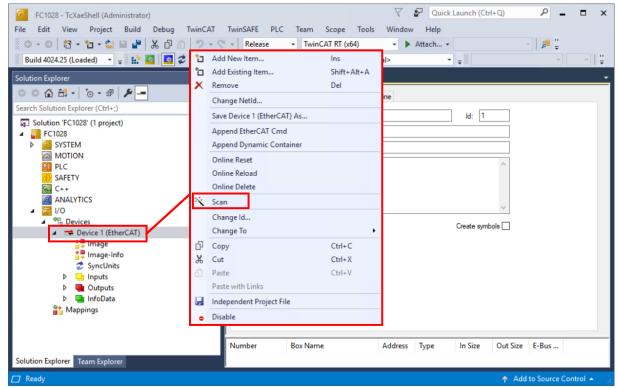

4.2 Insert EtherCAT master manually

This chapter shows how you can manually create an FC1028 EtherCAT card and its EtherCAT master if no active EtherCAT slaves are connected to the card. This is especially necessary if you already want to start with the project planning and the complete hardware configuration is not available.

This is in contrast to the automatic scanning of the card in TwinCAT (see: Scan card in TwinCAT [▶ 13]).

Proceed as follows:

- 1. Start TwinCAT and open an empty project.
- 2. In the tree view on the left, right-click on I/O Devices.
- 3. Click **Add New Item** and select **EtherCAT master** to create an EtherCAT master. The window **Device Found At** appears.



4. Select the appropriate interface from the list according to the subsequent cabling. The list of interfaces is continued chronologically from 5 to 20, which corresponds to the total of 16 EtherCAT masters of the card.

As a reminder, the card has a total of eight ix-Industrial® type A interfaces, thus up to 16 EtherCAT devices can be connected to the eight interfaces.

- 5. Create additional or required EtherCAT masters in TwinCAT in this way.
- ⇒ You can start project planning at this point. As soon as the complete hardware configuration is available, you can scan each EtherCAT master and thus start the search for the EtherCAT slaves connected to it.

The EtherCAT slaves are created in TwinCAT according to your hardware configuration and the cabling under the respective EtherCAT masters.

4.3 Use cable redundancy

The FC1028 EtherCAT card has independent EtherCAT interfaces that can be used for EtherCAT cable redundancy. Cable redundancy offers resilience for the cabling. Interruptions of the EtherCAT communication due to broken wires or unplugged LAN cables are avoided. Interference at the individual terminals is not intercepted by the cable redundancy.

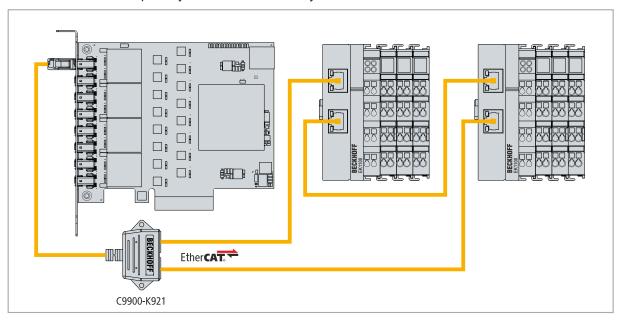
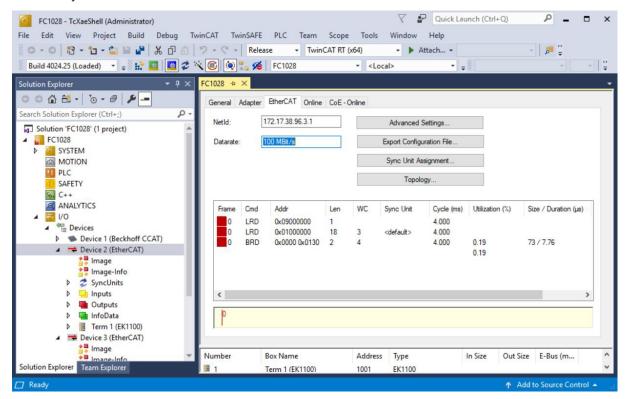


Fig. 7: Example configuration of a FC1028 with EtherCAT cable redundancy.

