
Documentation | EN

Fieldbus Box for CANopen

2011-05-31 | Version: 1.2.3

Table of contents

3Version: 1.2.3

Table of contents
1 Foreword .. 5

1.1 Notes on the documentation.. 5
1.2 Safety instructions ... 6
1.3 Documentation Issue Status.. 7

2 System Overview... 9
2.1 The Fieldbus Box System.. 9
2.2 Fieldbus Box - Naming conventions .. 11
2.3 Firmware and hardware issue status... 13

3 CANopen .. 14
3.1 CANopen Introduction ... 14
3.2 CANopen Cabling.. 16
3.3 Technical data ... 23
3.4 CANopen Protocol ... 24

3.4.1 Network Management.. 24
3.4.2 Process Data Objects (PDO)... 28
3.4.3 PDO Parameterization... 36
3.4.4 Service Data Objects (SDO).. 38
3.4.5 Identifier Allocation .. 41

3.5 CANopen Object Directory .. 44
3.5.1 Object Directory - Structure ... 44
3.5.2 Object Directory – Summary.. 45
3.5.3 Objects and Data ... 48

4 Parameterisation and Commissioning .. 90
4.1 Start-up behavior of the Fieldbus Box ... 90
4.2 Address ... 91
4.3 Baud Rate.. 92
4.4 Mapping the Fieldbus Boxes ... 94
4.5 Configuration Fieldbus... 96

4.5.1 Configuration Files... 96
4.5.2 Overview.. 97
4.5.3 Configuration via TwinCAT .. 99
4.5.4 Configuration with third party controllers ... 105

4.6 Configuration of the complex I/O Modules .. 106
4.6.1 KS2000 Configuration Software .. 106
4.6.2 Parameterisation via Register.. 107

5 Error handling and diagnosis... 114
5.1 LEDs.. 114
5.2 Diagnostic LEDs for local errors .. 118
5.3 Check of the IP-Link connection.. 120
5.4 Emergency Object ... 123
5.5 CANopen Trouble Shooting... 128

6 Appendix .. 131
6.1 Quick Start for Experienced Users .. 131

Table of contents

4 Version: 1.2.3

6.2 CAN Identifier List.. 135
6.3 CANopen Baud Rate and Bit Timing ... 158
6.4 Automatic PDO Mapping ... 159
6.5 General operating conditions... 161
6.6 Approvals... 163
6.7 Test standards for device testing... 164
6.8 Bibliography... 165
6.9 List of Abbreviations .. 166
6.10 Support and Service .. 167

Foreword

5Version: 1.2.3

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning these components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation
GmbH. Other designations used in this publication may be trademarks whose use by third parties for their
own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding
applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

6 Version: 1.2.3

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of instructions

In this documentation the following instructions are used.
These instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow this safety instruction directly endangers the life and health of persons.

 WARNING
Risk of injury!
Failure to follow this safety instruction endangers the life and health of persons.

 CAUTION
Personal injuries!
Failure to follow this safety instruction can lead to injuries to persons.

NOTE
Damage to environment/equipment or data loss
Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

7Version: 1.2.3

1.3 Documentation Issue Status
Version Modifications
1.2.3 Chapter Baud-Rate updated to firmware version (C)6
1.2.2 System overview updated
1.2.1 Description of Emergency Object updated
1.2 Documentation corresponds to firmware status (C)5
1.1 Expanding of the specification for IP-Link up to 15

meters
1.0 • Documentation completed

• Documentation corresponds to firmware status
(C)4

• Signal types and the signals' connection
assignments have been placed in the fieldbus-
neutral documentation covering Signal types
(Fieldbus Box I/O Modules). You can find this on
the internet in the Download area at http://
www.beckhoff.com.

0.5 First documentation version for IL23xx-B510 and
IPxxxx-B510

The documentation refers to a hardware status and a software status at the time the documentation was
prepared. The properties are subject to continuous development and improvement. Modules having earlier
production statuses cannot have the same properties as modules with the latest status. Existing properties,
however, are generally retained unchanged, so that these modules can be replaced by new ones.
The software and hardware status of the fieldbus box modules at the time of their manufacture can be
determined through the date number "D." on the side of the module.

D: ww yy xy zu
ww - calendar week
yy - year
x - bus board software status
y - bus board hardware status
z - I/O circuit board software status
u - I/O circuit board hardware status

Example:

22011501
Week 22 in 2001, bus board software version 1, bus board hardware version 5, I/O software version 0 - no
software needed for this circuit board, I/O hardware version 1

The presently installed version of the firmware can be read from object 0x100A (software version) [} 50].

Summary of firmware versions

If necessary, the firmware can be updated through the serial interface (a special cable is needed) or - as
from firmware status (C)1 - it may be carried out over the bus using the Beckhoff CANopen FC5101 card.
The firmware and update tool can be found on the internet under http://www.beckhoff.com.

http://www.beckhoff.com
http://www.beckhoff.com
http://www.beckhoff.com

Foreword

8 Version: 1.2.3

Firmware Modification, extension Bug fix
(C)6 • Support of fix baud rates
(C)5 • Optimized synchronizing of K-

Bus cycle with sync telegram
• If the K-Bus cycle is not yet

completed before the next SYNC
telegram arrives, an emergency
telegram is sent and the Tx
overrun LED flashes slowly. The
LED signal and EMCY are reset
10 seconds after the last
occurrence of this situation.

• KS2000 online mode is
supported

• Change-over to operational is
denied if K-Bus error is present.

• Boot-up message is received
reliably even for low baud rates

• Default mapping for node ID 64

(C)4 • New: Object 0x6126 interrupt
mask. Allows the data changes
that lead to the transmission of
event-driven TxPDOs to be
selected. No change in the
default behavior.

• SDO response times to objects
with PDO parameters (0x1400ff,
0x1800ff, 0x5500) shortened
drastically.

• Lifetime factor of 2 no longer
results in a guard error when
guarding is correct.

• RxPDOs of length 0 no longer
cause the firmware to halt.

• The boot-up message is only
now sent when the coupler has
reached the pre-operational
state (and not when the status is
still changing).

(C)2 • 1 wait state introduced for RAM
access. This means that C2 also
runs reliably on modules having
old hardware versions.

(C)1 • Firmware download now also
possible via CAN (object 0x5FFF
was introduced for this purpose).
Requires Beckhoff CANopen
PCI card FC510x.

(C)0 First release

Firmware versions that are not listed are only used for internal tests.

System Overview

9Version: 1.2.3

2 System Overview

2.1 The Fieldbus Box System
Fieldbus box modules are robust fieldbus stations for a large number of different fieldbus systems. They offer
a wide range of I/O functionality. All relevant industrial signals are supported. As well as digital and analog
inputs and outputs including thermocouple and RTD inputs, there are also incremental encoder interfaces
available for displacement and angle measurement as well as serial interfaces to solve a large number of
communications tasks.

Three varieties of signal connection

The digital inputs and outputs can be connected with snap-on 8 mm diameter plugs, screw-in M8
connectors, or with screw-in M12 pendants. The M12 version is provided for analog signals.

All important signal types

Special input and output channels on the combination I/O modules can be used for either input or output. It is
not necessary to configure them, since the fieldbus interface is available for every combination channel as
well as for input and output data. The combination modules give the user all of the advantages of fine signal
granularity.

The processor logic, the input circuitry and the power supply for the sensor are all fed from the control
voltage. The load voltage for the outputs can be supplied separately. In those Fieldbus Boxes in which only
inputs are available, the load power supply, UP, can optionally be connected in order to pass it on
downstream.

The states of the Fieldbus Box, the fieldbus connection, the power supplies and of the signals are indicated
by LEDs.

The label strips can be machine printed elsewhere, and then inserted.

Fieldbus Boxes can be combined for greater flexibility

In addition to the Compact Box, the Fieldbus Box series also includes extendable devices, namely the
Coupler Box and the Extension Box, as well as intelligent devices, the PLC Boxes.

Compact Box

The Compact Box makes the I/O data from the connected digital and analog sensors and actuators available
to the fieldbus.

Coupler Box

The Coupler Box also collects I/O data from the Extension Boxes via an interference-proof optical fiber
connection (IP-Link). Up to 120 Extension Boxes can be connected to a Coupler Box. In this way a
distributed IP67 I/O network is formed with only one fieldbus interface.

The Coupler Box is capable of automatically recognizing the extension modules connected to it during start-
up, and maps the I/O data automatically into the fieldbus process image – a configuration is not necessary.
The Coupler Box appears, from the fieldbus point of view, along with all of the networked Extension Boxes,
as a single participating bus device with a corresponding number of I/O signals.

The Coupler Box corresponds to the Bus Coupler in the BECKHOFF Bus Terminal system. BECKHOFF
fieldbus devices made to protection class IP 20 (Bus Terminals) and IP 67 (Fieldbus Box) can be combined
without difficulty – the data is handled in the same way in either case.

System Overview

10 Version: 1.2.3

IP-Link

The IP-Link is an optical fiber connection with a transmission rate of 2 MBits/s which is capable of
transmitting 1000 items of binary I/O data in approx. 1 ms, rapidly and securely. Smaller configurations are
correspondingly faster. Because of the high usable data rate, the coupling via IP-Link does not reduce the
performance of the fieldbus at all.

Low-priced plug connectors made according to Protection Class IP 67 can be used for the rapid and simple
preparation of the IP-Link cable, in situ. The connection does not require special tools, and can be performed
quickly and simply. The IP-Link cables can also be obtained with prepared plugs if required.

The separate supply of the output voltage allows output groups to be switched off individually. Differing
potentials can also be created within an extension ring without difficulty, since the IP-Link naturally has
optimum electrical isolation.

Extension box

Like the Compact Boxes, the Extension Boxes cover the full spectrum of I/O signals, and may be up to 15 m
apart. They are remarkably small in size, and lead to particularly economical I/O solutions with high levels of
protection. Here again, the digital inputs and outputs may optionally be connected via snap-on 8 mm
connectors, or via screw-in connectors (M8 and M12). Analog signal types are provided with the M12
version. The snap-on connectors lock in place positively, forming a shake-proof connection, while the screw-
in connectors offer the advantage of high resistance to being pulled out.

PLC Box

The PLC Box is an intelligent Fieldbus Box with PLC functionality for distributed pre-processing of the I/O
signals. This allows parts of the application to be farmed out from the central controller. This reduces the
load on the CPU and the fieldbus. Distributed counting, controlling and switching are typical applications for
the PLC Box. The reaction times are independent of the bus communication and of the higher-level
controller.

In the event of a bus or controller failure, maintenance of function (e.g. bringing the process to a safe state in
an orderly manner) is possible.

Programming is carried out with TwinCAT in accordance with IEC 61131-3. Five different programming
languages are available:

• Instruction List (IL)
• Function Block Diagram (FBD)
• Ladder Diagram (LD)
• Sequential Function Chart (SFC)
• Structured Text (ST)

The program download occurs either via the fieldbus or via the programming interface.

Extensive debugging functions (breakpoint, single step, monitoring, etc) are also available. The PLC Box
contains a powerful 16 bit controller, 32/96 kByte program memory and 32/64 kByte data memory. A further
512 bytes of non-volatile memory are available for remanent flags.

PLC Box with IP-Link

The programmable PLC Box with IP-Link provides almost unlimited I/O possibilities. Up to 120 extension
modules, with more than 2000 I/Os, can be directly addressed from the PLC program. The PLC Box is thus
also suitable for use as a small, autonomous controller for the operation of parts of equipment or small
machines.

System Overview

11Version: 1.2.3

2.2 Fieldbus Box - Naming conventions
The identifications of the Fieldbus Box modules are to be understood as follows:
IXxxxy-zyyy

IX describes the design:

"IP" stands for the Compact Box design [} 12]
"IL" stands for the Coupler Box design (with IP-Link) [} 12]
"IE" stands for the Extension Box design [} 12]

xxxy describes the I/O connection:

xxx describes the I/O property:
"10x" - 8 x digital inputs
"15x" - counter module
"20x" - 8 x digital outputs
"25x" - PWM module
"23x" - 4 x digital inputs and 4 x digital outputs
"24x" - 8 x digital inputs and 8 x digital outputs
"3xx" - 4 x analog inputs
"4xx" - 4 x analog outputs
"5xx" - incremental encoder or SSI transducer
"6xx" - Gateway module for RS232, RS422, RS485, TTY

y represents the mechanical connection:
"0" stands for 8mm snap-on connection,
"1" stands for M8 bolted connection
"2" stands for M12 bolted connection and
"9" stands for M23 bolted connection

zyyy describes the programmability and the fieldbus system

z distinguishes whether the device is a slave or is a programmable slave:

"B" - not programmable
"C" - programmable (PLC Box)

"yyy" stands for the fieldbus system and the bus connection:
"110" - EtherCAT
"200" - Lightbus
"310" - PROFIBUS
"318" - PROFIBUS with integrated tee-connector
"400" - Interbus
"510" - CANopen
"518" - CANopen with integrated tee-connector
"520" - DeviceNet
"528" - DeviceNet with integrated tee-connector
"730" - Modbus
"800" - RS485
"810" - RS232
"900" - Ethernet TCP/IP with RJ45 for the bus connection
"901" - Ethernet TCP/IP with M12 for the bus connection
"903" - PROFINET
"905" - EtherNet/IP

System Overview

12 Version: 1.2.3

Compact Box

Compact Box

The Compact Box modules offer a wide range of I/O functionality. All relevant industrial signals are
supported. The digital inputs and outputs can be connected either with snap-on 8 mm diameter plugs, screw-
in M8 connectors, or screw-in M12 connectors. The M12 version is made available for analog signals.

Depending on the module, the I/O section and the power supply section can differ.

Coupler Box

Coupler Box

There are three versions of the coupler box named IL230x-Bxxx. It differs from the compact box in that this
module offers an interface to what are known as extension boxes. This interface is a subsidiary bus system
based on the optical fiber what is known as IP Link. This powerful subsidiary bus system can handle up to
120 extension boxes at one coupler box.

Extension Box

Extension Box

Extension Modules, that are independent of the fieldbus and that can only be operated together with a
coupler box via IP Link.

PLC Box

PLC Box

A PLC Box differ from the Coupler Box in that this module can be programmed in IEC 61131-3. This means
that this slave is also capable of working autonomously, without a master, for instance for control or
regulation tasks.

Also see about this
2 Fieldbus Box - Naming conventions [} 12]

System Overview

13Version: 1.2.3

2.3 Firmware and hardware issue status
The documentation refers to the hardware and software status that was valid at the time it was prepared.
The properties are subject to continuous development and improvement. Modules having earlier production
statuses cannot have the same properties as modules with the latest status. Existing properties, however,
are always retained and are not changed, so that these modules can always be replaced by new ones.
The number beginning with a D allows you to recognize the firmware and hardware status of a module.

Syntax:

D . ww yy x y z u

ww - calendar week
yy - year
x - bus board firmware status
y - bus board hardware status
z - I/O board firmware status
u - I/O board hardware status

Example:

D.22081501

- Calendar week 22
- in the year 2008
- bus board firmware status: 1
- bus board firmware hardware status: 5
- I/O board firmware status: 0 (no firmware is necessary for this board)
- I/O board hardware status: 1

CANopen

14 Version: 1.2.3

3 CANopen

3.1 CANopen Introduction

Fig. 1: CANopenLogo

CANopen is a widely used CAN application layer, developed by the CAN in Automation association (CiA,
http://www.can-cia.org), which has meanwhile been adopted for international standardization.

Device Model

CANopen consists of the protocol definitions (communication profile) and of the device profiles that
standardize the data contents for the various device classes. Process data objects (PDO) [} 28] are used for
fast communication of input and output data. The CANopen device parameters and process data are stored
in a structured object directory. Any data in this object directory is accessed via service data objects (SDO).
There are, additionally, a few special objects (such as telegram types) for network management (NMT),
synchronization, error messages and so on.

Fig. 2: CANopen Device Model

Communication Types

CANopen defines a number of communication classes for the input and output data (process data objects):

• Event driven [} 31]: Telegrams are sent as soon as their contents have changed. This means that the
process image as a whole is not continuously transmitted, only its changes.

• Cyclic synchronous [} 31]: A SYNC telegram causes the modules to accept the output data that was
previously received, and to send new input data.

• Requested: A CAN data request telegram causes the modules to send their input data.

The desired communication type is set by the Transmission Type parameter.

http://www.can-cia.org

CANopen

15Version: 1.2.3

Device Profile

The BECKHOFF CANopen devices support all types of I/O communication, and correspond to the device
profile for digital and analog input/output modules (DS401 Version 1). For reasons of backwards
compatibility, the default mapping was not adapted to the DS401 V2 profile version.

Transmission Rates

Transmission Rates [} 158]

Nine transmission rates from 10 kbaud up to 1 Mbaud are available for different bus lengths. The effective
utilization of the bus bandwidth allows CANopen to achieve short system reaction times at relatively low data
rates.

Topology

Topology [} 16]

CAN is based on a linear topology. The number of devices participating in each network is logically limited by
CANopen to 128, but physically the present generation of drivers allows up to 64 nodes in one network
segment. The maximum possible size of the network for any particular data rate is limited by the signal
transit time required on the bus medium. For 1 Mbaud, for instance, the network may extend 25 m, whereas
at 50 kbaud the network may reach up to 1000 m. At low data rates the size of the network can be increased
by repeaters, which also allow the construction of tree structures.

Bus access procedures

CAN utilizes the Carrier Sense Multiple Access (CSMA) procedure, i.e. all participating devices have the
same right of access to the bus and may access it as soon as it is free (multi-master bus access). The
exchange of messages is thus not device-oriented but message-oriented. This means that every message is
unambiguously marked with a prioritized identifier. In order to avoid collisions on the bus when messages
are sent by different devices, a bit-wise bus arbitration is carried out at the start of the data transmission. The
bus arbitration assigns bus bandwidth to the messages in the sequence of their priority. At the end of the
arbitration phase only one bus device occupies the bus, collisions are avoided and the bandwidth is optimally
exploited.

Configuration and parameterization

The TwinCAT System Manager allows all the CANopen parameters to be set conveniently. An "EDS" file (an
electronic data sheet) is available on the BECKHOFF website (http://www.beckhoff.com) for the
parameterization of BECKHOFF CANopen devices using configuration tools from other manufacturers.

Certification

The BECKHOFF CANopen devices have a powerful implementation of the protocol, and are certified by the
CAN in Automation Association (http://www.can-cia.org).

http://www.beckhoff.com
http://www.can-cia.org

CANopen

16 Version: 1.2.3

3.2 CANopen Cabling

Section summary

CAN topology

Bus length

Drop lines [} 17]

Star hub [} 17]

CAN cable [} 18]

Screening [} 19]

Cable colors [} 19]

BK5151, EL6751, FC51xx,CX805x, CX-B/M510: D-sub, 9 pin

BK51x0, BX5100: 5- pin open style connector

LC5100 bus connection

Fieldbus Box: M 12 CAN socket

Notes related to checking the CAN wiring can be found in the Trouble Shooting [} 128] section.

CAN topology

CAN topology

CAN is a 2-wire bus system, to which all participating devices are connected in parallel (i.e. using short drop
lines). The bus must be terminated at each end with a 120 (or 121) Ohm terminating resistor to prevent
reflections. This is also necessary even if the cable lengths are very short!

Since the CAN signals are represented on the bus as the difference between the two levels, the CAN leads
are not very sensitive to incoming interference (EMI): Both leads are affected, so the interference has very
little effect on the difference.

CANopen

17Version: 1.2.3

Bus length

Bus length

The maximum length of a CAN bus is primarily limited by the signal transit time. The multi-master bus access
procedure (arbitration) requires signals to reach all the nodes at effectively the same time (before the
sampling within a bit period). Since the signal transit times in the CAN connecting equipment (transceivers,
opto-couplers, CAN controllers) are almost constant, the line length must be chosen in accordance with the
baud rate:

Baud Rate Bus length
1 Mbit/s < 20 m*
500 kbit/s < 100 m
250 kbit/s < 250 m
125 kbit/s < 500 m
50 kbit/s < 1000 m
20 kbit/s < 2500 m
10 kbit/s < 5000 m

*) A figure of 40 m at 1 Mbit/s is often found in the CAN literature. This does not, however, apply to networks
with optically isolated CAN controllers. The worst case calculation for opto-couplers yields a figure 5 m at
1 Mbit/s - in practice, however, 20 m can be reached without difficulty.

It may be necessary to use repeaters for bus lengths greater than 1000 m.

Drop lines

Drop lines

Drop lines must always be avoided as far as possible, since they inevitably cause reflections. The reflections
caused by drop lines are not however usually critical, provided they have decayed fully before the sampling
time. In the case of the bit timing settings [} 158] selected in the Bus Couplers it can be assumed that this is
the case, provided the following drop line lengths are not exceeded:

Baud Rate Drop line length Total length of all drop lines
1 Mbit/s < 1m < 5 m
500 kbit/s < 5 m < 25 m
250 kbit/s < 10m < 50 m
125 kbit/s < 20m < 100 m
50 kbit/s < 50m < 250 m

Drop lines must not have terminating resistors.

Star Hub (Multiport Tap)

Star Hub

CANopen

18 Version: 1.2.3

Shorter drop line lengths must be maintained when passive distributors ("multiport taps"), such as the
Beckhoff ZS5052-4500 Distributor Box. The following table indicates the maximum drop line lengths and the
maximum length of the trunk line (without the drop lines):

Baud Rate Drop line length with multiport
topology

Trunk line length (without drop
lines)

1 Mbit/s < 0,3 m < 25 m
500 kbit/s < 1,2 m < 66 m
250 kbit/s < 2,4 m < 120 m
125 kbit/s < 4.8 m < 310 m

CAN cable

CAN cable

Screened twisted-pair cables (2x2) with a characteristic impedance of between 108 and 132 Ohm is
recommended for the CAN wiring. If the CAN transceiver’s reference potential (CAN ground) is not to be
connected, the second pair of conductors can be omitted. (This is only recommended for networks of small
physical size with a common power supply for all the participating devices).

ZB5100 CAN Cable

ZB5100

A high quality CAN cable with the following properties is included in Beckhoff's range:

• 2 x 2 x 0.25 mm² (AWG 24) twisted pairs, cable colors: red/black + white/black
• double screened
• braided screen with filler strand (can be attached directly to pin 3 of the 5-pin connection terminal),
• flexible (minimum bending radius 35 mm when bent once, 70 mm for repeated bending)
• characteristic impedance (60 kHz): 120 Ohm
• conductor resistance < 80 Ohm/km
• sheath: grey PVC, external diameter 7.3 +/- 0.4 mm
• Weight: 64 kg/km.
• printed with "BECKHOFF ZB5100 CAN-BUS 2x2x0.25" and meter marking (length data every 20 cm)

ZB5200 CAN/DeviceNet Cable

ZB5200

The ZB5200 cable material corresponds to the DeviceNet specification, and is also suitable for CANopen
systems. The ready-made ZK1052-xxxx-xxxx bus cables for the Fieldbus Box modules are made from this
cable material. It has the following specification:

• 2 x 2 x 0.34 mm² (AWG 22) twisted pairs
• double screened braided screen with filler strand
• characteristic impedance (1 MHz): 126 Ohm

CANopen

19Version: 1.2.3

• conductor resistance 54 Ohm/km
• sheath: grey PVC, external diameter 7.3 mm
• printed with "InterlinkBT DeviceNet Type 572" as well as UL and CSA ratings
• stranded wire colours correspond to the DeviceNet specification
• UL recognized AWM Type 2476 rating
• CSA AWM I/II A/B 80°C 300V FT1
• corresponds to the DeviceNet "Thin Cable" specification

Screening

Screening

The screen is to be connected over the entire length of the bus cable, and only galvanically grounded at one
point, in order to avoid ground loops.
The design of the screening, in which HF interference is diverted through R/C elements to the mounting rail
assumes that the rail is appropriately earthed and free from interference. If this is not the case, it is possible
that HF interference will be transmitted from the mounting rail to the screen of the bus cable. In that case the
screen should not be attached to the couplers - it should nevertheless still be fully connected through.

Notes related to checking the CAN wiring can be found in the Trouble Shooting [} 128] section.

Cable colors

Cable colors

Suggested method of using the Beckhoff CAN cable on Bus Terminal and Fieldbus Box:

BK51x0 pin
BC5150/
BX5100

BK5151,
CX805x, CX-
B510/M510

Fieldbus
Box pin

FC51xx pin/
EL6751

Function ZB5100 ca-
ble color

ZB5200 ca-
ble color

1 3 3 3 CAN Ground black/ (red) black
2 2 5 2 CAN Low black blue
3 5 1 5 Screen Filler strand Filler strand
4 7 4 7 CAN high white white
5 9 2 9 not used (red) (red)

BK5151, EL6751, CX805x, CX-B/M510 and FC510x: D-sub, 9 pin

BK5151, EL6751, CX805x, CX-B/M510 and FC510x: D-sub, 9 pin

The CAN bus cable is connected to the FC51x1 and FC51x1/2 CANopen cards via 9-pin sub-D sockets, with
pins assigned as follows.

CANopen

20 Version: 1.2.3

Pin Assignment
2 CAN low (CAN-)
3 CAN ground (internally connected to pin 6)
6 CAN ground (internally connected to pin 3)
7 CAN high (CAN+)

The unlisted pins are not connected.
The top-hat contact clip and the connector shield are connected..

Note: An auxiliary voltage of up to 30 VDC may be connected to pin 9. Some CAN devices use this to supply
the transceiver.

BK5151 EL6751

FC5102

BK51x0: 5- pin open style connector

BK51x0: 5- pin open style connector

The BK51x0 Bus Couplers have a recessed front surface on the left hand side with a five pin connector.
The supplied CANopen socket can be inserted here.

CANopen

21Version: 1.2.3

The left figure shows the socket in the BK51x0 Bus Coupler. Pin 5 is the connection strip's top most pin.
Pin 5 is not used. Pin 4 is the CAN high connection, pin 2 is the CAN low connection, and the screen is
connected to pin 3 (which is connected to the mounting rail via an R/C network). CAN GND can optionally be
connected to pin 1. If all the CAN ground pins are connected, this provides a common reference potential for
the CAN transceivers in the network. It is recommended that the CAN GND be connected to earth at one
location, so that the common CAN reference potential is close to the supply potential. Since the CANopen
BK51X0 Bus Couplers provide full electrical isolation of the bus connection, it may in appropriate cases be
possible to omit wiring up the CAN ground.

ZS1052-3000 Bus Interface Connector

ZS1052-3000 Bus Interface Connector

The ZS1052-3000 CAN Interface Connector can be used as an alternative to the supplied connector. This
makes the wiring significantly easier. There are separate terminals for incoming and outgoing leads and a
large area of the screen is connected via the strain relief. The integrated terminating resistor can be switched
externally. When it is switched on, the outgoing bus lead is electrically isolated - this allows rapid wiring fault
location and guarantees that no more than two resistors are active in the network.

 LC5100: Bus connection via spring-loaded terminals

LC5100: Bus connection

In the low cost LC5100 Coupler, the CAN wires are connected directly to the contact points 1 (CAN-H,
marked with C+) and 5 (CAN-L, marked with C-). The screen can optionally be connected to contact points 4
or 8, which are connected to the mounting rail via an R/C network.

CANopen

22 Version: 1.2.3

NOTE
Attention
The LC5100 has no galvanic isolation and an incorrect wiring can by destroyed or damaged the CAN
driver.

Fieldbus Box: M12 CAN socket

Fieldbus Box

The IPxxxx-B510, IL230x-B510 and IL230x-C510 Fieldbus Boxes are connected to the bus using 5- pin M12
plug-in connectors.

Beckhoff offer plugs for field assembly, passive distributor's, terminating resistors and a wide range of pre-
assembled cables for the Fieldbus Box system. Details be found in the catalog, or under www.beckhoff.com.

Also see about this
2 CANopen Cabling [} 16]

http://www.beckhoff.com

CANopen

23Version: 1.2.3

3.3 Technical data
Technical data IPxxxx-B51x IL230x-B510, (IL230x-C510)
Extension modules - Max. 120 with altogether 128 bytes

input and 128 bytes output
Digital peripheral signals according to I/O type max. 960 inputs and outputs
Analog peripheral signals according to I/O type max. 60 inputs and outputs
Number of PDOs (CANopen) 5 RxPDOs and/or 5 TxPDOs

(depending on the I/O version)
16 RxPDOs and 16 TxPDOs

PDO communication types All: event-driven, cyclic (event timer), synchronous, polled (by RTR)
Other CANopen features Life/node guarding, heartbeat, emergency object, variables mapping,

store/restore
Configuration facilities through KS2000 or the controller (service data objects)
Baud rates automatic detection of 10, 20, 50, 100, 125, 250, 500, 800, 1000 kbaud
Power supply connection Control voltage: 24V DC (-15%/+20%); load voltage: according to I/O

type
Control voltage current
consumption

according to I/O type + current consumption of sensors, max. 0.5 A

Load voltage current consumption according to I/O type
Power supply connection Feed: 1 x M 8 plug, 4-pin

Onward connection: 1 x M 8 socket, 4-pin (except IP/IE204x)
Fieldbus connection 1 x M12 plug, 5-pin
Electrical isolation Channels/control voltage: no

between the channels: no
control voltage/fieldbus: yes

Operating temperature 0°C ... +55°C
Storage temperature -25 °C ... +85°C
Resistance to vibration conforms to IEC 68, Part 2-6 / IEC 68, Part 2-27
EMC conforms to EN 50082-2 / EN 50081-2
Protection class IP 65/66/67 (according to EN 60529)
Installation position variable
Approval UL E172151
Weight approx. 210 g

CANopen

24 Version: 1.2.3

3.4 CANopen Protocol

3.4.1 Network Management

Simple Boot-Up

CANopen allows the distributed network to boot in a very simple way. After initialization, the modules are
automatically in the Pre-Operational state. In this state it is already possible to access the object directory
using service data objects (SDOs) with default identifiers, so that the modules can be configured. Since
default settings exist for all the entries in the object directory, it is in most cases possible to omit any explicit
configuration.

Only one CAN message is then required to start the module: Start_Remote_Node: Identifier 0, two data
bytes: 0x01, 0x00. It switches the node into the Operational state.

Network Status

Network Status

The states and the state transitions involved as CANopen boots up can be seen from the state diagram:

Pre-Operational

After initialization the Bus Coupler goes automatically (i.e. without the need for any external command) into
the Pre-Operational state. In this state it can be configured, since the service data objects (SDOs) are
already active. The process data objects, on the other hand, are still locked.

Operational

In the Operational state the process data objects are also active.

If external influences (such as a CAN error, or absence of output voltage) or internal influences (such as a K-
Bus error) mean that it is no longer possible for the Bus Coupler to set outputs, to read inputs or to
communicate, it attempts to send an appropriate emergency message, goes into the fault state, and thus
returns to the Pre-Operational state. In this way the NMT status machine in the network master can also
immediately detect fatal errors.

CANopen

25Version: 1.2.3

Stopped

In the Stopped state (formerly: Prepared) data communication with the Coupler is no longer possible - only
NMT messages are received. The outputs go into the fault state.

State Transitions

State Transitions

The network management messages have a very simple structure: CAN identifier 0, with two bytes of data
content. The first data byte contains what is known as the command specifier (cs), and the second data byte
contains the node address, the node address 0 applying to all nodes (broadcast).

11 bit
identifier

2 bytes of user data

0x00 cs Node-ID

The following table gives an overview of all the CANopen state transitions and the associated commands
(command specifier in the NMT master telegram):

Status transition Command Specifier cs Explanation
(1) - The initialization state is reached

automatically at power-up
(2) - After initialization the pre-

operational state is reached
automatically - this involves
sending the boot-up message.

(3), (6) cs = 1 = 0x01 Start_Remote_Node.
Starts the module, enables outputs,
starts transmission of PDOs.

(4), (7) cs = 128 = 0x80 Enter_Pre-Operational. Stops PDO
transmission, SDO still active.

(5), (8) cs = 2 = 0x02 Stop_Remote_Node.
Outputs go into the fault state,
SDO and PDO switched off.

(9), (10), (11) cs = 129 = 0x81 Reset_Node. Carries out a reset.
All objects are reset to their power-
on defaults.

(12), (13), (14) cs = 130 = 0x82 Reset_Communication. Carries out
a reset of the communication
functions. Objects 0x1000 -
0x1FFF are reset to their power-on
defaults.

Example 1

The following telegram puts all the modules in the network into the error state (outputs in a safe state):

11 bit
identifier

2 bytes of user data

0x00 0x02 0x00

Example 2

The following telegram resets node 17:

11 bit
identifier

2 bytes of user data

0x00 0x81 0x11

CANopen

26 Version: 1.2.3

Boot-up message

Boot-up message

After the initialization phase and the self test, the Bus Coupler sends the boot-up message, a CAN message
with no data bytes and with the identifier of the emergency message: CAN-ID = 0x700 + Node-ID. In this way
temporary failure of a module during operation (e.g. due to a voltage interruption), or a module that is
switched on at a later stage, can be reliably detected, even without Node Guarding. The sender can be
determined from the message identifier (see default identifier allocation).

It is also possible, with the aid of the boot-up message, to recognize the nodes present in the network at
start-up with a simple CAN monitor, without having to make write access to the bus (such as a scan of the
network by reading out parameter 0x1000).

Finally, the boot-up message communicates the end of the initialization phase; the Bus Coupler signals that
it can now be configured or started.

Firmware BA
Up to firmware status BA the emergency identifier was used for the boot up message.

Format of the Boot-up message

11 bit
identifier

1 byte of user data

0x700
(=1792) +
Node-ID

0x00

Node Monitoring

Node Monitoring

Heartbeat and guarding mechanisms are available to monitor failures in the CANopen network. These are of
particular importance for CANopen, since modules do not regularly speak in the event-driven mode of
operation. In the case of "guarding", the devices are cyclically interrogated about their status by means of a
data request telegram (remote frame), whereas with "heartbeat" the nodes transmit their status on their own
initiative.

Guarding: Node Guarding and Life Guarding

Guarding

Node Guarding is used to monitor the non-central peripheral modules, while they themselves can use Life
Guarding to detect the failure of the guarding master. Guarding involves the master sending remote frames
(remote transmit requests) to the guarding identifier of the slaves that are to be monitored. These reply with
the guarding message. This contains the slave’s status code and a toggle bit that has to change after every
message. If either the status or the toggle bit do not agree with that expected by the NMT master, or if there
is no answer at all, the master assumes that there is a slave fault.

CANopen

27Version: 1.2.3

Guarding procedure

Protocol

Protocol

The toggle bit (t) transmitted in the first guarding telegram has the value 0. After this, the bit must change
(toggle) in every guarding telegram so that the loss of a telegram can be detected. The node uses the
remaining seven bits to transmit its network status (s):

s Status
4 = 0x04 Stopped (formerly: prepared)
5 = 0x05 Operational
127 = 0x7F Pre-Operational

Example

The guarding message for node 27 (0x1B) must be requested by a remote frame having identifier 0x71B
(1819dec). If the node is Operational, the first data byte of the answer message alternates between 0x05 and
0x85, whereas in the Pre-Operational state it alternates between 0x7F and 0xFF.

Guard time and life time factor

If the master requests the guard messages in a strict cycle, the slave can detect the failure of the master. In
this case, if the slave fails to receive a message request from the master within the set Node Life Time (a
guarding error), it assumes that the master has failed (the watchdog function). It then puts its outputs into the
error state, sends an emergency telegram, and returns to the pre-operational state. After a guarding time-out
the procedure can be re-started by transmitting a guarding telegram again.

The node life time is calculated from the guard time (object 0x100C) and life time factor (object 0x100D)
parameters:

Life time = guard time x life time factor

If either of these two parameters is "0" (the default setting), the master will not be monitored (no life
guarding).

CANopen

28 Version: 1.2.3

Heartbeat: Node Monitoring without Remote Frame

Heartbeat

In the heart beat procedure, each node transmits its status message cyclically on its own initiative. There is
therefore no need to use remote frames, and the bus is less heavily loaded than under the guarding
procedure.

The master also regularly transmits its heartbeat telegram, so that the slaves are also able to detect failure of
the master.

Heartbeat procedure

Protocol

The toggle bit is not used in the heart beat procedure. The nodes send their status cyclically (s). See
Guarding [} 27].

3.4.2 Process Data Objects (PDO)

Introduction

In many fieldbus systems the entire process image is continuously transferred - usually in a more or less
cyclic manner. CANopen is not limited to this communication principle, since the multi-master bus access
protocol allows CAN to offer other methods. Under CANopen the process data is not transferred in a master/
slave procedure, but follows instead the producer-consumer model. In this model, a bus node transmits its
data, as a producer, on its own accord. This might, for example, be triggered by an event. All the other nodes
listen, and use the identifier to decide whether they are interested in this telegram, and handle it accordingly.
These are the consumers.

The process data in CANopen is divided into segments with a maximum of 8 bytes. These segments are
known as process data objects (PDOs). The PDOs each correspond to a CAN telegram, whose specific CAN
identifier is used to allocate them and to determine their priority. Receive PDOs (RxPDOs) and transmit
PDOs (TxPDOs) are distinguished, the name being chosen from the point of view of the device: an input/
output module sends its input data with TxPDOs and receives its output data in the RxPDOs. This naming
convention is retained in the TwinCAT System Manager.

CANopen

29Version: 1.2.3

Communication parameters

Communication parameters

The PDOs can be given different communication parameters according to the requirements of the
application. Like all the CANopen parameters, these are also available in the device's object directory, and
can be accessed by means of the service data objects. The parameters for the receive PDOs are at index
0x1400 (RxPDO1) onwards. There can be up to 512 RxPDOs (ranging up to index 0x15FF). In the same
way, the entries for the transmit PDOs are located from index 0x1800 (TxPDO1) to 0x19FF (TxPDO512).

The BECKHOFF Bus Couplers or Fieldbus Coupler Box modules make 16 RxPDO and TxPDOs available
for the exchange of process data (although the figure for Economy and LowCost BK5110 and LC5100
Couplers and the Fieldbus Boxes is 5 PDOs each, since these devices manage a lower quantity of process
data). The FC510x CANopen master card supports up to 192 transmit and 192 receive PDOs for each
channel - although this is restricted by the size of the DPRAM. Up to 32 TxPDOs and 32 RxPDOs can be
handled in slave mode.

For each existing process data object there is an associated communication parameter object. The TwinCAT
System Manager automatically assigns the set parameters to the relevant object directory entries. These
entries and their significance for the communication of process data are explained below.

PDO Identifier

PDO Identifier

The most important communication parameter in a PDO is the CAN identifier (also know as the
communication object identifier, or COB-ID). It is used to identify the data, and determines their priority for
bus access. For each CAN data telegram there may only be one sender node (producer), although all
messages sent in the CAN broadcast procedure can be received, as described, by any number of nodes
(consumers). Thus a node can make its input information available to a number of bus devices at the same
time - even without transferring them through a logical bus master. The identifier is located in sub-index 1 of
the communication parameter set. It is coded as a 32-bit value in which the least significant 11 bits (bits
0...10) contain the identifier itself. The data width of the object of 32 bits also allows 29-bit identifiers in
accordance with CAN 2.0B to be entered, although the default identifiers [} 41] always refer to the more
usual 11-bit versions. Generally speaking, CANopen is economical it its use of the available identifiers, so
that the use of the 29-bit versions remains limited to unusual applications. It is therefore also not supported
by a Beckhoff's CANopen devices. The highest bit (bit 31) can be used to activate the process data object or
to turn it off.

A complete identifier list [} 135] is provided in the appendix.