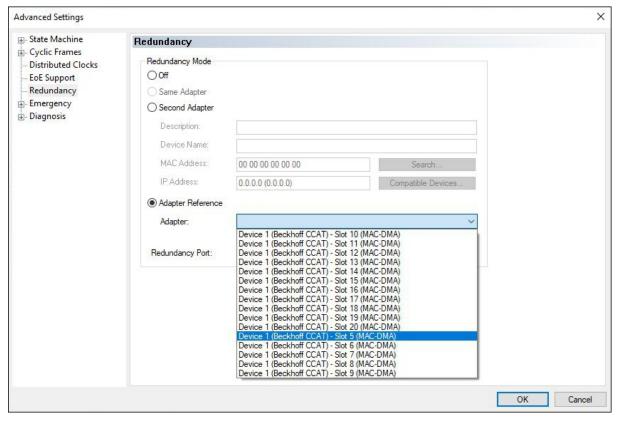
In the example configuration the hardware is wired as EtherCAT ring. For this EtherCAT ring two EtherCAT masters of the FC1028 are occupied. This intercepts failures in the cabling beyond the C9900-K921 adapter cable. In this way, for example, a wire break between the two EtherCAT couplers has no effect on the EtherCAT communication.

Table 4: Cable redundancy, hardware for sample configuration.

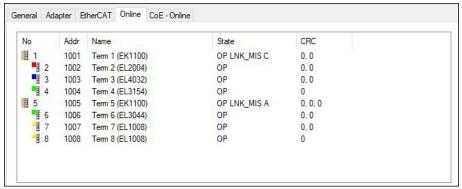
Туре	Description
FC1028	Is the EtherCAT master in the example.
C9900-K921	Adapter cable for FC1028. Breakout cable with one ix- Industrial® type A plug to 2 x Cat.6 RJ45 socket.
	With the help of the adapter cable two EtherCAT masters are executed from one x-Industrial® type A interface.
2 x EK1100 EtherCAT coupler	The first EtherCAT coupler forwards the EtherCAT signal to connected EtherCAT Terminals and via the second Ethernet interface to the second EK1100 EtherCAT coupler.
	The second EtherCAT coupler is connected to the adapter cable via the second Ethernet interface and in this way to another EtherCAT master.
EtherCAT Terminals	Any number of EtherCAT Terminals connected to the EtherCAT coupler.


Requirements:

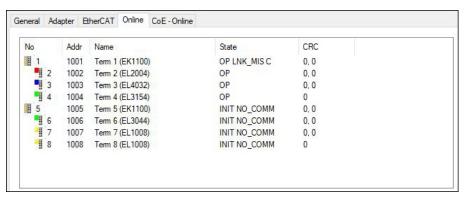
- For TwinCAT 2 you have to install and license the supplement TS622x | TwinCAT EtherCAT Redundancy on the Embedded PC: https://www.beckhoff.com/TS622x
- In TwinCAT 3 the supplement is already included and only has to be licensed.
- Hardware wired as EtherCAT ring (see Fig.: Example configuration of a FC1028 with EtherCAT cable redundancy).


Configure EtherCAT cable redundancy as follows:

1. Click on the left side in the tree view on an EtherCAT master that you want to configure for cable redundancy.


- 2. Click on the EtherCAT tab, then Advanced Settings.
- 3. Click on Redundancy in the tree structure on the left.

- Click on the Adapter Reference option and then select a second EtherCAT master from the drop-down menu.
- ⇒ You have successfully configured cable redundancy. The EtherCAT slaves configured for cable redundancy are displayed in the **Online** tab.



The state of the individual EtherCAT slaves can be found in the **State** column. If, for example, the cable connection between the two EK1100 EtherCAT couplers is interrupted, their state changes. The message "LINK_MIS C" and "LINK_MIS A" then appears in the State column.