PDO linking

PDO linking

In the system of default identifiers, all the nodes (here: slaves) communicate with one central station (the
master), since slave nodes do not listen by default to the transmit identifier of any other slave node.

CANopen

30 Version: 1.2.3

Default identifier allocation: Master/Slave

PDO linking: Peer to Peer

If the consumer-producer model of CANopen PDOs is to be used for direct data exchange between nodes
(without a master), the identifier allocation must be appropriately adapted, so that the TxPDO identifier of the
producer agrees with the RxPDO identifier of the consumer: This procedure is known as PDO linking. It
permits, for example, easy construction of electronic drives in which several slave axes simultaneously listen
to the actual value in the master axis TxPDO.

PDO Communication Types: Outline

PDO Communication Types: Outline

CANopen offers a number of possible ways to transmit process data (see also: Notes on PDO
Parameterization [} 36]).)

CANopen

31Version: 1.2.3

.

Event driven

Event driven

The ”event" is the alteration of an input value, the data being transmitted immediately after this change. The
event-driven flow can make optimal use of the bus bandwidth, since instead of the whole process image it is
only the changes in it that are transmitted. A short reaction time is achieved at the same time, since when an
input value changes it is not necessary to wait for the next interrogation from a master.

As from CANopen Version 4 it is possible to combine the event driven type of communication with a cyclic
update. Even if an event has not just occurred, event driven TxPDOs are sent after the event timer has
elapsed. If an event does occur, the event timer is reset. For RxPDOs the event timer is used as a watchdog
in order to monitor the arrival of event driven PDOs . If a PDO does not arrive within a set period of time, the
bus node adopts the error state.

Polled

Polled

The PDOs can also be polled by data request telegrams (remote frames). In this way it is possible to get the
input process image of event-driven inputs onto the bus, even when they do not change, for instance through
a monitoring or diagnostic device brought into the network while it is running. The time behavior of remote
frame and answer telegrams depends on what CAN controller is in use (Fig. 8). Components with full
integrated message filtering ("FullCAN") usually answer a data request telegram immediately, transmitting
data that is waiting in the appropriate transmit buffer - it is the responsibility of the application to see that the
data there is continuously updated. CAN controllers with simple message filtering (BasicCAN) on the other
hand pass the request on to the application which can now compose the telegram with the latest data. This
does take longer, but does mean that the data is up-to-date. BECKHOFF use CAN controllers following the
principle of Basic CAN.

Since this device behavior is usually not transparent to the user, and because there are CAN controllers still
in use that do not support remote frames at all, polled communication can only with reservation be
recommended for operative running.

Synchronized

Synchronized

It is not only for drive applications that it is worthwhile to synchronize the determination of the input
information and the setting the outputs. For this purpose CANopen provides the SYNC object, a CAN
telegram of high priority but containing no user data, whose reception is used by the synchronized nodes as
a trigger for reading the inputs or for setting the outputs.

CANopen

32 Version: 1.2.3

PDO transmission types: Parameterisation

PDO transmission types: Parameterisation

The PDO transmission type parameter specifies how the transmission of the PDO is triggered, or how
received PDOs are handled.

Transmission
type

Cyclical Acyclical Synchronous Asynchronous Only RTR

0 X X
1-240 X X
241-251 - reserved -
252 X X
253 X X
254, 255 X

The type of transmission is parameterized for RxPDOs in the objects at 0x1400ff, sub-index 2, and for
TxPDOs in the objects at 0x1800ff, sub-index 2.

Acyclic Synchronous

PDOs of transmission type 0 function synchronously, but not cyclically. An RxPDO is only evaluated after the
next SYNC telegram has been received. In this way, for instance, axis groups can be given new target
positions one after another, but these positions only become valid at the next SYNC - without the need to be
constantly outputting reference points. A device whose TxPDO is configured for transmission type 0 acquires
its input data when it receives the SYNC (synchronous process image) and then transmits it if the data
correspond to an event (such as a change in input) having occurred. Transmission type 0 thus combines
transmission for reasons that are event driven with a time for transmission (and, as far as possible, sampling)
and processing given by the reception of "SYNC".

Cyclic Synchronous

Cyclic Synchronous

CANopen

33Version: 1.2.3

In transmission types 1-240 the PDO is transmitted cyclically: after every ”nth" SYNC (n = 1...240). Since
transmission types can be combined on a device as well as in the network, it is possible, for example, for a
fast cycle to be agreed for digital inputs (n = 1), whereas the data for analog inputs is transmitted in a slower
cycle (e.g. n = 10). RxPDOs do not generally distinguish between transmission types 0...240: a PDO that has
been received is set to valid when the next SYNC is received. The cycle time (SYNC rate) can be monitored
(object 0x1006), so that if the SYNC fails the device reacts in accordance with the definition in the device
profile, and switches, for example, its outputs into the fault state.

The FC510x card provides full support for the synchronous type of communication: transmitting the SYNC
telegram is coupled to the linked task, so that new input data is available every time the task begins. The
card will recognize the absence of a synchronous PDO, and will report it to the application.

Only RTR

Transmission types 252 and 253 apply to process data objects that are transmitted exclusively on request by
a remote frame. 252 is synchronous: when the SYNC is received the process data is acquired. It is only
transmitted on request. 253 is asynchronous. The data here is acquired continuously, and transmitted on
request. This type of transmission is not generally recommended, because fetching input data from some
CAN controllers is only partially supported. Because, furthermore, the CAN controllers sometimes answer
remote frames automatically (without first requesting up-to-date input data), there are circumstances in which
it is questionable whether the polled data is up-to-date. Transmission types 252 and 253 are for this reason
not supported by the BECKHOFF PC cards.

Asynchronous

Asynchronous

The transmission types 254 + 255 are asynchronous, but may also be event-driven. In transmission type
254, the event is specific to the manufacturer, whereas for type 255 it is defined in the device profile. In the
simplest case, the event is the change of an input value - this means that every change in the value is
transmitted. The asynchronous transmission type can be coupled with the event timer, thus also providing
input data when no event has just occurred.

Inhibit time

Inhibit time

The ”inhibit time" parameter can be used to implement a ”transmit filter" that does not increase the reaction
time for relatively new input alterations, but is active for changes that follow immediately afterwards. The
inhibit time (transmit delay time) specifies the minimum length of time that must be allowed to elapse
between the transmission of two of the same telegrams. If the inhibit time is used, the maximum bus loading
can be determined, so that the worst case latency can then be found.

Although the BECKHOFF FC510x PC cards can parameterize the inhibit time on slave devices, they do not
themselves support it. The transmitted PDOs become automatically spread out (transmit delay) as a result of
the selected PLC cycle time - and there is little value in having the PLC run faster than the bus bandwidth
permits. The bus loading, furthermore, can be significantly affected by the synchronous communication.

CANopen

34 Version: 1.2.3

Event Timer

Event Timer

An event timer for transmit PDOs can be specified by sub-index 5 in the communication parameters. Expiry
of this timer is treated as an additional event for the corresponding PDO, so that the PDO will then be
transmitted. If the application event occurs during a timer period, it will also be transmitted, and the timer is
reset.

In the case of receive PDOs, the timer is used to set a watchdog interval for the PDO: the application is
informed if no corresponding PDO has been received within the set period. The FC510x can in this way
monitor each individual PDO.

Notes on PDO Parameterization [} 36]

PDO Mapping

PDO Mapping

PDO mapping refers to mapping of the application objects (real time data) from the object directory to the
process data objects. The CANopen device profile provide a default mapping for every device type, and this
is appropriate for most applications. Thus the default mapping for digital I/O simply represents the inputs and
outputs in their physical sequence in the transmit and receive process data objects.

The default PDOs for drives contain 2 bytes each of a control and status word and a set or actual value for
the relevant axis.

The current mapping can be read by means of corresponding entries in the object directory. These are
known as the mapping tables. The first location in the mapping table (sub-index 0) contains the number of
mapped objects that are listed after it. The tables are located in the object directory at index 0x1600ff for the
RxPDOs and at 0x1A00ff for the TxPDOs.

CANopen

35Version: 1.2.3

Digital and analog input/output modules: Read out the I/O number

The current number of digital and analog inputs and outputs can be determined or verified by reading out the
corresponding application objects in the object directory:

Parameters Object directory address
Number of digital input bytes Index 0x6000, sub-index 0

Number of digital output bytes Index 0x6200, sub-index 0
Number of analog inputs Index 0x6401, sub-index 0

Number of analog outputs Index 0x6411, sub-index 0

Variable mapping

As a rule, the default mapping of the process data objects already satisfies the requirements. For special
types of application the mapping can nevertheless be altered: the Beckhoff CANopen Bus Couplers, for
instance, thus support variable mapping, in which the application objects (input and output data) can be
freely allocated to the PDOs. The mapping tables must be configured for this: as from Version 4 of
CANopen, only the following procedure is permitted, and must be followed precisely:

1. First delete the PDO (set 0x1400ff, or 0x1800ff, sub-index 1, bit 31 to "1")
2. Set sub-index 0 in the mapping parameters (0x1600ff or 0x1A00ff) to "0"
3. Change mapping entries (0x1600ff or 0x1A00ff, SI 1..8)
4. Set sub-index 0 in the mapping parameters to the valid value. The device then checks the entries for

consistency.
5. Create PDO by entering the identifier (0x1400ff or 0x1800ff, sub-index 1).

Dummy Mapping

A further feature of CANopen is the mapping of placeholders, or dummy entries. The data type entries stored
in the object directory, which do not themselves have data, are used as placeholders. If such entries are
contained in the mapping table, the corresponding data from the device is not evaluated. In this way, for
instance, a number of drives can be supplied with new set values using a single CAN telegram, or outputs on
a number of nodes can be set simultaneously, even in event-driven mode.

CANopen

36 Version: 1.2.3

3.4.3 PDO Parameterization
Even though the majority of CANopen networks operate satisfactorily with the default settings, i.e. with the
minimum of configuration effort, it is wise at least to check whether the existing bus loading is reasonable:
80% bus loading may be acceptable for a network operating purely in cyclic synchronous modes, but for a
network with event-driven traffic this value would generally be too high, as there is hardly any bandwidth
available for additional events.

Consider the Requirements of the Application

The communication of the process data must be optimized in the light of application requirements which are
likely to be to some extent in conflict. These include

• Little work on parameterization - useable default values are optimal
• Guaranteed reaction time for specific events
• Cycle time for regulation processes over the bus
• Safety reserves for bus malfunctions (enough bandwidth for the repetition of messages)
• Maximum baud rate - depends on the maximum bus length
• Desired communication paths - who is speaking with whom

The determining factor often turns out to be the available bus bandwidth (bus load).

Baud Rate

Baud Rate

We generally begin by choosing the highest baud rate that the bus will permit. It should be borne in mind that
serial bus systems are fundamentally more sensitive to interference as the baud rate is increased. The
following rule therefore applies: just as fast as necessary. 1000 kbit/s are not usually necessary, and only to
be unreservedly recommended on networks within a control cabinet where there is no electrical isolation
between the bus nodes. Experience also tends to show that estimates of the length of bus cable laid are
often over-optimistic - the length actually laid tends to be longer.

Determine the Communication Type

Once the baud rate has been chosen it is appropriate to specify the PDO communication type(s). These
have different advantages and disadvantages:

• Cyclic synchronous communication provides an accurately predictable bus loading, and therefore a
defined time behavior - you could say that the standard case is the worst case. It is easy to configure:
The SYNC rate parameter sets the bus loading globally. The process images are synchronized: Inputs
are read at the same time, output data is set valid simultaneously, although the quality of the
synchronization depends on the implementation. The Beckhoff FC510x PC cards are capable of
synchronizing the CANopen bus system with the cycles of the application program (PLC or NC).
The guaranteed reaction time under cyclic synchronous communication is always at least as long as
the cycle time, and the bus bandwidth is not exploited optimally, since old data, i.e. data that has not
changed, is continuously transmitted. It is however possible to optimize the network through the
selection of different SYNC multiples (transmission types 1...240), so that data that changes slowly is
transmitted less often than, for instance, time-critical inputs. It must, however, be borne in mind that
input states that last for a time that is shorter than the cycle time will not necessarily be communicated.
If it is necessary for such conditions to be registered, the associated PDOs for asynchronous
communication should be provided.

• Event-driven asynchronous communication is optimal from the point of view of reaction time and the
exploitation of bus bandwidth - it can be described as "pure CAN". Your choice must, however, also
take account of the fact that it is not impossible for a large number of events to occur simultaneously,
leading to corresponding delays before a PDO with a relatively low priority can be sent. Proper network
planning therefore necessitates a worst-case analysis. Through the use of, for instance, inhibit time, it
is also necessary to prevent a constantly changing input with a high PDO priority from blocking the bus
(technically known as a "babbling idiot"). It is for this reason that event driving is switched off by default

CANopen

37Version: 1.2.3

in the device profile of analog inputs, and must be turned on specifically. Time windows for the transmit
PDOs can be set using progress timers: the telegram is not sent again before the inhibit time has
elapsed, and not later than the time required for the progress timer to complete.

• The communication type is parameterized by means of the transmission type.

It is also possible to combine the two PDO principles. It can, for instance, be helpful to exchange the set and
actual values of an axis controller synchronously, while limit switches, or motor temperatures with limit values
are monitored with event-driven PDOs. This combines the advantages of the two principles: synchronicity for
the axis communication and short reaction times for limit switches. In spite of being event-driven, the
distributed limit value monitoring avoids a constant addition to the bus load from the analog temperature
value.

In this example it can also be of value to deliberately manipulate the identifier allocation, in order to optimize
bus access by means of priority allocation: the highest priority is given to the PDO with the limit switch data,
and the lowest to that with the temperature values.

Optimization of bus access latency time through modification of the identifier allocation is not, however,
normally required. On the other hand the identifiers must be altered if masterless communication is to be
made possible (PDO linking). In this example it would be possible for one RxPDO for each axis to be
allocated the same identifier as the limit switch TxPDO, so that alterations of the input value can be received
without delay.

Determining the Bus Loading

Determining the Bus Loading

It is always worth determining the bus loading. But what bus loading values are permitted, or indeed
sensible? It is first necessary to distinguish a short burst of telegrams in which a number of CAN messages
follow one another immediately - a temporary 100% bus loading. This is only a problem if the sequence of
receive interrupts that it caused at the CAN nodes can not be handled. This would constitute a data overflow
(or CAN queue overrun). This can occur at very high baud rates (> 500 kbit/s) at nodes with software
telegram filtering and relatively slow or heavily loaded microcontrollers if, for instance, a series of remote
frames (which do not contain data bytes, and are therefore very short) follow each other closely on the bus
(at 1 Mbit/s this can generate an interrupt every 40 µs; for example, an NMT master might transmit all its
guarding requests in an unbroken sequence). This can be avoided through skilled implementation, and the
user should be able to assume that the device suppliers have taken the necessary trouble. A burst condition
is entirely normal immediately after the SYNC telegram, for instance: triggered by the SYNC, all the nodes
that are operating synchronously try to send their data at almost the same time. A large number of arbitration
processes take place, and the telegrams are sorted in order of priority for transmission on the bus. This is
not usually critical, since these telegrams do contain some data bytes, and the telegrams trigger a sequence
of receive interrupts at the CAN nodes which is indeed rapid, but is nevertheless manageable.

Bus loading most often refers to the value averaged over several primary cycles, that is the mean value over
100-500 ms. CAN, and therefore CANopen, is indeed capable of managing a bus loading of close to 100%
over long periods, but this implies that no bandwidth is available for any repetitions that may be necessitated
by interference, for asynchronous error messages, parameterization and so on. Clearly, the dominant type of
communication will have a large influence on the appropriate level of bus loading: a network with entirely
cyclic synchronous operation is always in any case near to the worst case state, and can therefore be
operated with values in the 70-80% range. The figure is very hard to state for an entirely event-driven
network: an estimate must be made of how many events additional to the current state of the system might
occur, and of how long the resulting burst might last - in other words, for how long the lowest priority
message will be delayed. If this value is acceptable to the application, then the current bus loading is
acceptable. As a rule of thumb it can usually be assumed that an event-driven network running with a base
loading of 30-40% has enough reserve for worst-case scenarios, but this assumption does not obviate the
need for a careful analysis if delays could have critical results for the plant.

The BECKHOFF FC510x PC cards indicate the bus loading via the System Manager. This variable can also
be processed in the PLC, or can be displayed in the visualization system.

The amount data in the process data objects is of course as relevant as the communication parameters: the
PDO mapping [} 34].

CANopen

38 Version: 1.2.3

3.4.4 Service Data Objects (SDO)
The parameters listed in the object directory are read and written by means of service data objects. These
SDOs are Multiplexed Domains, i.e. data structures of any size that have a multiplexer (address). The
multiplexer consists of a 16-bit index and an 8-bit sub-index that address the corresponding entries in the
object directory.

SDO protocol: access to the object directory

The CANopen Bus Couplers are servers for the SDO, which means that at the request of a client (e.g. of the
IPC or the PLC) they make data available (upload), or they receive data from the client (download). This
involves a handshake between the client and the server.

When the size of the parameter to be transferred is not more than 4 bytes, a single handshake is sufficient
(one telegram pair): For a download, the client sends the data together with its index and sub-index, and the
server confirms reception. For an upload, the client requests the data by transmitting the index and sub-
index of the desired parameter, and the server sends the parameter (including index and sub-index) in its
answer telegram.

The same pair of identifiers is used for both upload and download. The telegrams, which are always 8 bytes
long, encode the various services in the first data byte. All parameters with the exception of objects 1008h,
1009h and 100Ah (device name, hardware and software versions) are only at most 4 bytes long, so this
description is restricted to transmission in expedited transfer.

Protocol

The structure of the SDO telegrams is described below.

Client -> Server, Upload Request

11 bit
identifier

8 bytes of user data

0x600
(=1536de
z) + node
ID

0x40 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

CANopen

39Version: 1.2.3

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Client -> Server, Upload Response

11 bit
identifier

8 bytes of user data

0x580
(=1408de
c) + node
ID

0x4x Index0 Index1 SubIdx Data0 Data1 Data2 Data3

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

Parameters whose data type is Unsigned8 are transmitted in byte D0, parameters whose type is Unsigned16
use D0 and D1.

The number of valid data bytes is coded as follows in the first CAN data byte (0x4x):

Number of param-
eter bytes

1 2 3 4

First CAN data byte 0x4F 0x4B 0x47 0x43

Client -> Server, Download Request

11 bit
identifier

8 bytes of user data

0x600
(=1536de
c) + node
ID

0x22 Index0 Index1 SubIdx Data0 Data1 Data2 Data3

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Data0 Data low low byte (LLSB)
Data3 Data high high byte (MMSB)

It is optionally possible to give the number of valid parameter data bytes in the first CAN data byte

Number of param-
eter bytes

1 2 3 4

First CAN data byte 0x2F 0x2B 0x27 0x23

CANopen

40 Version: 1.2.3

This is, however, not generally necessary, since only the less significant data bytes up to the length of the
object directory entry that is to be written are evaluated. A download of data up to 4 bytes in length can
therefore always be achieved in Beckhoff bus nodes with 22h in the first CAN data byte.

Client -> Server, Download Response

11 bit
identifier

8 bytes of user data

0x580
(=1408de
c) + node
ID

0x60 Index0 Index1 SubIdx 0x00 0x00 0x00 0x00

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)

Breakdown of Parameter Communication

Parameter communication is interrupted if it is faulty. The client or server send an SDO telegram with the
following structure for this purpose:

11 bit
identifier

8 bytes of user data

0x580
(client) or
0x600(ser
ver) +
node ID

0x80 Index0 Index1 SubIdx Error0 Error1 Error2 Error3

Parameters Explanation
Index0 Index low byte (Unsigned16, LSB)
Index1 Index high byte (Unsigned16, MSB)
SubIdx Sub-index (Unsigned8)
Error0 SDO error code low low byte (LLSB)
Error3 SDO error code high high byte (MMSB)

List of SDO error codes (reason for abortion of the SDO transfer):

CANopen

41Version: 1.2.3

SDO error code Explanation
0x05 03 00 00 Toggle bit not changed
0x05 04 00 01 SDO command specifier invalid or unknown
0x06 01 00 00 Access to this object is not supported
0x06 01 00 02 Attempt to write to a Read_Only parameter
0x06 02 00 00 The object is not found in the object directory
0x06 04 00 41 The object can not be mapped into the PDO
0x06 04 00 42 The number and/or length of mapped objects would

exceed the PDO length
0x06 04 00 43 General parameter incompatibility
0x06 04 00 47 General internal error in device
0x06 06 00 00 Access interrupted due to hardware error
0x06 07 00 10 Data type or parameter length do not agree or are

unknown
0x06 07 00 12 Data type does not agree, parameter length too great
0x06 07 00 13 Data type does not agree, parameter length too short
0x06 09 00 11 Sub-index not present
0x06 09 00 30 General value range error
0x06 09 00 31 Value range error: parameter value too great
0x06 09 00 32 Value range error: parameter value too small
0x06 0A 00 23 Resource not available
0x08 00 00 21 Access not possible due to local application
0x08 00 00 22 Access not possible due to current device status

Further, manufacturer-specific error codes have been introduced for register communication (index 0x4500,
0x4501):

SDO error code Explanation
0x06 02 00 11 Invalid table: Table or channel not present
0x06 02 00 10 Invalid register: table not present
0x06 01 00 22 Write protection still set
0x06 07 00 43 Incorrect number of function arguments
0x06 01 00 21 Function still active, try again later
0x05 04 00 40 General routing error
0x06 06 00 21 Error accessing BC table
0x06 09 00 10 General error communicating with terminal
0x05 04 00 47 Time-out communicating with terminal

3.4.5 Identifier Allocation

Default identifier

CANopen provides default identifiers for the most important communication objects, and these are derived
from the 7-bit node address (the node ID) and a 4-bit function code in accordance with the following scheme:

CANopen

42 Version: 1.2.3

For broadcast objects the node ID is set to 0. This gives rise to the following default identifiers:

Broadcast objects

Object Function Function code Resulting COB ID Object for
communica-
tion Parame-
ter / mapping

hex dec

NMT Boot-Up 0 0x00 0 - / -
SYNC Synchronization 1 0x80 128 0x1005

Peer-to-peer objects

Object Function Function code Resulting COB ID Object for
communica-
tion Parame-
ter / mapping

hex dec

Emergency Status / error 1 0x81 - 0xFF 129 - 255 - / -
PDO1 (tx) dig. inputs 11 0x181 - 0x1FF 385 - 511 0x1800
PDO1 (rx) digital outputs 100 0x201 - 0x27F 513 - 639 0x1400
PDO2 (tx) analog inputs 101 0x281 - 0x2FF 641 - 767 0x1801
PDO2 (rx) analog outputs 110 0x301 - 0x37F 769 - 895 0x1401
PDO3 (tx) analog inputs* 111 0x381 - 0x3FF 897 - 1023 0x1802
PDO3 (rx) analog outputs* 1000 0x401 - 0x47F 1025 - 1151 0x1402
PDO4 (tx) analog inputs* 1001 0x481 - 0x4FF 1153 - 1279 0x1803
PDO4 (rx) analog outputs* 1010 0x501 - 0x57F 1281 - 1407 0x1403
SDO (tx) Parameters 1011 0x581 - 0x5FF 1409 - 1535 - / -
SDO (rx) Parameters 1100 0x601 - 0x67F 1537 - 1663 - / -
Guarding Life/node

guarding,
Heartbeat,
Boot-up
message

1110 0x701 - 0x77F 1793 - 1919 (0x100C

*) The Beckhoff Default Mapping [} 159] applies to PDO 3 + 4. In most configurations, PDOs 3 and 4 contain
data related to analog inputs and outputs, but there can also be "excess" data from digital I/Os, or data from
special terminals. Details may be found in the section covering PDO Mapping [} 34].

Up until version 3 of the CANopen specification, default identifiers were assigned to 2 PDOs at a time. The
BECKHOFF Bus Couplers up to firmware status BA correspond to this issue of the specification. After
firmware status C0 (CANopen version 4), default identifiers are provided for up to 4 PDOs.

Manufacture-Specific Default Identifiers for Additional PDOs

Default Identifiers for Additional PDOs

Identifiers are not assigned to the additional PDOs that are filled by the Beckhoff Bus Couplers in
accordance with the standard scheme. The user must enter an identifier for these PDOs in the object
directory. It is easier to activate the occupied PDOs by means of object 0x5500.

CANopen

43Version: 1.2.3

This entry in the object directory extends the default identifier allocation up to 11 PDOs. This creates the
following identifiers:

Object Function code Resulting COB ID (hex) Resulting COB ID (dec)
PDO5 (tx) 1101 0x681 - 0x6BF 1665 - 1727
PDO5 (rx) 1111 0x781 - 0x7BF 1921- 1983
PDO6 (tx) 111 0x1C1 - 0x1FF 449 - 511
PDO6 (rx) 1001 0x241 - 0x27F 577 - 639
PDO7 (tx) 1011 0x2C1 - 0x2FF 705 - 767
PDO7 (rx) 1101 0x341 - 0x37F 833 - 895
PDO8 (tx) 1111 0x3C1- 0x3FF 961 - 1023
PDO8 (rx) 10001 0x441 - 0x47F 1089 - 1151
PDO9 (tx) 10011 0x4C1 - 0x4FF 1217 - 1279
PDO9 (rx) 10101 0x541 - 0x57F 1345 - 1407
PDO10 (tx) 10111 0x5C1 - 0x5FF 1473 - 1535
PDO10 (rx) 11001 0x641 - 0x67F 1601- 1663
PDO11 (tx) 11011 0x6C1 - 0x6FF 1729 - 1791
PDO11 (rx) 11101 0x741 - 0x77F 1857 - 1919

NOTE
Warning
Index 0x5500 must not be used if Bus Couplers with more than 5 PDOs are present in networks with node
numbers greater than 64, otherwise identifier overlaps can occur.

CANopen

44 Version: 1.2.3

3.5 CANopen Object Directory

3.5.1 Object Directory - Structure
All the CANopen objects relevant for the Bus Coupler are entered into the CANopen object directory. The
object directory is divided into three different regions:

1. communication-specific profile region (index 0x1000 – 0x1FFF).
This contains the description of all the parameters specific to communication.

2. manufacturer-specific profile region (index 0x2000 – 0x5FFF).
Contains the description of the manufacturer-specific entries.

3. standardized device profile region (0x6000 – 0x9FFF).
Contains the objects for a device profile according to DS-401.

Every entry in the object directory is identified by a 16 bit index. If an object consists of several components
(e.g. object type array or record), the components are identified by an 8-bit sub-index. The object name
describes the function of an object, while the data type attribute specifies the data type of the entry. The
access attribute specifies whether an entry may only be read, only written, or may be both read and written.

Communication-specific region

All the parameters and objects necessary for the CANopen Bus Coupler’s communication are in this region
of the object directory. The region from 0x1000 to 0x1018 contains various general communication-specific
parameters (e.g. the device name).

The communication parameters (e.g. identifiers) for the receive PDOs are located in the region from 0x1400
to 0x140F (plus sub-index). The mapping parameters of the receive PDOs are in the region from 0x1600 to
0x160F (plus sub-index). The mapping parameters contain the cross-references to the application objects
that are mapped into the PDOs and the data width of the corresponding object (see also the section dealing
with PDO Mapping).

The communication and mapping parameters for the transmit PDOs are located in the regions from 0x1800
to 0x180F and from 0x1A00 to 0x1A0F.

Manufacturer-specific region

This region contains entries that are specific to BECKHOFF, e.g.:

• data objects for special terminals
• objects for register communication providing access to all the Bus Couplers’ and Bus Terminals’

internal registers
• objects for simplified configuration of the PDOs

Standardized device profile region

The standardized device profile region supports the device profile of CANopen DS-401, Version 1. Functions
are available for analog inputs that can adapt communication in the event-driven operating mode to the
requirements of the application and to minimize the loading of the bus:

• limit value monitoring
• Delta function
• activation/deactivation of event-driven mode

CANopen

45Version: 1.2.3

3.5.2 Object Directory – Summary
Note
The objects in the object directory can be reached by SDO access, but not generally through the
KS2000 configuration tool. On the other hand, all the registers that can be configured with KS2000
can also be reached using SDO access to the object directory (objects 0x4500 and 0x4501) - even
though this does not offer the same convenience as the KS2000 tool.

CANopen

46 Version: 1.2.3

Parameters Index IL230x-B510 IP1xxx, IP2xxx
-B510

IP3xxx-B510 IP4xxx -B510

Device type 0x1000 x x x x
Error register 0x1001 x x x x
Error store
[} 48]

0x1003 x x x x

Sync Identifier 0x1005 x x x x
Sync Interval 0x1006 x x x x
Device name 0x1008 x x x x
Hardware
version [} 50]

0x1009 x x x x

Software
version [} 50]

0x100A x x x x

Node number
[} 51]

0x100B x x x x

Guard time 0x100C x x x x
Life time factor 0x100D x x x x
Guarding
identifier

0x100E x x x x

Save
parameters

0x1010 x x x x

Load default
values

0x1011 x x x x

Emergency
identifier

0x1014 x x x x

Consumer
heartbeat time

0x1016 x x x x

Producer
heartbeat time

0x1017 x x x x

Device identifier
(identity object)

0x1018 x x x x

Server SDO
parameters

0x1200 x x x x

Comm.
parameter
1st-5th RxPDO

0x1400 -
0x1404

x x x x

Communication
parameter
6th-16th
RxPDO

0x1405 -
0x140F

x

Mapping 1st–
5th RxPDO

0x1600 -
0x1604

x x x x

Mapping 6th–
16th RxPDO

0x1605 -
0x160F

x

Communication
parameter
1st-5th TxPDO

0x1800 -
0x1804

x x x x

Communication
parameter
6th-16th TxPDO

0x1805 -
0x180F

x

Mapping 1st-5th
TxPDO

0x1A00 -
0x1A04

x x x x

Mapping
6th-16th TxPDO

0x1A05 -
0x1A0F

x

CANopen

47Version: 1.2.3

Parameters Index IL230x-B510 IP1xxx, IP2xxx
-B510

IP3xxx-B510 IP4xxx -B510

3-byte special
terminals, input
data

0x2600 x

3-byte special
terminals,
output data

0x2700 x

4-byte special
terminals, input
data

0x2800 x

4-byte special
terminals,
output data

0x2900 x

5-byte special
terminals, input
data

0x2A00 x

5-byte special
terminals,
output data

0x2B00 x

6-byte special
terminals, input
data

0x2C00 x

6-byte special
terminals,
output data

0x2D00 x

8-byte special
terminals, input
data

0x3000 x

8-byte special
terminals,
output data

0x3100 x

Bus node
register
communication

0x4500 x x x x

Bus Terminal /
Extension Box
register
communication

0x4501 x x x

Activate PDOs 0x5500 x x x x
Digital inputs 0x6000 x x x x
Interrupt mask 0x6126 x x x x
Digital outputs 0x6200 x x x x
Analog inputs 0x6401 x x
Analog outputs 0x6411 x x
Event driven
analog inputs

0x6423 x x

Upper limit
value analog
inputs

0x6424 x x

Lower limit
value analog
inputs

0x6425 x x

Delta function
for analog
inputs

0x6426 x x

CANopen

48 Version: 1.2.3

3.5.3 Objects and Data

Device type

Device type

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1000 0 Device type Unsigned32 ro N 0x0000000
0

Statement
of device
type

The 32 bit value is divided into two 16 bit fields:

MSB LSB
Additional information Device profile number
0000 0000 0000 wxyz 0x191 (401dez)

The additional information contains data related to the signal type of the I/O device:
z=1 signifies digital inputs,
y=1 signifies digital outputs,
x=1 signifies analog inputs,
w=1 signifies analog outputs.
A BK5120 with digital and analog inputs, but with no outputs, thus returns 0x00 05 01 91.

Special terminals (such as serial interfaces, PWM outputs, incremental encoder inputs) are not considered. A
Coupler that, for example, only has KL6001 serial interface terminals plugged in, thus returns 0x00 00 01 91.

The device type supplies only a rough classification of the device. The terminal identifier register of the Bus
Coupler can be read for detailed identification of the Bus Couplers and the attached terminals (for details see
register communication index 0x4500).

Error register

Error register

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1001 0 Error
register

Unsigned8 ro N 0x00 Error
register

The 8 bit value is coded as follows:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ManSpec. reserved reserved Comm. reserved reserved reserved Generic

ManSpec. Manufacturer-specific error, specified more precisely in object 1003.

Comm. Communication error (CAN overrun)

Generic An error that is not more precisely specified has occurred (the flag is set at every error message)

Error store

Error store

CANopen

49Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1003 0x00 Predefined
error field
(Error
store)

Unsigned8 rw N 0x00 Object
1003h
contains a
description
of the error
that has
occurred in
the device -
sub-index 0
has the
number of
error states
stored.

1 Actual error Unsigned32 ro N None Last error
state to
have
occurred

... --
10 Standard

error field
Unsigned32 ro N None A maximum

of 10 error
states are
stored.

The 32 bit value in the error store is divided into two 16 bit fields:

MSB LSB
Additional code Error Code

The additional code contains the error trigger (see emergency object [} 123]) and thereby a detailed error
description.

New errors are always saved at sub-index 1, all the other sub-indices being appropriately incremented. The
whole error store is cleared by writing a 0 to sub-index 0.

If there has not been an error since power up, then object 0x1003 only consists of sub-index 0 with a 0
entered into it. The error store is cleared by a reset or a power cycle.

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Sync Identifier

Sync Identifier

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1005 0 COB-ID
Sync
Message

Unsigned32 rw N 0x8000008
0

Identifier of
the SYNC
message

The bottom 11 bits of the 32 bit value contain the identifier (0x80=128 dec). Bit 30 indicates whether the
device sends the SYNC telegram (1) or not (0). The CANopen I/O devices receive the SYNC telegram, and
accordingly bit 30=0. For reasons of backwards compatibility, bit 31 has no significance.

Sync Interval

Sync Interval

CANopen

50 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1006 0 Communica
tion cycle
period

Unsigned32 rw N 0x0000000
0

Length of
the SYNC
interval in
µs.

If a value other than zero is entered here, the bus node will go into the fault state if, during synchronous PDO
operation, no SYNC telegram is received within the watchdog time. The watchdog time corresponds here to
1.5 times the communication cycle period that has been set - the planned SYNC interval can therefore be
entered.

The I/O update is carried out at the Beckhoff CANopen bus nodes immediately after reception of the SYNC
telegram, provided the following conditions are satisfied:

- Firmware status C0 or above (CANopen Version 4.01 or higher).

- All PDOs that have data are set to synchronous communication (0..240).

- The sync interval has been entered in object 0x1006 and (sync interval x lowest PDO transmission type) is
less than 90ms.

The modules are then synchronised throughout.

Device name

Device name

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1008 0 Manufactur
er Device
Name

Visible
String

ro N BK51x0,
LC5100,
IPxxxx-
B510 or
ILxxxx-
B510

Device
name of the
bus node

Since the returned value is longer than 4 bytes, the segmented SDO protocol is used for transmission.

Hardware version

Hardware version

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1009 0 Manufactur
er
hardware-
version

Visible
String

ro N - Hardware
version
number of
the bus
node

Since the returned value is longer than 4 bytes, the segmented SDO protocol is used for transmission.

Software version

Software version

CANopen

51Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100A 0 Manufactur
er software-
version

Visible
String

ro N - Software
version
number of
the bus
node

Since the returned value is longer than 4 bytes, the segmented SDO protocol is used for transmission.

Node number

Node number

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100B 0 Node-ID Unsigned32 ro N none Set node
number

The node number is supported for reasons of compatibility.

Guard time

Guard time

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100C 0 Guard time
[ms]

Unsigned16 rw N 0 Interval
between
two guard
telegrams.
Is set by
the NMT
master or
configuratio
n tool.

Life time factor

Life time factor

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100D 0 Life time
factor

Unsigned8 rw N 0 Life time
factor x
guard time
= life time
(watchdog
for life
guarding)

If a guarding telegram is not received within the life time, the node enters the error state. If the life time factor
and/or guard time = 0, the node does not carry out any life guarding, but can itself be monitored by the
master (node guarding).

Guarding identifier

Guarding identifier

CANopen

52 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x100 E 0 COB-ID
guarding
protocol

Unsigned32 ro N 0x000007x
y, xy =
NodeID

Identifier of
the
guarding
protocol

The guarding identifier is supported for reasons of compatibility. Changing the guarding identifier has no
longer been permitted since version 4 of CANopen.

Save parameters

Save parameters

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1010 0 Store
Parameter

Unsigned8 ro N 1 Number of
store
options

1 store all
parameters

Unsigned32 rw N 1 Stores all
(storable)
parameters

By writing the string save in ASCII code (hexadecimal 0x65766173) to sub-index 1, the current parameters
are placed into non-volatile storage. (The byte sequence on the bus including the SDO protocol: 0x23 0x10
0x10 0x01 0x73 0x61 0x76 0x65).

The storage process takes about 3 seconds, and is confirmed, if successful, by the corresponding TxSDO
(0x60 in the first byte). Since the Bus Coupler is unable to send or receive any CAN telegrams during the
storage process, saving is only possible when the node is in the pre-operational state. It is recommended
that the entire network is placed into the pre-operational state before such storage. This avoids a buffer
overflow.

Data saved includes:

• The terminals currently inserted (the number of each terminal category)
• All PDO parameters (identifier, transmission type, inhibit time, mapping).

Note
The stored identifiers apply afterwards, not the default identifiers derived from the node addresses.
Changes to the DIP switch setting no longer affects the PDOs!

• All SYNC parameters
• All guarding parameters
• Limit values, delta values and interrupt enables for analog inputs

Parameters directly stored in the terminals by way of register communication are immediately stored there in
non-volatile form.

Load default values

Load default values

CANopen

53Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1011 0 Restore
Parameter

Unsigned8 ro N 4 Number of
reset
options

1 Restore all
parameters

Unsigned32 rw N 1 Resets all
parameters
to their
default
values

4 Set
manufactur
er Defaults

Unsigned32 rw N 1 Resets all
coupler
parameters
to
manufactur
er’s settings
(including
registers)

Writing the string load in ASCII code (hexadecimal 0x64616F6C) into sub-index 1 resets all parameters to
default values (as initially supplied) at the next boot (reset).

(The byte sequence on the bus including the SDO protocol: 0x23 0x11 0x10 0x01 0x6C 0x6F 0x61 0x64).

This makes the default identifiers for the PDOs active again.

Emergency identifier

Emergency identifier

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1014 0 COB-ID
Emergency

Unsigned32 rw N 0x0000008
0, +
NodeID

Identifier of
the
emergency
telegram

The bottom 11 bits of the 32 bit value contain the identifier (0x80=128 dec). The MSBit can be used to set
whether the device sends (1) the emergency telegram or not (0).

Alternatively, the bus node's diagnostic function can also be switched off using the Device diagnostics bit in
the K-Bus configuration (see object 0x4500).

Consumer heartbeat time

Consumer heartbeat time

CANopen

54 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1016 0 Number of
elements

Unsigned8 ro N 2 The
consumer
heartbeat
time
describes
the
expected
heartbeat
cycle time
and the
node ID of
the
monitored
node

1 Consumer
heartbeat
time

Unsigned32 rw N 0 Watchdog
time in ms
and node
ID of the
monitored
node

The 32-bit value is used as follows:

MSB LSB
Bit 31...24 Bit 23...16 Bit 15...0
Reserved (0) Node ID (unsigned8) Heartbeat time in ms (unsigned16)

The monitored identifier can be obtained from the node ID by means of the default identifier allocation:
Guard-ID = 0x700 + Node-ID.