Although the connection between the EtherCAT couplers is interrupted, the EtherCAT Terminals connected to the EK1100 EtherCAT couplers do not have a fault.

If the cable connection is interrupted at the same point without cable redundancy, a fault is displayed for the terminals in the State column.

4.4 Enabling Distributed Clocks

Distributed clocks are a common part of EtherCAT communication. They enable local, absolute system synchronization for CPU, I/O and drive units. This enables time-based and simultaneous data processing of all distributed clocks capable EtherCAT devices.

Principle of operation

Without distributed clocks the devices would no longer work simultaneously in extended EtherCAT networks, because EtherCAT works on the pass-through principle. In the pass-through principle, the first devices receive the EtherCAT frame first and those behind significantly later. This would mean, for example, that not all inputs could be read at the same time or all outputs could be set at the same time.

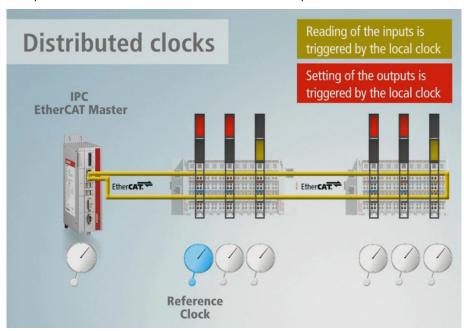


Fig. 8: Example structure of an EtherCAT communication with distributed clocks.

For this purpose a distributed clock is integrated in some specially designed EtherCAT devices. This distributed clock is an electronic mechanism that runs in this device and is synchronized with other participants with distributed clocks. Hierarchically, the structure looks like this: there is a master clock or a reference clock and all other devices with distributed clocks support are then the slave clocks. The EtherCAT master sends a special telegram in each I/O cycle through the EtherCAT network, which distributes the time from the master clock to all following slave clocks. For this reason, the master clock must also be at the beginning before all other slave clocks. By default TwinCAT therefore selects the first distributed clockscapable device as reference clock.

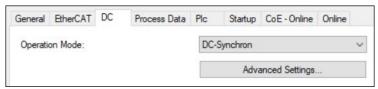
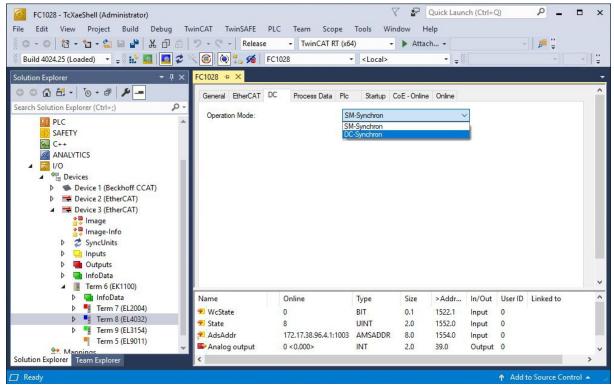


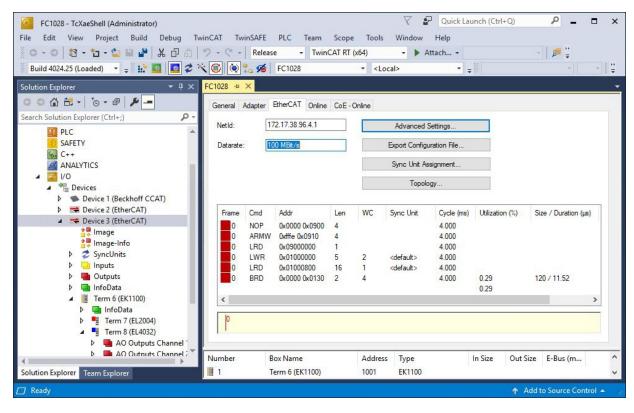
Fig. 9: Distributed clocks functionality of an EtherCAT slave.