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Producer heartbeat time

Producer heartbeat time

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1017 0 Producer
heartbeat
time

Unsigned16 rw N 0 Interval in
ms
between
two
transmitted
heartbeat
telegrams

Device identifier (identity object)

Device identifier (identity object)

CANopen

55Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1018 0 Identity
Object:
Number of
elements

Unsigned8 ro N 4 The identity
object
contains
general
information
about the
type and
version of
the device.

1 Vendor ID Unsigned32 ro N 0x0000000
2

Manufactur
er identifier.
Beckhoff
has vendor
ID 2

2 Product
Code

Unsigned32 ro N Depends
on the
product

Device
identifier

3 Revision
Number

Unsigned32 ro N - Version
number

4 Serial
Number

Unsigned32 ro N - Production
date
low word,
high byte:
calendar
week (dec),
low word,
low byte:
calendar
year

Product Product Code
BK5120 0x11400
BK5110 0x113F6
LC5100 0x113EC
IPwxyz-B510 0x2wxyz
IL2301-B510 0x2008FD

Server SDO parameters

Server SDO parameters

CANopen

56 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1200 0 Number of
elements

Unsigned8 ro N 2 Communica
tion
parameters
of the
server
SDO. Sub-
index 0:
number of
following
parameters

1 COB-ID
Client -
>Server

Unsigned32 ro N 0x000006x
y,
xy=Node-ID

COB-ID
RxSDO
(Client ->
Server)

2 COB-ID
Server -
>Client

Unsigned32 ro N 0x0000058
0 + Node-
ID

COB-ID
TxSDO
(Client ->
Server)

This is contained in the object directory for reasons of backwards compatibility.

Communication parametersfor the 1st RxPDO

for the 1st RxPDOCommunication parameters

CANopen

57Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1400 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the first
receive
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x000002x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Sub-index 1 (COB-ID): The bottom 11 bits of the 32 bit value (bits 0-10) contain the CAN identifier. The MSB
(bit 31) indicates whether the PDO exists currently (0) or not (1). Bit 30 indicates whether an RTR access to
this PDO is permissible (0) or not (1). Changing the identifier (bits 0-10) is not allowed while the object exists
(bit 31=0). Sub-index 2 contains the type of the transmission (see introduction to PDOs).

Communication parametersfor the 2nd RxPDO

for the 2nd RxPDOCommunication parameters

CANopen

58 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1401 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameter
for the
second
receive
PDO.

1 COB-ID Unsigned32 rw N 0x000003x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO2

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Communication parametersfor the 3rd RxPDO

for the 3rd RxPDOCommunication parameters

CANopen

59Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1402 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameter
for the third
receive
PDO.

1 COB-ID Unsigned32 rw N 0x000004x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO3

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Communication parametersfor the 4th RxPDO

for the 4th RxPDOCommunication parameters

CANopen

60 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1403 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the
fourth
receive
PDO.

1 COB-ID Unsigned32 rw N 0x000005x
y,
xy=Node-ID

COB-ID
(Communic
ation Object
Identifier)
RxPDO4

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

Communication parametersfor the 5th-16th RxPDOs

for the 5th-16th RxPDOsCommunication parameters

CANopen

61Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1404 -
0x140F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameter
for the 5th to
16th receive
PDOs.

1dth="5%">
1

COB-ID Unsigned32 rw N 0x8000000 COB-ID
(Communic
ation Object
Identifier)
RxPDO5...1
6

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Present for
reasons of
backwards
compatibilit
y, but not
used in the
RxPDO.

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer.
Watchdog
time
defined for
monitoring
reception of
the PDO.

The number of RxPDOs for each bus node type can be found in the technical data.

Mapping parametersfor the 1st RxPDO

for the 1st RxPDOMapping parameters

CANopen

62 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1600 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the first
receive
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6200010
8

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6200020
8

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x6200080

8
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The first receive PDO (RxPDO1) is provided by default for digital output data. Depending on the number of
outputs inserted, the necessary length of the PDO is automatically determined, and the corresponding
objects are mapped. Since the digital outputs are organised in bytes, the length of the PDO in bytes can be
found directly at sub-index 0.

Changes to the mapping

The following sequence must be observed in order to change the mapping (specified as from CANopen,
version 4):

1. Delete PDO (set bit 31 in the identifier entry (sub-index 1) of the communication parameters to 1)
2. Deactivate mapping (set sub-index 0 of the mapping entry to 0)
3. Change mapping entries (sub-indices 1...8)
4. Activate mapping (set sub-index 0 of the mapping entry to the correct number of mapped objects)
5. Create PDO (set bit 31 in the identifier entry (sub-index 1) of the communication parameters to 0)

Mapping parametersfor the 2nd RxPDO

for the 2nd RxPDOMapping parameters

CANopen

63Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1601 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the
second
receive
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6411011
0

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6411021
0

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x0000000

0
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The second receive PDO (RxPDO2) is provided by default for analog outputs. Depending on the number of
outputs inserted, the necessary length of the PDO is automatically determined, and the corresponding
objects are mapped. Since the analog outputs are organised in words, the length of the PDO in bytes can be
found directly at sub-index 0.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Mapping parametersfor the 3rd-16th RxPDO

for the 3rd-16th RxPDOMapping parameters

CANopen

64 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1602-
0x160F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameters
for the third
to sixteenth
receive
PDOs; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x0000000

0 (see text)
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The 3rd to 16th receive PDOs (RxPDO3ff) are automatically given a default mapping by the bus node
depending on the attached terminals (or depending on the extension modules). The procedure is described
in the section on PDO Mapping [} 159].

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Note
DS401 V2 specifies analog input and/or output data as the default mapping for PDOs 3+4. This cor-
responds to Beckhoff's default mapping when less than 65 digital inputs or outputs are present. In
order to ensure backwards compatibility, the Beckhoff default mapping is retained - the mapping be-
haviour of the devices therefore corresponds to DS401 V1, where in all other respects they accord
with DS401 V2.

Communication parametersfor the 1st TxPDO

for the 1st TxPDOCommunication parameters

CANopen

65Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1800 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the first
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000018
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

Sub-index 1 (COB-ID): The bottom 11 bits of the 32 bit value (bits 0-10) contain the CAN identifier. The MSB
(bit 31) indicates whether the PDO exists currently (0) or not (1). Bit 30 indicates whether an RTR access to
this PDO is permissible (0) or not (1). Changing the identifier (bits 0-10) is not allowed while the object exists
(bit 31=0). Sub-index 2 contains the type of transmission, sub-index 3 the repetition delay between two
PDOs of the same type, while sub-index 5 contains the event timer. Sub-index 4 is retained for reasons of
compatibility, but is not used. (See also the introduction to PDOs.)

Communication parametersfor the 2nd TxPDO

for the 2nd TxPDOCommunication parameters

CANopen

66 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1801 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the
second
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000028
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

The second transmit PDO is provided by default for analog inputs, and is configured for event-driven
transmission (transmission type 255). Event-driven mode must first be activated (see object 0x6423),
otherwise the inputs can only be interrogated (polled) by remote transmission request (RTR).

Communication parametersfor the 3rd TxPDO

for the 3rd TxPDOCommunication parameters

CANopen

67Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1802 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the third
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000038
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

The third transmit PDO contains analog input data as a rule (see Mapping [} 159]). It is configured for event-
driven transmission (transmission type 255). Event-driven mode must first be activated (see object 0x6423),
otherwise the inputs can only be interrogated (polled) by remote transmission request (RTR).

Communication parametersfor the 4th TxPDO

for the 4th TxPDOCommunication parameters

CANopen

68 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1803 0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the
fourth
transmit
PDO. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000048
0 + Node-
ID

COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

The fourth transmit PDO contains analog input data as a rule (see Mapping [} 159]). It is configured for
event-driven transmission (transmission type 255). Event-driven mode must first be activated (see object
0x6423), otherwise the inputs can only be interrogated (polled) by remote transmission request (RTR).

Communication parametersfor the 5th-16th TxPDOs

for the 5th-16th TxPDOsCommunication parameters

CANopen

69Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1804-
0x180F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 ro N 5 Communica
tion
parameters
for the 5th to
16th

transmit
PDOs. Sub-
index 0:
number of
following
parameters

1 COB-ID Unsigned32 rw N 0x0000000 COB-ID
(Communic
ation Object
Identifier)
TxPDO1

2 Transmissi
on Type

Unsigned8 rw N 255 Transmissi
on type of
the PDO

3 Inhibit Time Unsigned16 rw N 0 Repetition
delay [value
x 100 µs]

4 CMS
Priority
Group

Unsigned8 rw N - Present for
reasons of
backwards
compatibilit
y, but not
used.

5 Event
Timer

Unsigned16 rw N 0 Event-
Timer

Mapping 1st TxPDO

Mapping 1st TxPDO

CANopen

70 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1A00 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the first
transmit
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6000010
8

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6000020
8

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x6000080

8
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The first transmit PDO (TxPDO1) is provided by default for digital input data. Depending on the number of
inputs inserted, the necessary length of the PDO is automatically determined, and the corresponding objects
are mapped. Since the digital inputs are organised in bytes, the length of the PDO in bytes can be found
directly at sub-index 0.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Mapping 2nd TxPDO

Mapping 2nd TxPDO

CANopen

71Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1A01 0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameter
of the
second
transmit
PDO; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x6401011
0

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x6401021
0

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 8th mapped

application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The second transmit PDO (TxPDO2) is provided by default for analog input data. Depending on the number
of inputs inserted, the necessary length of the PDO is automatically determined, and the corresponding
objects are mapped. Since the analog inputs are organised in words, the length of the PDO in bytes can be
found directly at sub-index 0.

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Mapping 3rd-16th TxPDO

Mapping 3rd-16th TxPDO

CANopen

72 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x1A02-
0x1A0F
(dependin
g on the
device
type)

0 Number of
elements

Unsigned8 rw N Depending
on type and
fittings

Mapping
parameters
for the third
to sixteenth
transmit
PDOs; sub-
index 0:
number of
mapped
objects.

1 1st mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

1st mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

2 2nd mapped
object

Unsigned32 rw N 0x0000000
0 (see text)

2nd mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

...
8 8th mapped

object
Unsigned32 rw N 0x0000000

0 (see text)
8th mapped
application
object (2
bytes index,
1 byte sub-
index, 1
byte bit
width)

The 3rd to 16th transmit PDOs (TxPDO3ff) are automatically given a default mapping by the bus node
depending on the attached terminals (or depending on the extension modules). The procedure is described
in the section on PDO Mapping [} 159].

A specific sequence must be observed in order to change the mapping (see object index 0x1600).

Note
DS401 V2 specifies analog input and/or output data as the default mapping for PDOs 3+4. This cor-
responds to Beckhoff's default mapping when less than 65 digital inputs or outputs are present. In
order to ensure backwards compatibility, the Beckhoff default mapping is retained - the mapping be-
havior of the devices therefore corresponds to DS401 V1, where in all other respects they accord
with DS401 V2.

For the sake of completeness, the following object entries are also contained in the object directory (and
therefore also in the EDS files):

CANopen

73Version: 1.2.3

Index Meaning
0x2000 Digital inputs (function identical to object 0x6000)
0x2100 Digital outputs (function identical to object 0x6100)
0x2200 1-byte special terminals, inputs (at present no

terminals corresponding to this type are included in
the product range)

0x2300 1-byte special terminals, outputs (at present no
terminals corresponding to this type are included in
the product range)

0x2400 2-byte special terminals, inputs (at present no
terminals corresponding to this type are included in
the product range)

0x2500 2-byte special terminals, outputs (at present no
terminals corresponding to this type are included in
the product range)

0x2E00 7-byte special terminals, inputs (at present no
terminals corresponding to this type are included in
the product range)

0x2F00 7-byte special terminals, outputs (at present no
terminals corresponding to this type are included in
the product range)

3-byte special terminals, input data

3-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2600 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 3-
byte special
channels,
inputs

1 1st input
block

Unsigned24 ro Y 0x000000 1st input
channel

...
0X80 128th input

block
Unsigned24 ro Y 0x000000 128th input

channel

Example of special terminals with 3-byte input data (in the default setting): KL2502 (PWM outputs, 2 x 3
bytes)

3-byte special terminals, output data

3-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2700 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 3-
byte special
channels,
outputs

1 1st output
block

Unsigned24 rww Y 0x000000 1st output
channel

...
0X80 128th output

block
Unsigned24 rww Y 0x000000 128th output

channel

CANopen

74 Version: 1.2.3

Example of special terminals with 3-byte output data (in the default setting): KL2502 (PWM outputs, 2 x 3
bytes)

4-byte special terminals, input data

4-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2800 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 4-
byte special
channels,
inputs

1 1st input
block

Unsigned32 ro Y 0x0000000
0

1st input
channel

...
0X80 128th input

block
Unsigned32 ro Y 0x0000000

0
128th input
channel

Examples of special terminals with 4-byte input data (in the default setting): KL5001, KL6001, KL6021,
KL6051

4-byte special terminals, output data

4-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2900 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 4-
byte special
channels,
outputs

1 1st output
block

Unsigned32 rww Y 0x0000000
0

1st output
channel

...
0X80 128th output

block
Unsigned32 rww Y 0x0000000

0
128th output
channel

Examples of special terminals with 4-byte output data (in the default setting): KL5001, KL6001, KL6021,
KL6051

5-byte special terminals, input data

5-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2A00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 5-
byte special
channels,
inputs

1 1st input
block

Unsigned40 ro Y 0x0000000
000

1st input
channel

...
0X40 64th input

block
Unsigned40 ro Y 0x0000000

000
64th input
channel

CANopen

75Version: 1.2.3

Example of special terminals with 5-byte input data (in the default setting): KL1501

5-byte special terminals, output data

5-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2B00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 5-
byte special
channels,
outputs

1 1st output
block

Unsigned40 rww Y 0x0000000
000

1st output
channel

...
0X40 64th output

block
Unsigned40 rww Y 0x0000000

000
64th output
channel

Example of special terminals with 5-byte output data (in the default setting): KL1501

6-byte special terminals, input data

6-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2C00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
inputs

1 1st input
block

Unsigned48 ro Y 0x0000000
000

1st input
channel

...
0X40 64th input

block
Unsigned48 ro Y 0x0000000

000
64th input
channel

Example of special terminals with 6-byte input data (in the default setting): KL5051, KL5101, KL5111

6-byte special terminals, output data

6-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x2D00 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
outputs

1 1st output
block

Unsigned48 rww Y 0x0000000
000

1st output
channel

...
0X40 64th output

block
Unsigned48 rww Y 0x0000000

000
64th output
channel

Example of special terminals with 6-byte output data (in the default setting): KL5051, KL5101, KL5111

CANopen

76 Version: 1.2.3

8-byte special terminals, input data

8-byte special terminals, input data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x3000 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
inputs

1 1st input
block

Unsigned64 ro Y 0x0000000
000

1st input
channel

...
0x40 64th input

block
Unsigned64 ro Y 0x0000000

000
64th input
channel

Example for special terminals with 8-byte input data: KL5101 (with word alignment, not according to the
default setting)

8-byte special terminals, output data

8-byte special terminals, output data

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x3100 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available 6-
byte special
channels,
outputs

1 1st output
block

Unsigned64 rww Y 0x0000000
000

1st output
channel

...
0X40 64th output

block
Unsigned64 rww Y 0x0000000

000
64th output
channel

Example for special terminals with 8-byte output data: KL5101 (with word alignment, not according to the
default setting)

Bus node register communication

Bus node register communication

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x4500 0 Register
Access

Unsigned32 rw N none Access to
internal bus
node
registers

The 32 bit value is composed as follows:

MSB LSB
Access (bit 7) + table
number (bits 6...0)

Register number High byte register value Low byte register value

[0..1] + [0...0x7F] [0...0xFF] [0...0xFF] [0...0xFF]

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

CANopen

77Version: 1.2.3

Accessing index 0x4500 allows any registers in the bus station to be written or read. The channel number
and the register are addressed here with a 32 bit data word.

Reading the register value

The coupler must first be informed of which register is to be read. This requires an SDO write access to the
appropriate index/sub-index combination, with:
- table number (access bit = 0) in byte 3
- register address in byte 2 of the 32-bit data value.

Bytes 1 and 0 are not evaluated if the access bit (MSB of byte 3) equals 0. The register value can then be
read with the same combination of index and sub-index.

After the writing of the register address to be read, the coupler sets the access bit to 1 until the correct value
is available. Thus an SDO read access must check that the table number lies in the range from 0...0x7F.

An access error during register communication is indicated by the corresponding return value in the SDO
protocol (see the SDO section, Breakdown of parameter communication).

An example of reading register values

It is necessary to determine which baud rate index has been assigned to switch setting 1,1 (DIP 7,8). (See
the section covering Network addresses and baud rates). To do this, the value in table 100, register 3, must
be read. This means that the following SDO telegrams must be sent:

Write access (download request) to index 4500, sub-index 0, with the 32 bit data value 0x64 03 00 00.

 Id=0x600+Node-ID DLC=8; Data=23 00 45 00 00 00 03 64

Then a read access (upload request) to the same index/sub-index. The data value sent here is irrelevant (00
is used here).

 Id=0x600+Node-ID DLC=8; Data=40 00 45 00 00 00 00 00

The coupler responds with the upload response telegram:

 Id=0x580+Node-ID DLC=8; Data=43 00 45 00 04 00 03 64

This tells us that the value contained in this register is 4, and this baud rate index corresponds to 125 kbit/s
(the default value).

Writing register values

SDO write access to the corresponding combination of index and sub-index with:
- table number + 0x80 (access bit = 1) in byte 3
- register address in byte 2
- high byte register value in byte 1
- low byte register value in byte 0 of the 32-bit data value.

Remove coupler write protection

Before the registers of the Bus Coupler can be written, the write protection must first be removed. In order to
do this, the following values must be written in the given sequence to the corresponding registers:

Step Table Register Value Corresponding
SDO download
value (0x4500/0)

1. 99 2 45054 (0xAFFE) 0xE3 02 AF FE
(0xE3=0x63(=99)+
0x80)

2. 99 1 1 (0x0001) 0xE3 01 00 01
3. 99 0 257 (0x0101) 0xE3 00 01 01

CANopen

78 Version: 1.2.3

Remove coupler write protection (CAN representation)

In order to remove the coupler write protection, the following SDO telegrams (download requests) must thus
be sent to the coupler:

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 FE AF 02 E3

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 01 00 01 E3

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 01 01 00 E3

An example of writing register values

After the write protection has been removed, the baud rate index for DIP switch setting 1,1 is to be set to the
value 7. This will assign a baud rate of 20 kbaud to this switch setting.

This requires the value 7 to be written into table 100, register 3. This is done with an SDO write access
(download request) to index 0x4500, sub-index 0 with the 32 bit value E4 03 00 07 (0xE4 = 0x64+0x80):

Id=0x600+Node-ID DLC=8; Data=23 00 45 00 07 00 03 E4

Identify terminals

The identifier of the coupler (or of the bus station) and of the attached Bus Terminals can be read from the
Bus Coupler's table 9. Register 0 then contains the identifier of the Bus Coupler itself, register 1 the identifier
of the first terminal and register n the identification of the nth terminal:

Table number Register number Description Value range
9 0 Bus station identifier 0 - 65535
9 1-255 Identifier of the extension

module/bus terminal
0 - 65535

The Bus Coupler description in register number 0 contains 5120 = 0x1400 for the BK5120, 5110 = 0x13F6
for the BK5110 and 5100 = 0x13EC for the LC5100. The Fieldbus Box modules contain the identifier 510 dec
= 0x1FE in register 0.

In the case of analog and special terminals, the terminal identifier (dec) is contained in the extension module
identifier or the terminal description.
Example: if a KL3042 is plugged in as the third terminal, then register 3 contains the value 3042dec (0x0BE2).