Not all EtherCAT slaves support the distributed clocks method. An EtherCAT slave shows in TwinCAT its distributed clocks functionality by having the **DC** tab.

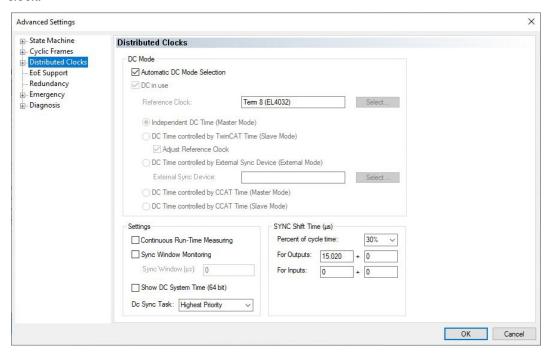

Example structure with FC1028

The activation of the distributed clocks is shown on a small example structure, with an FC1028 as EtherCAT master and an EK1100 EtherCAT coupler connected to it with EtherCAT Terminals, including two terminals with distributed clocks functionality.

Activate the distributed clocks as follows:



- 1. Click on the left side in the tree view on the first EtherCAT slave with distributed clocks support. In this example it is the EL4032.
- 2. Click the DC tab and select the option DC-Synchron under Operation Mode.


Since it is the first EtherCAT device with distributed clocks support in this example, this EtherCAT device is used as reference clock for all subsequent EtherCAT devices.

- 3. Activate further EtherCAT devices with distributed clocks support in your system as shown.
- 4. Click on the EtherCAT master in the tree view on the left and then on the button **Advanced Settings** in the **EtherCAT** tab.

5. The EL4032 EtherCAT Terminal is automatically adopted by TwinCAT as master clock or reference clock.

⇒ This means that the distributed clocks functionality is active in this example.

4.5 Coupling distributed clocks – EtherCAT master

This chapter shows how two or more EtherCAT masters can be coupled and synchronized. Thereby the first EtherCAT master is changed to master mode in the DC settings. The first DC-capable EtherCAT slave connected to this EtherCAT master continues to set the reference clock. The TwinCAT real-time of this clock is synchronized based on frequency.

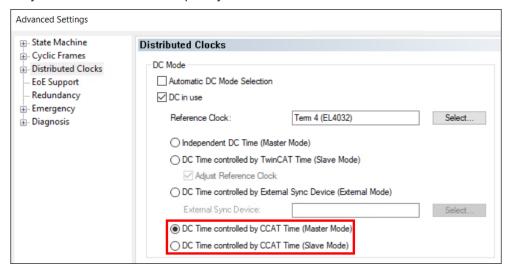
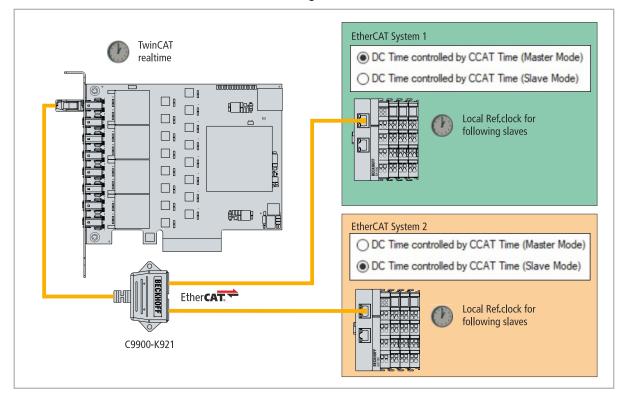
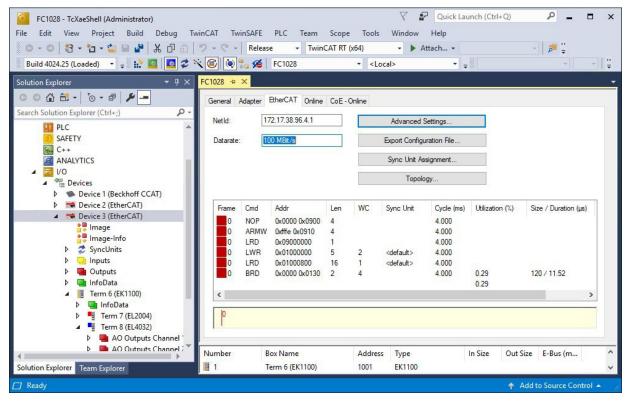