The following bit identifier is used for digital terminals:

MSB LSB
1 s6 s5 s4 s3 s2 s1 s0 0 0 0 0 0 0 a e

s6...s1: data width in bits; a=1: output terminal; e=1: input terminal

This identifier scheme results in the terminal descriptions listed below:

Extension module identifier Meaning
0x8201 2 bit digital input terminal, e.g. KL1002, KL1052,

Kl9110, KL9260
0x8202 2 bit digital output terminal, e.g. KL2034, KL2612,

KL2702
0x8401 4 bit digital input terminal, e.g. KL1104, KL1124,

KL1194
0x8402 4 bit digital output terminal, e.g. KL2124, KL2134,

KL2184
0x8403 4 bit digital input/output terminal, e.g. KL2212

CANopen

79Version: 1.2.3

General coupler configuration (table 0)

Table 0 of the Bus Coupler contains the data for the general coupler configuration. It is not, as a general rule,
necessary to change this; however, for special applications it is possible to change the settings using the
KS2000 configuration software, or through direct access via register communication. The write protection
must first be removed in order to do this (see above).

The relevant register entries are described below:

K-Bus configuration

Table 0, register 2, contains the K-Bus configuration, and is coded as follows (default value: 0x0006):

MSB LSB
0 0 0 0 0 0 0 0 0 0 0 0 0 D G A

A: Auto-reset

If there is a K-Bus error, attempts are made cyclically to start the K-Bus up again through a reset. If
emergency telegrams and guarding are not evaluated, activation of auto-reset can lead to output and input
information being lost without that loss being noticed.

0: No auto-reset (default)

1: Auto-reset active

G: Device diagnostics

 Reporting (by means of emergency telegram), that, for example
- a current input is open circuit (with diagnostics)
- 10 V exceeded at a 1-10V input terminal

0: Device diagnostics switched off

1: Device diagnostics active (default)

D: Diagnostic data

from digital terminals is included in the process image (e.g. KL2212). This flag is only evaluated when device
diagnostics is active (see above).

0: Do not display

1: Display (default)

Process image description

Table 0, register 3, contains the process image description, and is coded as follows (default value: 0x0903):

MSB LSB
0 0 0 0 k1 k0 f1 f0 0 0 a 0 d k 1 1

k0...k1: Reaction to K-Bus errors

0,2: Inputs remain unchanged (default = 2);

1: Set inputs to 0 (TxPDO with zeros is sent)

f0...f1: Reaction to fieldbus error

0: Stop the K-Bus cycles, watchdog in the terminals triggers, fault output values become active. The old
output values are initially set during a restart.

1: Set outputs to 0, then stop the K-Bus cycles (default). 2: Outputs remain unchanged.

CANopen

80 Version: 1.2.3

a: Word alignment (of analog and special terminals)

0: No alignment (default)

1: Map data to word boundaries (process data always starts on an even address in the PDO)

d: Data format for complex terminals (analog and special terminals)

0: Intel format (default)

1: Motorola format

k: Evaluation of complex terminals (analog and special terminals)

0: User data only (default)

1: Complete evaluation (note: analog channels then, for example, need 3 input and 3 output bytes instead of,
e.g., 2 input bytes; instead of 4 channels per PDO, 2 channels require a RxPDO and a TxPDO)

Bus Terminal / Extension Box register communication

Bus Terminal / Extension Box register communication

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x4501 0 Access
Terminal
Register

Unsigned8 ro N none Index
0x4501
allows
access to
all the
registers in
the bus
terminal or
extension
module.
Sub-index 0
contains
the number
of attached
bus
terminals.

1 Access
Reg.
Terminal 1

Unsigned32 rw N none Access to
bus
terminal or
extension
module
register 1

...
0XFE Access

Reg.
Terminal
254

Unsigned32 rw N none Access to
bus
terminal or
extension
module
register 254

The 32 bit value is composed as follows:

MSB LSB
Access (bit 7) + channel
number (bits 6...0)

Register number High byte register value Low byte register value

[0..1] + [0...0x7F] [0...0xFF] [0...0xFF] [0...0xFF]

CANopen

81Version: 1.2.3

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Accessing index 0x4501 allows the user registers in the bus terminal or extension module to be written or
read. The modules have a set of registers for each input or output channel. The modules are addressed by
means of the sub-index; the channel number and register are addressed in the 32-bit data value. Channel
number 0 corresponds here to the first channel, 1 to the second channel, and so forth.

Reading the register value

The coupler must first be informed of which register is to be read. This requires an SDO write access to the
appropriate index/sub-index combination, with:
- channel number (access bit = 0) in byte 3
- register address in byte 2 of the 32-bit data value.

Bytes 1 and 0 are not evaluated if the access bit (MSB of byte 3) equals 0. The register value can then be
read with the same combination of index and sub-index.

After the writing of the register address to be read, the coupler sets the access bit to 1 until the correct value
is available. Thus an SDO read access must check that the table number lies in the range from 0...0x7F.

An access error during register communication is indicated by the corresponding return value in the SDO
protocol (see the SDO section, Breakdown of parameter communication).

An example of reading register values

The thermocouple type to which the second input channel of a KL3202 Thermocouple Input Terminal has
been set is to be determined. This requires feature register 32 to be read. The terminal is located in the fifth
slot, next to the Bus Coupler. This means that the following SDO telegrams must be sent:

Write access (download request) to index 4501, sub-index 5 with 32 bit data value 01 20 00 00 (0x01 = 2nd
channel, 0x20 = register 32)
Id=0x600+Node-ID DLC=8; Data=23 01 45 05 00 00 20 01

Then a read access (upload request) to the same index/sub-index. The data value sent here is irrelevant
(0x00 is used here).
Id=0x600+Node-ID DLC=8; Data=40 01 45 05 00 00 00 00

The coupler responds with the upload response telegram:
Id=0x580+Node-ID DLC=8; Data=43 01 45 05 06 31 20 01

This means that the feature register contains the value 31 06. The upper 4 bits indicate the thermocouple
type. Their value here is 3, which means that PT500 is the type that has been set for this channel (see the
KL3202 documentation).

Writing register values

SDO write access to the corresponding combination of index and sub-index with:
- channel number + 0x80 (access bit = 1) in byte 3
- register address in byte 2
- high byte register value in byte 1
- low byte register value in byte 0 of the 32-bit data value.

NOTE
Warning
If the write protection is not removed (as a result, for instance, of a faulty codeword), then although a write
access to the terminal register will be confirmed (SDO download response), the value is not in fact entered
into the register. It is therefore recommended that the value is read back after writing and compared.

Remove terminal write protection

Before the user registers in the Bus Terminal (register 32-xx, depending on terminal type or extension
module) can be written to, it is first necessary for write protection to be removed. The following codeword is
written for this purpose into register 31 of the channel concerned:

CANopen

82 Version: 1.2.3

Write protection Channel Register Value Corresponding
SDO download
value (0x4500/0)

1,2, 3 or 4 31 (0x1F) 4661 (0x1235) 8y 1F 12 35 (y =
channel number)

Remove terminal write protection (CAN representation)

In order to remove the terminal's write protection, the following SDO telegram must thus be sent to the
coupler:

Id=600 + Node-ID DLC=8; Data=23 01 45 xx 35 12 1F 8y

where xx is the terminal's slot, and y indicates the channel.

An example of removing write protection

Suppose that a KL3202 Thermocouple Input Terminal is inserted into slot 5 of a BK5120 that has node
address 3, then the write protection for the first channel can be removed as follows:

Id=0x603 DLC=8; Data=23 01 45 05 35 12 1F 80

The following telegram is sent for the second channel:

Id=0x603 DLC=8; Data=23 01 45 05 35 12 1F 81

An example of writing register values

The type of thermocouple attached to the second channel of the KL3202 Terminal in slot 5 is now to be
changed to PT1000. For this purpose, the value 2 must be written into the upper 4 bits (the upper nibble) of
the feature register. It is assumed to that the default values are to be supplied for all the other bits in the
feature register. Once the write protection has been removed, SDO write access (download request) is used
to write the following 32 bit value into index 0x4501, sub-index 05: 81 20 21 06 (0x81=01+0x80;
0x20=32;0x2106 = register value).

The corresponding telegram on the bus looks like this:

Id=0x600+Node-ID DLC=8; Data=23 01 45 05 06 21 20 81

Activate PDOs

Activate PDOs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x5500 0 Activate
PDO
Defaults

Unsigned32 rw N 0x0000000
0

sets PDO
communica
tion
parameters
for PDOs
2...11

CANopen defines default identifiers for 4 transmit (Tx) and 2 receive (Rx) PDOs, all other PDOs being
initially deactivated after the nodes have started up. Index 0x5500 can activate all the PDOs that, in
accordance with the terminals inserted, are filled with process data (manufacturer-specific default mapping).
A manufacturer-specific default identifier allocation is carried out here for PDO5…11, while the transmission
type and a uniform inhibit time is set for PDO2…11. PDOs that do not have process data (and which are
thus superfluous in the present configuration) are not activated.

Note
This object can only be written in the pre-operational state!

CANopen

83Version: 1.2.3

The 32-bit value is used as follows:

MSB LSB
Transmission Type
RxPDOs

Transmission Type
TxPDOs

High byte inhibit time Low byte inhibit time

As is usual in CANopen, the LSB is transferred first, followed by the MSB.

Example

Activate PDOs for bus node number 1, set inhibit time to 10ms (=100 x 100µs), set transmission type for
TxPDOs to 255, and set transmission type for RxPDOs to 1. The following telegram must be sent:
Id=0x601 DLC=8; Data=23 00 55 00 64 00 FF 01

The node responds with the following telegram:
Id=0x601 DLC=8; Data=60 00 55 00 00 00 00 00

Identifiers used

The default identifier allocation for the additional PDOs leaves the pre-defined regions for guarding, SDOs
etc. free, assumes a maximum of 64 nodes in the network with PDO6 as the next node, and proceeds
according to the following scheme:

Object Function code Resulting COB ID (hex) Resulting COB ID (dec)
TxPDO5 1101 0x681 - 0x6BF 1665 - 1727
RxPDO5 1111 0x781 - 0x7BF 1921- 1983
TxPDO6 00111 0x1C1 - 0x1FF 449 - 511
RxPDO6 01001 0x241 - 0x27F 577 - 639
TxDPO7 01011 0x2C1 - 0x2FF 705 - 767
RxPDO7 01101 0x341 - 0x37F 833 - 895
TxPDO8 01111 0x3C1- 0x3FF 961 - 1023
RxPDO8 10001 0x441 - 0x47F 1089 - 1151
TxPDO9 10011 0x4C1 - 0x4FF 1217 - 1279
RxPDO9 10101 0x541 - 0x57F 1345 - 1407
TxDPO10 10111 0x5C1 - 0x5FF 1473 - 1535
RxPDO10 11001 0x641 - 0x67F 1601- 1663
TxPDO11 11011 0x6C1 - 0x6FF 1729 - 1791
RxPDO11 11101 0x741 - 0x77F 1857 - 1919

NOTE
Warning
Ensure that index 0x5500 is not used if Bus Couplers with more than 5 PDOs are present in networks with
node addresses > 64, otherwise identification overlaps can occur. In that case, the PDO identifiers must be
set individually.

For the sake of clarity, the default identifiers defined according to CANopen are also listed here:

CANopen

84 Version: 1.2.3

Object Function code Resulting COB ID (hex) Resulting COB ID (dec)
Emergency 0001 0x81 - 0xBF [0xFF] 129 - 191 [255]
TxPDO1 0011 0x181 - 0x1BF [0x1FF] 385 - 447 [511]
RxPDO1 0100 0x201 - 0x23F [0x27F] 513 - 575 [639]
TxPDO2 0101 0x281 - 0x2BF [0x2FF] 641 - 676 [767]
RxPDO2 0110 0x301 - 0x33F [0x37F] 769 - 831 [895]
TxDPO3 0111 0x381 - 0x3BF [0x3FF] 897 - 959 [1023]
RxPDO3 1000 0x401 - 0x43F [0x47F] 1025 - 1087 [1151]
TxPDO4 1001 0x481 - 0x4BF [0x4FF] 1153 - 1215 [1279]
RxPDO4 1010 0x501 - 0x53F [0x57F] 1281- 1343 [1407]
SDO (Tx) 1011 0x581 - 0x5BF [0x5FF] 1409 - 1471 [1535]
SDO (Rx) 1100 0x601 - 0x63F [0x67F] 1537 - 1599 [1663]
Guarding / Heartbeat/
Bootup

1110 0x701 - 0x73F [0x77F] 1793 - 1855 [1919]

The identifiers that result from the DIP switch settings on the coupler are given, as are the identifier regions
for the node addresses 64...127 (not settable in Bus Couplers BK5110, BK5120 and LC5100) in square
brackets. Addresses 1…99 can be set for the Fieldbus Box modules and the BK515x Bus Couplers.

The appendix [} 135] contains a tabular summary of all the identifiers.

Digital inputs

Digital inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6000 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available
digital 8-bit
input data
blocks

1 1st input
block

Unsigned8 ro Y 0x00 1st input
channel

...
0XFE 254th input

block
Unsigned8 ro Y 0x00 254th input

channel

Interrupt mask

Interrupt mask

CANopen

85Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6126 0 Number of
elements

Unsigned8 ro N Depending
on type

The
number of
32-bit
interrupt
masks = 2
x the
number of
TxDPOs

1 IR-Mask0
TxPDO1

Unsigned32 rw N 0xFFFFFFF
F

IR-mask
bytes 0...3
TxPDO1

2 IR-Mask1
TxPDO1

Unsigned32 rw N 0xFFFFFFF
F

IR-mask
bytes 4...7
TxPDO1

3 IR-Mask0
TxPDO2

Unsigned32 rw N 0xFFFFFFF
F

IR-mask
bytes 0...3
TxPDO2

...
0x20 IR-Mask1

TxPDO16
Unsigned32 rw N 0xFFFFFFF

F
IR-mask
bytes 4...7
TxPDO16

By default, every change in the value in an event-driven PDO causes a telegram to be sent. The interrupt
mask makes it possible to determine which data changes are evaluated for this purpose. By clearing the
appropriate ranges within the PDOs they are masked out for event-driving purposes (interrupt control). The
interrupt mask does not just govern all the PDOs with digital inputs, but all the TxPDOs that are present. If
the TxPDOs are shorter than 8 bytes, then the superfluous part of the IR mask is not evaluated.

The interrupt mask only has an effect on TxPDOs with transmission types 254 and 255. It is not stored in the
device (not even through object 0x1010). Changes to the mask at runtime (when the status is operational)
are possible, and are evaluated starting from the next change of input data.

The interrupt mask for TxPDOs with analog input data is not evaluated if either limit values (0x6424, 0x6425)
or the delta function (0x6426) have been activated for the inputs.

This entry has been implemented in firmware C3 and above.

CANopen

86 Version: 1.2.3

Example of data assignment

Application example

The value contained in a fast counter input is only to be transmitted when bits in the status word (the latch
input, for instance) have changed. This requires the 32 bit counter value to be masked out (zeroed) in the
interrupt mask. The status is located in byte 0, while the counter value is, by default, contained in bytes or
1..4 of the corresponding PDOs (TxPDO3 in this example, because < 65 digital and < 5 analog inputs are
present).
This means that index 0x6126, sub-index5 must receive the value 0x0000 00FF and that sub-index6 must
have 0xFFFF FF00 written into it.

The corresponding SDOs therefore appear as follows:

11 bit
identifier

8 bytes of user data

0x600+
node ID

0x22 0x26 0x61 0x05 0xFF 0x00 0x00 0x00

11 bit
identifier

8 bytes of user data

0x600+
node ID

0x22 0x26 0x61 0x06 0x00 0xFF 0xFF 0xFF

Digital outputs

Digital outputs

CANopen

87Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6200 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
available
digital 8-bit
output data
blocks

1 1st input
block

Unsigned8 rw Y 0x00 1st output
channel

...
0XFE 254th input

block
Unsigned8 rw Y 0x00 254th output

channel

Analog inputs

Analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6401 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 1st input Unsigned16 ro Y 0x0000 1st input
channel

...
0XFE 254th input Unsigned16 ro Y 0x0000 254th input

channel

The analog signals are displayed left aligned. The representation in the process image is therefore
independent of the actual resolution. Detailed information on the data format can be found at the relevant
signal type.

Analog outputs

Analog outputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6411 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
output
channels
available

1 1st input
block

Unsigned16 rw Y 0x0000 1st output
channel

...
0XFE 254th input

block
Unsigned16 rw Y 0x0000 254th output

channel

The analog signals are displayed left aligned. The representation in the process image is therefore
independent of the actual resolution. Detailed information on the data format can be found at the relevant
signal type.

Event driven analog inputs

Event driven analog inputs

CANopen

88 Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6423 0 Global
Interrupt
Enable

Boolean rw N FALSE (0) Activates
the event-
driven
transmissio
n of PDOs
with analog
inputs.

Although, in accordance with CANopen, the analog inputs in TxPDO2..4 are by default set to transmission
type 255 (event driven), the event (the alteration of an input value) is suppressed by the event control in
object 0x6423, in order to prevent the bus from being swamped with analog signals. It is recommended that
the flow of data associated with the analog PDOs is controlled either through synchronous communication or
through using the event timer. In event-driven operation, the transmission behavior of the analog PDOs can
be parameterized before activation by setting the inhibit time (object 0x1800ff, sub-index 3) and/or limit value
monitoring (objects 0x6424 + 0x6425) and/or delta function (object 0x6426).

Upper limit value analog inputs

Upper limit value analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6424 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 upper limit
1st input

Unsigned16 rw Y 0x0000 Upper limit
value for 1st

input
channel

...
0XFE upper limit

254th input
Unsigned16 rw Y 0x0000 Upper limit

value for
254th input
channel

Values different from 0 activate the upper limit value for this channel. A PDO is then transmitted if this limit
value is exceeded. In addition, the event driven mode must be activated (object 0x6423). The data format
corresponds to that of the analog inputs.

Lower limit value analog inputs

Lower limit value analog inputs

CANopen

89Version: 1.2.3

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6425 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 lower limit
1st input

Unsigned16 rw Y 0x0000 Lower limit
value for 1st

input
channel

...
0XFE lower limit

254th input
Unsigned16 rw Y 0x0000 Lower limit

value for
254th input
channel

Values different from 0 activate the lower limit value for this channel. A PDO is then transmitted if the value
falls below this limit value. In addition, the event driven mode must be activated (object 0x6423). The data
format corresponds to that of the analog inputs.

Delta function for analog inputs

Delta function for analog inputs

Index Sub-index Name Type Attribute Mapping Default
value

Meaning

0x6426 0 Number of
elements

Unsigned8 ro N Depending
on type and
fittings

Number of
analog
input
channels
available

1 delta value
1st input

Unsigned16 rw Y 0x0000 Delta value
for the 1st

input
channel

...
0XFE delta value

254th input
Unsigned16 rw Y 0x0000 Delta value

for the 254th

input
channel

Values different from 0 activate the delta function for this channel. A PDO is then transmitted if the value has
changed by more than the delta value since the last transmission. In addition, the event driven mode must
be activated (object 0x6423). The data format corresponds to that of the analog inputs (delta value: can only
have positive values).

Parameterisation and Commissioning

90 Version: 1.2.3

4 Parameterisation and Commissioning

4.1 Start-up behavior of the Fieldbus Box
After power up, the Fieldbus Box checks its state, configures the IP-Link (if present) and refers to the
extension modules to create a structure list. If the Fieldbus Box contains a decentralized controller (IL230x-
C310) the local PLC is started once the structure list has successfully been created.
The I/O LEDs illuminate and flash as the module starts up. If there are no errors, the I/O LEDs should stop
flashing within about 2-3 seconds. If there is an error, then the LED that flashes will depend on the type of
that error (see Diagnostic LEDs).

Parameterisation and Commissioning

91Version: 1.2.3

4.2 Address
Before starting up the Fieldbus Box, the Node-ID has to be set. The Node ID can be set using the two rotary
selection switches behind the transparent cover. The default setting is 11. Any address is permitted, but
each address may only be used once within the network. The address is changed while the Fieldbus Box is
switched off. To do this, unscrew the cover and use a screwdriver to move the switches to the desired
position. Make sure that the switches engage properly. The switch on the left represents the tens, while that
on the right represents the units. The change in address is active as soon as the device is switched on.

Example

You want to set address 34.
Left-hand rotary selection switch 3
Right hand rotary selection switch 4

Parameterisation and Commissioning

92 Version: 1.2.3

4.3 Baud Rate
The baud rate does not have to be set for the fieldbus box. These modules include an automatic baud rate
function.

Via table 100 a fix baud rate can be set (see below).

In order for automatic baud rate detection to function, it is necessary for a number of valid telegrams to be
present on the bus at the desired baud rate. The RUN and CAN ERR LEDs flash in rapid alternation while
the baud rate search is in progress. As soon as a baud rate has been detected and adopted, the Fieldbus
Box begins initialization.

A software reset does not cause the automatic baud rate function to be activated again - the baud rate that
was previously active is retained.

Bit Timing

Bit Timing

The following baud rates and entries in the bit-timing register are supported by the Beckhoff CANopen
devices:

Baud-rate [kbaud] BTR0 BTR1 Sampling Point
1000 0x00 0x14 75%
800 0x00 0x16 80%
500 0x00 0x1C 87%
250 0x01 0x1C 87%
125 0x03 0x1C 87%
100 0x04 0x1C 87%
50 0x09 0x1C 87%
20 0x18 0x1C 87%
10 0x31 0x1C 87%

The bit-timing register settings given (BTR0, BTR1) apply, for example, for the Philips 82C200, SJA1000,
Intel 80C527, Siemens 80C167 and other CAN controllers. They are optimized for the maximum bus length.

Fix baud rate setting

Via KS2000 Configuration Software you can change the settings of the CANopen module. This is possible
from firmware version C6. The present firmware version of your module is displayed by KS2000
Configuration Software.

Note
To use this settings you have to disable the register write protection via KS2000 Configuration Soft-
ware bevore.

Parameterisation and Commissioning

93Version: 1.2.3

Meaning of the entries in table 100

Table100, Offset Description Default
000 Baud rate to be set fix 0 (see table)
001 reserved reserved
002 reserved reserved
003 reserved reserved
004 reserved reserved
005 Auto baud active 0
006 reserved reserved
007 reserved reserved
008 reserved reserved
009 reserved reserved
010 Activation of a fix baud rate 0
011-018 reserved reserved

Example of setting a fix baud rate

A fix baud rate can be stored to register 0 of table 100. This setting can be activated in register 10.

Example for 50 kBaud:

• Deactivate the write protection
• Open table 100
• Write 0x0007 to offset 0 (see table of supported baud rates)
• Write 0x8000 to offset 10
• Write 0x0001 to offset 5
• Restart the module

A fix baud rate of 50 kBaud is set now!

Table 1: Table of supported baud rates

Value in table 100, offset 0 baud rate
0x0000 1 MBaud/Auto
0x0001 800 kBaud
0x0002 500 kBaud
0x0003 400 kBaud
0x0004 250 kBaud
0x0005 125 kBaud
0x0006 100 kBaud
0x0007 50 kBaud
0x0008 20 kBaud
0x0009 10 kBaud

Parameterisation and Commissioning

94 Version: 1.2.3

4.4 Mapping the Fieldbus Boxes
Whereas in other fieldbus systems, the entire process image is usually transmitted cyclically, CANopen
divides the process data into process data objects (PDOs) containing each a maximum of eight data bytes.
PDO mapping refers to mapping of the application objects (real time data) from the object directory to the
process data objects. The CANopen device profile provide a default mapping for every device type, and this
is appropriate for most applications. Thus the default mapping for digital I/O simply represents the inputs and
outputs in their physical sequence in the transmit and receive process data objects.

The first 4 analog inputs or outputs are located in the second PDO.

These PDOs are accordingly occupied by the Beckhoff fieldbus I/O modules - if, for instance, no digital
outputs are present, RxPDO1 remains empty.

In this way the PDO assignment for the Fieldbus Boxes is determined by the particular signal
variants: digital input/output data is in PDO1, analog in PDO2, special signals in PDO3.

The Coupler Box modules occupy the PDOs automatically: during the start-up phase, the Coupler Box reads
which extension box modules are present, and assigns the data to the PDOs. A distinction is made here
between digital, analog and special terminals, and the PDOs are each occupied with one type. In other
words, different types of data (such as digital and analog inputs) are not packed into one PDO, but a new
PDO is started for each new data type.

Automatic PDO Assignment in Beckhoff Bus Couplers [} 159]

The current mapping can be read by means of corresponding entries in the object directory. These are
known as the mapping tables. The first location in the mapping table (sub-index 0) contains the number of
mapped objects that are listed after it. The tables are located in the object directory at index 0x1600ff for the
RxPDOs and at 0x1A00ff for the TxPDOs.

Process data assignment in the Fieldbus Box modules

The object directory entries in which the process data for the relevant module is located (default setting) is
listed. The assignment can change as result of modifications to parameters (e.g. the process data length of
serial interfaces).

Details of the data contents may be found in the fieldbus-neutral documentation covering Signal types
(Fieldbus Box I/O Modules). You can find this on the internet in the Download area at http://
www.beckhoff.com.

http://www.beckhoff.com
http://www.beckhoff.com

Parameterisation and Commissioning

95Version: 1.2.3

Modules Process data (inputs) Process data (outputs)
IP10xx-B510
IE10xx

8 digital inputs (0x6000) -

IP15xx-B510
IE15xx

1 x 5-byte special terminal, input
data (0x2A00)

1 x 5 byte special terminal, output
data (0x2B00)

IP20xx-B510
IE20xx

- 8 digital outputs (0x6200)

IP23xx-B510
IL230x-B510
IE23xx

4 digital inputs (0x6000). Further
digital input data is appended
contiguously (in object 0x6000 and
in the TxPDO).

4 digital outputs (0x6200). Further
digital output data is appended
contiguously (in object 0x6200 and
in the RxPDO).

IP240x-B510
IE240x

8 digital inputs (0x6000) 8 digital outputs (0x6200)

IP25xx-B510
IE25xx

2 x 3-byte special terminal, input
data (0x2600)

2 x 3 byte special terminal, output
data (0x2700)

IP3xxx-B510
IE3xxx

4 x analog inputs (0x6401) -

IP41xx-B510
IE41xx

- 4 x analog outputs (0x6411)

IP5009-B510
IE5009

1 x 4-byte special terminal, input
data (0x2800)

1 x 4 byte special terminal, output
data (0x2900)

IP5109-B510
IE5109

1 x 6-byte special terminal, input
data (0x2C00)

1 x 6 byte special terminal, output
data (0x2D00)

IP6xxx-B510
IE6xxx

1 x 4-byte special terminal, input
data (0x2800)

1 x 4 byte special terminal, output
data (0x2900)

Parameterisation and Commissioning

96 Version: 1.2.3

4.5 Configuration Fieldbus

4.5.1 Configuration Files
The parameters and possible settings of CANopen devices are listed in the configuration files (electronic
data sheets, or eds files). These eds files can be read by configuration tools. The structure and syntax of eds
files is defined in CiA DSP 306. A tool can be downloaded from the website maintained by the CAN in
Automation Association (http://www.can-cia.com) with which the eds files can be checked for consistency
with the standard.

The eds files for the BECKHOFF CANopen bus components are available on the BECKHOFF site (http://
www.beckhoff.com) and on the BECKHOFF product CDs.

http://www.can-cia.com
http://www.beckhoff.com
http://www.beckhoff.com

Parameterisation and Commissioning

97Version: 1.2.3

4.5.2 Overview
The Beckhoff CANopen bus components offer a wide range of configuration and setting facilities. The effort
required for configuration remains, however, minimal, because sensible default values exist for all the
parameters. These presettings mean that the requirements of the majority of applications are met without
any difficulty.

The following list provides a summary of the devices' most important configuration options:

Node address

Node address [} 91]

It is necessary for this to be set in every case, and done in such a way that no node addresses are assigned
more than once.

Baud Rate

Baud Rate [} 92]

Automatic baud rate function means that manual configuration is superfluous. A facility for manual setting
has therefore been omitted from the Fieldbus Box modules.

PDO Parameters

PDO Identifier

PDO Identifier [} 29]

The CANopen default identifier allocation provides identifiers for up to 4 receive process data objects
(RxPDOs) and for 4 transmit process data objects (TxPDOs). This means that CAN identifiers exist for the
data from, for instance, 64 digital input/outputs and 12 analog input/outputs. If there is more than one input/
output, their data is, by default, mapped into PDOs 5...16 (see Default Mapping [} 159] for details).
Identifiers for PDOs 5...11 can easily be enabled by writing to object 0x5500. If more than 11 PDOs are
required, or if the default identifier allocation [} 41] does not satisfy the requirements of the application, then
the identifiers can be set individually (see objects 0x1400ff and 0x1800ff).

PDO Communication type

PDO Communication type

The communication technique for each process data object can be set individually: event-driven (default),
polled or synchronised.

PDO Mapping

PDO Mapping [} 34]

The data associated with the inputs and outputs is assigned (through the default mapping) to the process
data objects when the module starts up. This assignment (mapping) can be modified if required (see objects
0x1600ff and 0x1A00ff).

Heartbeat/Guarding

Heartbeat/Guarding

The modules respond to guarding requests without the need for special configuration. If the modules are to
send status information on their own initiative (heartbeat), or if the modules are required to react to the
absence of the request telegrams or of the master heartbeat, then the corresponding parameters do need to
be set (guarding: object 0x100C ff.; heartbeat: object 0x1016 ff).

The list of all the parameters accessible via CAN is located in the object directory.

Parameterisation and Commissioning

98 Version: 1.2.3

Note
The objects in the object directory can be reached by SDO access, but not generally through the
configuration software KS2000. On the other hand, all the registers that can be configured with
KS2000 can also be reached using SDO access to the object directory (objects 0x4500removed
link: 0x4500 and 0x4501removed link: 0x4501) - even though this does not offer the same conve-
nience as the configuration software.

Also see about this
2 KS2000 Configuration Software [} 106]

Parameterisation and Commissioning

99Version: 1.2.3

4.5.3 Configuration via TwinCAT
The TwinCAT automation software is a complete automation solution for PC-compatible computers.
TwinCAT turns any compatible PC into a real-time controller, an IEC 61131-3 Multi-PLC, NC positioning
system, the corresponding programming environment and user interface. TwinCAT supports several different
CANopen PC cards. Beckhoff recommends the CANopen PCI master card FC5101, which can also be
obtained as a two-channel version (FC5102).

System Manager

The TwinCAT System Manager Tool is used to configure the FC510x CANopen PCI card. The System
Manager provides a representation of the number of programs of the TwinCat PLC systems, the
configuration of the axis control and of the connected I/O channels as a structure, and organises the
mapping of the data traffic.

For applications without TwinCAT PLC or NC, the TwinCAT System Manager Tool configures the
programming interfaces for a wide range of application programs:

• ActiveX control (ADS-OCX) for e.g. Visual Basic, Visual C++, Delphi, etc.
• DLL interface (ADS-DLL) for e.g. Visual C++ projects
• Script interface (ADS script DLL) for e.g. VBScript, JScript, etc.

The TwinCAT system manager has the following properties:
• Bit-wise association of server process images and I/O channels
• Standard data formats such as arrays and structures
• User defined data formats
• Continuous variable linking
• Drag and Drop
• Import and export at all levels

Procedure when configuring the CANopen input/output modules

1. The corresponding CANopen master PC card is selected first, and inserted into the I/O configuration.

Parameterisation and Commissioning

100 Version: 1.2.3

2. The baud rate and, if appropriate, the master node ID (for the heartbeat protocol) are now set.

3. Following the master card, the bus nodes are then inserted:

Parameterisation and Commissioning

101Version: 1.2.3

4. The appropriate I/O versions and extension boxes are now appended at the CANopen Compact or
Coupler Box.

5. The communication properties for these bus nodes are now configured:

Parameterisation and Commissioning

102 Version: 1.2.3

Node Id

Sets the node ID of the CAN bus device (between 1 and 99). This value must accord with the value set at
the Fieldbus Box.

Guard time

Cycle time for the node monitoring (node guarding). In the case of the FC5101 this time is used as the
producer heartbeat time.

Life time factor

Guard time multiplied produces the watchdog time for the monitoring of the master by the coupler (life
guarding). Life guarding is deactivated if the lifetime factor is set to zero. The watchdog time is used as the
consumer heartbeat time in bus nodes that support heartbeat.

Inhibit Time

Displays the minimum send interval for PDOs (telegrams) with analog and special signals. If more than
digital 64 signals are present, these are also provided with this Inhibit Time.

Event Time

The event time for PDOs 1 and 2 (Rx + Tx) of this node is set here.

K-Bus Update

Calculates the anticipated duration of a complete update of the K-Bus (according to type and number of
connected terminals).

Trans.Type

Gives the Transmission Type for digital / analog input telegrams. 254 + 255 corresponds to the event-driven
transfer, 1 ... 240 are synchronous transfer types.

Parameterisation and Commissioning

103Version: 1.2.3

Firmware Update

Enables the updating of the coupler firmware via the serial interface (requires KS2000 software package
interface cable).

Diagnosis Inputs

FC510x: Each CANopen fieldbus node contains one diagnostic input byte (Node State), which signals the
status of the current slave during the running time and can be linked, for example with the PLC. In addition a
signal is sent via the "Diag Flag" bit informing as to whether the card contains new Diagnostic Information.
This can then be read via ADS READ.

The SDOs tab

SDO inputs sent to the node at StartUp are displayed/managed on this page. Inputs with an object index in
straight brackets are automatically created on the basis of the updated terminal configuration. Other inputs
can be managed using Add, Insert, Delete and Edit.

The ADS Tab

In order to be able to read and write SDO objects during the running time (e.g. from the PLC), the node (Bus
Coupler) can be allocated an ADS port (CIFx0-CAN). The FC510x provides an ADS port at all times for
every node since the diagnostic information is transported via ADS. These ports can be used to read and
write SDO objects using ADS read requests and/or write requests.

The ADS IndexGroup contains the CANopen object index and the ADS IndexOffset contains the CANopen
Sub-Index.

CANopen Emergency Object

Some CANopen status data and emergency objects received from a node can be read by any TwinCAT
program via ADS and/or signalled to any TwinCAT program. The data structures and addresses distinguish
between the FC510x and the CIFx0-CAN.

Note
More information on the configuration of CANopen bus nodes and master cards under TwinCAT
can be found in the TwinCAT documentation or in the manual for the relevant master card.

Parameterisation and Commissioning

104 Version: 1.2.3

Parameterisation and Commissioning

105Version: 1.2.3

4.5.4 Configuration with third party controllers
CANopen interfaces are available for a large number of programmable logic controllers (PLCs), embedded
controllers and Industrial PCs. The range of configuration tools for these CANopen interfaces is large: it
ranges from the simple "CAN layer 2 interface" in which the user has to set up each individual CAN object
himself, and therefore must, so to speak, recreate CANopen, up to convenient configuration tools with drag-
and-drop functionality.

In the present handbook, all the required CAN objects are deliberately described right down to the bit
representation on the CAN bus. This means that the Beckhoff CANopen devices can also be addressed
directly from a simple CAN interface. In this respect, the Quick start for experienced users [} 131] section
may be particularly helpful.

The eds files [} 96] are available for download for the purposes of configuration using general CANopen
configuration tools. With these tools it is usually sufficient to recreate the default mapping of the input/output
modules.

For more precise details of the configuration, it is necessary to consult the manuals provided by the tool
manufacturer concerned.

Parameterisation and Commissioning

106 Version: 1.2.3

4.6 Configuration of the complex I/O Modules

4.6.1 KS2000 Configuration Software
The KS2000 configuration software permits configuration, commissioning and parameterization of bus
couplers, of the affiliated bus terminals and of Fieldbus Box Modules. The connection between bus coupler/
Fieldbus Box Module and the PC is established by means of the serial configuration cable or the fieldbus.

Configuration

Configuration

You can configure the Fieldbus stations with the Configuration Software KS2000 offline. That means, setting
up a terminal station with all settings on the couplers and terminals resp. the Fieldbus Box Modules can be
prepared before the commissioning phase. Later on, this configuration can be transferred to the terminal
station in the commissioning phase by means of a download. For documentation purposes, you are provided
with the breakdown of the terminal station, a parts list of modules used and a list of the parameters you have
modified. After an upload, existing fieldbus stations are at your disposal for further editing.

Parameterization

KS2000 offers simple access to the parameters of a fieldbus station: specific high-level dialogs are available
for all bus couplers, all intelligent bus terminals and Fieldbus Box modules with the aid of which settings can
be modified easily. Alternatively, you have full access to all internal registers of the bus couplers and
intelligent terminals. Refer to the register description for the meanings of the registers.

Parameterisation and Commissioning

107Version: 1.2.3

Commissioning

The KS2000 software facilitates commissioning of machine components or their fieldbus stations: Configured
settings can be transferred to the fieldbus modules by means of a download. After a login to the terminal
station, it is possible to define settings in couplers, terminals and Fieldbus Box modules directly online. The
same high-level dialogs and register access are available for this purpose as in the configuration phase.

The KS2000 offers access to the process images of the bus couplers and Fieldbus Box modules.

• Thus, the coupler's input and output images can be observed by monitoring.
• Process values can be specified in the output image for commissioning of the output modules.

All possibilities in the online mode can be used in parallel with the actual fieldbus mode of the terminal
station. The fieldbus protocol always has the higher priority in this case.

4.6.2 Parameterisation via Register

4.6.2.1 General Register Description

Different operating modes or functionalities may be set for the complex modules. The General Description of
Registers explains those register contents that are the same for all complex modules. The module-specific
registers are explained in the following section.
Access to the module's internal registers is described in the section on Register Communication.

General Description of Registers

Complex modules that possess a processor are able to exchange data bi-directionally with the higher-level
controller. These modules are referred to below as intelligent modules. These include the analog inputs
(0-10 V, -10-10 V, 0-20 mA, 4-20 mA), the analog outputs (0-10 V, -10-10 V, 0-20 mA, 4-20 mA), the serial
interface terminals (RS485, RS232, TTY, data exchange terminals), counter terminals, encoder interface and
SSI interface terminals, PWM terminals and all the modules that can be parameterized.

The main features of the internal data structure are the same for all the intelligent modules. This data area is
organized as words, and includes 64 memory locations. The important data and the parameters of the
module can be read and set through this structure. It is also possible for functions to be called by means of
corresponding parameters. Each logical channel in an intelligent module has such a structure (so a 4-
channel analog module has 4 sets of registers).

This structure is divided into the following areas:

Range Address
Process variables 0-7
Type register 8-15
Manufacturer parameters 16-30
User parameters 31-47
Extended user region 48-63

Registers R0-R7 (in the terminal's internal RAM)

The process variables can be used in addition to the actual process image. Their function is specific to the
terminal.

R0-R5

The function of these registers depends on the type of terminal.

Parameterisation and Commissioning

108 Version: 1.2.3

R6

Diagnostic register. The diagnostic register can contain additional diagnostic information. Parity errors, for
instance, that occur in serial interface terminals during data transmission are indicated here.

R7

Command register
- High-Byte_Write = function parameter
- Low-Byte_Write = function number
- High-Byte_Read = function result
- Low-Byte_Read = function number

Registers R8-R15 (in the terminal's internal ROM)

The type and system parameters are hard programmed by the manufacturer, and the user can read them
but cannot change them.

R8

Fieldbus Box type: The Fieldbus Box type in register R8 is needed to identify the Fieldbus Box.

R9

Software version x.y.: The software version can be read as a string of ASCII characters.