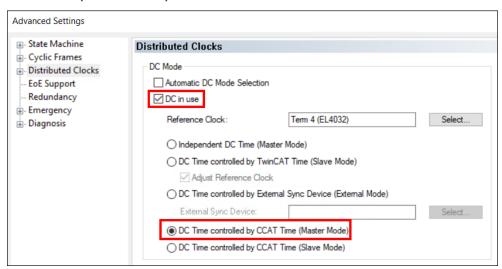
Fig. 10: Settings for EtherCAT master in master or slave mode.

The other EtherCAT masters are synchronized with the first master and are switched to slave mode for this. These EtherCAT masters still keep their local reference clock for synchronization of the subsequent devices. During the EtherCAT startup and continuously afterwards, this reference clock is itself synchronized based on the TwinCAT time and is referred to as "tracking reference clock".

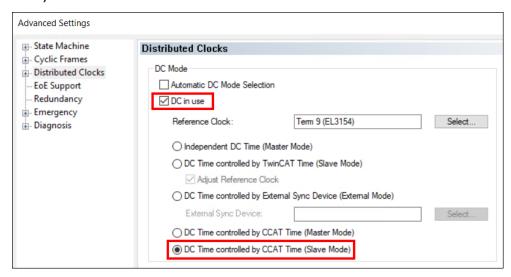


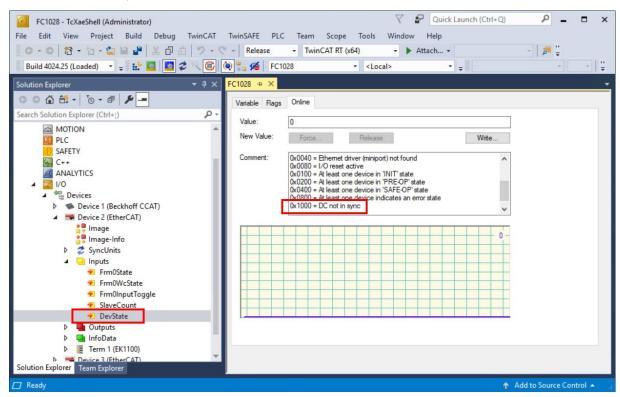

Fig. 11: Example configuration with coupled EtherCAT masters.

For more information, please visit: https://download.beckhoff.com/download/Document/io/ethercat-terminals/ethercatsystem_en.pdf


Proceed as follows:

- 1. Activate the distributed clocks for all EtherCAT masters that you want to synchronize with each other (see: Enabling Distributed Clocks [▶ 19]).
- 2. Activate a reference clock for each of these EtherCAT masters.
- 3. Click at the first EtherCAT master on the left side in the tree view on the EtherCAT master and then under the **EtherCAT** tab on the button **Advanced Settings**.


- 4. Deactivate the Automatic DC Mode Selection option.
- 5. Activate the option **DC** in use in **Distributed Clocks** and additionally the option **DC** Time controlled by **CCAT** Time (Master Mode)


All following EtherCAT masters are synchronized with this EtherCAT master.

6. For all following EtherCAT masters, which you want to synchronize with the first master, activate the option **DC** in use in **Distributed Clocks** and then the option **DC** Time controlled by **CCAT** Time (Slave Mode).

- 7. Repeat this setting for all further EtherCAT masters.
- ⇒ Synchronization is successful when the distributed clocks devices in the lower-level systems change to OP state. In addition, the variable **DevState** shows the state of the distributed clock communication.

5 Error handling and diagnostics

5.1 Diagnostic LEDs

The LEDs on the FC1028 EtherCAT card indicate the state of the connection. The LEDs are numbered from P01 to P16 and correspond to the interfaces X1 to X8.

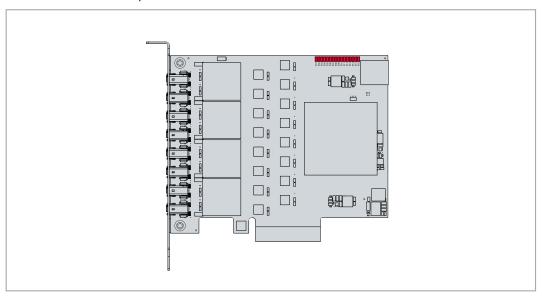


Fig. 12: Diagnostic LEDs P01 to P16, FC1028 EtherCAT card.

An LED (LINK/ACT) lights up green when there is a connection to a network. The LED flashes when data transfer on the interface is in progress.

5.2 Faults

Table 5: Possible faults and their correction.

Fault	Cause	Measures
The FC1028 EtherCAT card cannot be scanned under TwinCAT.		Disable the option Memory Mapped I/O above 4 GB in the
		BIOS (see: <u>BIOS settings [▶ 11]</u>).

6 Technical data

Table 6: Technical data, general data.

Technical data	FC1028
Fieldbus	EtherCAT
Number of channels	16 EtherCAT master channels
Interfaces	8 x ix Industrial® type A
Data transfer rate	10/100 Mbit/s
Design	PCle
Interface to the PC	PCIe x4 (PCIe 2.0)
Control software	TwinCAT 3 Runtime (XAR) from 3.1 4022.24
Max. power consumption	7 W
Dimensions (W x H x D)	116 mm x 98 mm x 22 mm
Operating/storage temperature	-25+60 °C/-40+85 °C
Relative humidity	95 % no condensation
Vibration/shock resistance	conforms to EN 60068-2-6/EN 60068-2-27
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4
Approvals/markings	CE

7 Appendix

7.1 Accessories

Table 7: Connection cable.

Ordering information	Description
	Connection cable ix Industrial® type A 10-pin plug to 2 x Cat.6 RJ45 socket, 1 m Cat.6 cable, suitable for FC1028

7.2 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- · support
- · design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- · repair service
- · spare parts service
- · hotline service

Hotline: +49 5246 963 460 Fax: +49 5246 963 479 e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

Phone: +49 5246 963 0 Fax: +49 5246 963 198 e-mail: info@beckhoff.com

web: https://www.beckhoff.com

List of figures

Fig. 1	Example structure of a FC1028 EtherCAT card	8
Fig. 2	EtherCAT interfaces, X1 to X8.	9
Fig. 3	Connection cable C9900-K921, structure and PIN assignment	9
Fig. 4	FC1028 EtherCAT card, dimensions.	10
Fig. 5	Connection cable C9900-K921, dimensions.	11
Fig. 6	Connection example with two adapter cables of type C9900-K921	11
Fig. 7	Example configuration of a FC1028 with EtherCAT cable redundancy	16
Fig. 8	Example structure of an EtherCAT communication with distributed clocks	19
Fig. 9	Distributed clocks functionality of an EtherCAT slave	19
Fig. 10	Settings for EtherCAT master in master or slave mode	22
Fig. 11	Example configuration with coupled EtherCAT masters.	22
Fig. 12	Diagnostic LEDs P01 to P16, FC1028 EtherCAT card.	25

Version: 1.0

List of tables

Table 1	Legend for the structure of the FC1028 EtherCAT card.	8
Table 2	EtherCAT interfaces X1 to X8, PIN assignment	9
Table 3	Accessories connection cable, ordering information.	11
Table 4	Cable redundancy, hardware for sample configuration	16
Table 5	Possible faults and their correction.	25
Table 6	Technical data, general data	26
Table 7	Connection cable	27

Version: 1.0

More Information: www.beckhoff.com/FC1028

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