R10

Data length: R10 contains the number of multiplexed shift registers and their length in bits. The Bus Coupler
sees this structure.

R11

Signal channels: Related to R10, this contains the number of channels that are logically present. Thus for
example a shift register that is physically present can perfectly well consist of several signal channels.

R12

Minimum data length: The particular byte contains the minimum data length for a channel that is to be
transferred. If the MSB is set, the control/status byte is not absolutely necessary for the terminal's function,
and if the Bus Coupler is appropriately configured it is not transferred to the controller. The information is
located
- in the high byte of an output module
- in the low byte of an input module

R13

Data type register

Parameterisation and Commissioning

109Version: 1.2.3

Data type register Description
0x00 Terminal with no valid data type
0x01 Byte array
0x02 Structure 1 byte n bytes
0x03 Word array
0x04 Structure 1 byte n words
0x05 Double word array
0x06 Structure 1 byte n double words
0x07 Structure 1 byte 1 word
0x08 Structure 1 byte 1 double word
0x11 Byte array with variable logical channel length
0x12 Structure 1 byte n bytes with variable logical channel

length (e.g. 60xx)
0x13 Word array with variable logical channel length
0x14 Structure 1 byte n words with variable logical channel

length
0x15 Double word array with variable logical channel

length
0x16 Structure 1 byte n double words with variable logical

channel length

R14

reserved

R15

Alignment bits (RAM): The analog terminal is placed on a byte boundary in the K-Bus with the alignment bits.

Registers R16-R30 (manufacturer's parameters, serial EEPROM)

The manufacturer parameters are specific for each type of terminal. They are programmed by the
manufacturer, but can also be modified by the controller. The manufacturer parameters are stored in a serial
EEPROM in the terminal, and are retained in the event of voltage drop-out. These registers can only be
altered after a code-word has been set in R31.

Registers R31-R47 (application parameters, serial EEPROM)

The application parameters are specific for each type of terminal. They can be modified by the programmer.
The application parameters are stored in a serial EEPROM in the terminal, and are retained in the event of
voltage drop-out. The application region is write-protected by a code-word.

R31

Code-word register in RAM: The code-word 0x1235 must be entered here so that parameters in the user
area can be modified. If any other value is entered into this register, the write-protection is active. If write
protection is inactive, the code-word is returned when the register is read, but if write protection is active,
then the register contains a null value.

R32

Feature register: This register specifies the terminal's operating modes. Thus, for instance, a user-specific
scaling can be activated for the analog I/O modules.

R33-R47

Terminal-specific Registers: These registers depend on the type of terminal.

Parameterisation and Commissioning

110 Version: 1.2.3

Registers R47-R63 (Register extension for additional functions)

These registers are provided for additional functions.

4.6.2.2 Register communication via SDO

CANopen default setting: compact representation of analog process data

In a CANopen modules, analog signals are compact by default, and are not mapped into the process image
in complex form. The PDOs are exploited optimally in this way - every four channels occupy one PDO. In
complex representation, each channel requires a space of six bytes in the process image: 1 control byte and
2 data bytes in the Tx-PDO, along with 1 status byte and another 2 data bytes in the RxPDO.

Representation of the process data, however, does not permit access to the registers through the process
data, because the control and status bytes are not transferred. Access to all registers in the analog signal
modules therefore takes place under CANopen via service data objects (SDOs).

Special function modules: complex representation again

The control and status byte of special function modules such as fast counters (IE/IP1502), PWM outputs (IE/
IP25x2) or angle/displacement measuring modules (IE/IP5x09) are also mapped under CANopen into the
process image. Access to the registers of these modules is optionally possible via SDO or through process
register communication.

Access to registers in the CANopen module

Access to the registers of the CANopen connection ("coupler") is made through object 0x4500. The register
model contains parameters such as

- Activation of IP-Link auto-reset

- Reaction to IP-Link failure

- Display of diagnostic data

- Identification of the signal modules

- etc.

See the object description for bus node register communication (0x4500) for details, examples and the most
important setting options.

Access to module registers

Access to the registers of the intelligent signal modules is made through object 0x4501. All those signal
modules with their own processor have a register module containing parameters that are specific to the
signal, such as

- Analog channel scaling

- Sensor type selection

- Filter settings

- etc.

The object description for extension box register communication (0x4501) contains more precise information
and examples.

Parameterisation and Commissioning

111Version: 1.2.3

4.6.2.3 Example of register communication

(For examples of register communication via SDO, see the object directory, object 0x4501)

If bit 7 of the control byte is set, then the first two bytes of the user data are not used for exchanging process
data, but are written into or read from the terminal's register set.
Bit 6 of the control byte specifies whether a register should be read or written. If bit 6 is not set, then a
register is read out without modifying it. The value can then be taken from the input process image.
If bit 6 is set, then the user data is written into a register. As soon as the status byte has supplied an
acknowledgement in the input process image, the procedure is completed (see example).
The address of the register that is to be addressed is entered into bits 0 to 5 of the control byte.

REG=1 W/R A5 A4 A3 A2 A1 A0

REG: Register bit
REG = 0: Process data
REG = 1: Register communication

R/W: Access to register structure
W/R = 0: Read register
W/R = 1: Write register

A5..A0: Register address
Altogether 64 registers may be addressed through A5...A0

Example 1

Reading register 8 from an IP/IE1502. The module contains two channels, each of which is mapped with 5
bytes into the process image.

Parameterisation and Commissioning

112 Version: 1.2.3

Byte 0 (control
byte)

Byte 1 (data in,
D0)

Byte 2 (data in,
D1)

Byte 3 (data in,
D2)

Byte 5 (data in,
D3)

0x88 0xXX 0xXX 0xXX 0xXX

Bit 0.7 and bit 0.3 are set. This means that register communication is active, but only for reading because bit
0.6 is low. Register 8 is indicated for reading. When access is only for reading, the output data word has no
significance. If we want to change a register, then the desired setting is written into the output word.

The box returns the following type identification (0x05DE corresponds to unsigned integer 1502).
Special features of Fieldbus Boxes:

The last figure does not indicate the connection type (0 for S8, 1 for M8 and 2 for M12), but returns the
number of channels.

Byte 0 (status
byte)

Byte 1 (data in,
D0)

Byte 2 (data in,
D1)

Byte 3 (data in,
D2)

Byte 5 (data in,
D3)

0x88 0x00 0x00 0x05 0xDE

Note
In order to write into registers, the password (0x1235) must be written into register 31, so that write
protection is deactivated. It is activated by writing any value other than 0x1235. Note that some of
the settings that can be made in registers only become active after the next power restart.

Example 2

Process of register communication for writing into register

1. Write register 31

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0xDF 0x12 0x35

Answer from the module/Bus Terminal

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0x9F 0x00 0x00

2. Read register 31

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0x9F 0xXX 0xXX

Answer from the module/Bus Terminal

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0x9F 0x12 0x35

3. Write register 32

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0xE0 0x00 0x02

Answer from the module/Bus Terminal

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0xA0 0x00 0x00

Parameterisation and Commissioning

113Version: 1.2.3

4. Read register 32

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0xA0 0xXX 0xXX

Answer from the module/Bus Terminal

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0xA0 0x00 0x02

5. Write register 31, reset code word

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0xDF 0x00 0x00

Answer from the module/Bus Terminal

Byte 0 (control byte) Byte 1 (data in, high byte) Byte 2 (data in, low byte)
0x9F 0x00 0x00

Error handling and diagnosis

114 Version: 1.2.3

5 Error handling and diagnosis

5.1 LEDs

Overview

The CANopen Fieldbus Box has two groups of LEDs for the display of status. The upper group (fieldbus
LEDs [} 114]) indicates the status of the fieldbus.

The two I/O LEDs (I/O RUN, I/O ERR) are located under the fieldbus status LEDs. The purpose of these is to
display the operating state of the local, decentralised I/Os, and the connection to them via IP-Link.

Beneath these there are two further green LEDs to display the supply voltage. The left hand LED (Us)
indicates the presence of the 24 V supply for the Fieldbus Box. With some types of signal, this supply
voltage is also used to feed the sensor elements (see I/O documentation). The right hand LED (Up) indicates
the presence of the supply to the outputs.

Fieldbus LEDs

Fieldbus LEDs

The upper two LEDs indicate the operating state of the CANopen communication. The CAN-ERR LED here
provides an indication of the physical state of the bus as well as of protocol errors. The RUN LED indicates
the CANopen status of the bus node.

The behaviour of the LEDs accords with CANopen recommendation DRP303-3 from CAN in Automation.

Error handling and diagnosis

115Version: 1.2.3

CAN-ERR blink code

CAN ERR Meaning
off CAN bus has no errors
Fast blinking
(approx. 50ms on, approx. 50ms off; alternating with
RUN LED)

Automatic baud rate detection has still not found a
valid baud rate. Not enough telegrams on the bus
yet.

1 x flash
(approx. 200ms on, 1s off)

CAN warning limit exceeded. There are too many
error frames on the bus. Please check the wiring (e.g.
termination resistors, screens, conductor length,
stubs). Other possible causes for exceeding the
warning limit: there are no other participating devices
in the network (occurs, for instance, when the first
node is started).

2 x flashes
(each approx. 200ms on, 200ms off, followed by a 1s
pause)

The guarding or heartbeat monitor has asserted,
because either guarding telegrams or heartbeat
telegrams are no longer being received.
Precondition for guarding monitoring: guard time and
life time factors are > 0.
Precondition for heartbeat monitoring: consumer
heartbeat > 0).
The Bus Coupler is pre-operational (PDOs switched
off), and the outputs are in the error state.

3 x flashes
(each approx. 200ms on, 200ms off, followed by a 1s
pause)

A synchronisation error has occurred. No sync.
telegrams have been received during the set
monitoring time (object 0x1006 x 1.5). The bus node
is pre-operational (PDOs switched off), and the
outputs are in the error state.

4 x flashes
(each approx. 200ms on, 200ms off, followed by a 1s
pause)

Event timer error: The Bus Coupler has not received
an RxPDO within the set event time (0x1400ff sub-
index 5). The bus node is pre-operational (PDOs
switched off), and the outputs are in the error state.

RUN blink code

RUN Meaning
off Firmware status < C0: The state of the bus node is

STOPPED. No communication is possible with SDO
or PDO.

Fast blinking
(approx. 50ms on, approx. 50ms off; alternating with
CAN ERR LED)

Automatic baud rate detection has still not found a
valid baud rate. Not enough telegrams on the bus
yet.

1 x flash (approx. 200ms on, 1s off) The state of the bus node is STOPPED. No
communication is possible with SDO or PDO.

Alternate flashing
(approx. 200ms on, 200ms off)

The state of the bus node is PRE-OPERATIONAL.
The node has not yet started.

on The state of the bus node is OPERATIONAL.

I/O LEDs

I/O LEDs

Two LEDs, the I/O LEDs, indicate the operational state of the I/O and the connection to these via IP-Link.
The green LED (I/O RUN) lights up in order to indicate fault-free operation. The red LED (I/O ERR) flashes
with two different frequencies in order to indicate an error. The errors are displayed in the blink code in the
following way:

1. Fast blinking: Start of the error code

2. First slow sequence: Error code

Error handling and diagnosis

116 Version: 1.2.3

3. Second slow sequence: Error code argument or location of the error

Start of the Error Code Error code Error code argument

Compact Box (without IP-Link connection):

The I/O LEDs indicate the state of the internal communication with the sensor circuit board.

LED green LED red* Description Remedy
off off No local data

exchange
Correct the
CANopen
communication
error, and switch
the Compact Box
into the pre-
operational or
operational state.

off 1 0 EEPROM
checksum error

Set manufacturer’s
setting with the
KS2000 software

on off Module is
exchanging data

No error

* Red LED, left-hand column: error code; right-hand column: error code argument

Coupler Box (with IP-Link connection)

The I/O LEDs indicate the state of the IP-Link connection. IP-Link errors are most often the result of
inappropriate handling of the optical fibre.

Error handling and diagnosis

117Version: 1.2.3

LED green LED red* Description Remedy
off off No data exchange Module in

synchronous mode
or - activate
Profibus cyclic data

off 1 0 EEPROM
checksum error

Set manufacturer’s
setting with the
KS2000 software

off 2 Reserve -
off 3 n Break location has

been recognised
nth module before
the master's
receiver

off 4 n Too many faulty
telegrams have
been detected

The optical fibre
wiring in front of the
nth extension
module should be
checked

off 5 n Register access to
complex modules
has failed

Check the nth
module

off 11 n Complex module
working incorrectly

Exchange the nth

module
off 12 n More than 120

modules in the ring
Connect fewer
modules

off 13 n nth module
unknown

Firmware update
required

on off Module is in data
exchange

No error

* Red LED, left-hand column: error code; right hand column: error code argument or location of error.

Table 2: Extension box

LED green LED red Description
off on No data is being received over the

IP-Link
off blinks, flickers Faulty IP-Link protocols are being

received (very poor data
connection)

blinks, flickers blinks, flickers Faulty IP-Link protocols are being
received (poor data connection),
does not necessarily lead to an
error

blinks, flickers, on off IP-Link protocols are being
received, no error

Error handling and diagnosis

118 Version: 1.2.3

5.2 Diagnostic LEDs for local errors

Local error in a Coupler Box (IL230x-Bxxx/Cxxx)

The term local error means that an error has occurred in the Fieldbus Box or the IP-Link. IP-Link errors most
often turn out to be a result of inappropriate use of the optical fiber.

LED green LED red Description Remedy
off off No data

exchange
Module in
synchronous
mode or -
activate
PROFIBUS
cyclic data

off 1 0 EEPROM
checksum error

Set
manufacturer’s
setting with the
KS2000
software

off 2 Reserved -
off 3 Break location

has been
recognized

interruption
before the
master's
receiver

3 n Break location
has been
recognized

n-th module
before the
master's
receiver

3 n m Break location
has been
recognized

(n*10)+m-th
module before
the master's
receiver

off 4 n Too many faulty
telegrams have
been detected
(more than
25%)

The optical fiber
wiring in front of
the nth
extension
module should
be checked

off 5 n Register access
to complex
modules has
failed

Check the nth
module

off 11 n Complex
module working
incorrectly

Exchange the
nth module

off 12 n More than 120
modules in the
ring

Connect fewer
modules

off 13 n nth module
unknown

Firmware
update required

on off Module is
exchanging
data

no error

Error handling and diagnosis

119Version: 1.2.3

Local errors in an Extension Box

LED green LED red Description
off on No data is being received over the

IP-Link
off blinks, flickers Faulty IP-Link protocols are being

received (very poor data
connection)

blinks, flickers blinks, flickers Faulty IP-Link protocols are being
received (poor data connection),
does not necessarily lead to an
error

on off IP-Link protocols are being
received, no error

Faulty protocols can occur, because of:

• bad configured IP-Link connectors
• IP-Link cable with higher dampening, e.g. because of a sharp curve
• contaminated sender LED (module before the faulty one)
• contaminated receiver

The internal IP-Link error counter [} 120] of the Coupler Box can be read with the KS2000 software.

Error handling and diagnosis

120 Version: 1.2.3

5.3 Check of the IP-Link connection
A correct assembled IP-Link cable will assure an error free transmission.

An additional testing of the transmission quality and error diagnostics is possible with the KS2000
configuration software.

For this test, the fieldbus master (e.g. a PROFIBUS PC Card) should be on the bus and it should transmit
data cyclical. Another way to generate cyclic data is, to switch the coupler to free running via the KS2000
software.

The result should be, that the I/O RUN LED flashes in a bright green. This shows, that a data exchange with
the connected extension boxes takes place. A red blinking I/O ERR LED shows faulty IP-Link telegrams.
These faulty telegrams will be repeated automatically like in any other fieldbus system. This way a
transmission of the data is guaranteed.

Error counter

Table 90, offset 005 shows possible IP-Link errors. Sporadic appearing errors do not mean any problem for
the communication, as long as they do not reach a critical limit.

This error counter is only reset by the Power ON/OFF.

Error handling and diagnosis

121Version: 1.2.3

If lots of errors occur in a very short time, this will be interpreted as a heavy disturbance of the
communication and the coupler box will report this error. This can be seen at offset 006 and 007. Both
values will show a value > 200 and the I/O ERR LEDs of the coupler box will blink the according error code.

Note
The KS2000 Configuration Software communicates with the Coupler Box via the serial channel.
The content of the registers will not be refreshed automatically.

Position of the error

In case of an IP-Link error, the Coupler Box tries to read the error location from the register of the Extension
Box. If the fiber optic ring is interrupted or the communication is heavily disturbed, this is not possible. Only
the position of the last functioning Extension Box before the receiver of the Coupler Box can be recognized.
The box will then flash this error code via the I/O ERR LED.

If the communication via IP-Link is still running, table 87 shows the error counter of each Extension Box.

The offset register corresponds to the position of the Extension Box in the KS2000 tree (left side of graphic).
This example shows errors at offset 004 and 006.

In the "real" world the faulty IP-Link telegram was reported from the IE20xx and the IE3112, that means the
problem has to looked for before these modules.

The error can be up to:

• the sending module
• the receiving module
• the IP-Link cable
• the connectors

If there is an error in table 90 and none in table 87, the faulty transmission is between the last Extension Box
and the Coupler Box.

Error handling and diagnosis

122 Version: 1.2.3

In most cases the transmission errors can be traced back to bad configured IP-Link connectors or a too high
attenuation of the cable due to sharp bending.

The values of table 87 directly come from the extension boxes. In case of an IP-Link interruption these
values will be set to zero and only table 90 can be used.

Note
If you want to operate a Coupler Box (e.g. IL2300-Bxxx, IL2301-Bxxx or IL2302-Bxxx) totally with-
out Extension Box Modules (IExxxx), you have to connect the send and receive socket of this Cou-
pler Box directly by using an IP Link Cable! For this the IP Link Jumper ZK1020-0101-1000 fits per-
fect.

Error handling and diagnosis

123Version: 1.2.3

5.4 Emergency Object
In order to be able to inform other participating devices on the CANopen bus about internal device errors or
CAN bus errors, CANopen Bus Couplers can make use of the emergency object. It has a high priority, and
provides valuable information about the state of the device and of the network.

NOTE
Warning
It is strongly recommended that emergency objects are evaluated - they provide a valuable source of infor-
mation.

Structure of the emergency message

The emergency object is always 8 bytes long; it contains first the 2-byte error code, then the 1-byte error
register, and finally the additional code of 5 bytes. This is divided into a 2-byte bit field and a 3-byte
parameter field:

11 bit
identifier

8 bytes of user data

0x80
(=128dec)
 + node-ID

EC0 EC1 EReg Bit field 0:
Comm

Bit field 1:
DevErr

EMCY
Trigger

Info 0 Info 1

Error handling and diagnosis

124 Version: 1.2.3

Table 3: Key

Error handling and diagnosis

125Version: 1.2.3

Parameters Explanation
EC0 Error Code Low-Byte. Not used (always zero)
EC1 Error Code High-Byte. 0x50 = device error, 0x81 = communication

error, 0x00 = error reset
EReg Error register. 0x81 = device error, 0x91 = communication error
Bit field 0: Comm Bit field communication error:

0x01 Guarding delayed or failed
0x02 Sync delayed or failed
0x04 Incorrect PDO length

parameterized
0x08 Event timer timeout: RxPDO not

received in time
0x10 Receive queue overrun
0x20 Transmit queue overrun
0x40 CAN bus OFF
0x80 CAN warning limit exceeded

Bit field 1: DevErr Bit field device error:
0x01 Terminal error
0x02 K-Bus error / IP-Link error
0x03 -
0x04 EEPROM error
0x10 Unsupported terminal plugged in

(BK5110, LC5100)
0x80 Altered HW configuration.

Error handling and diagnosis

126 Version: 1.2.3

Parameters Explanation
EMCY trigger The emergency trigger byte contains the code for the particular error

that has triggered the emergency telegram. If an error has been
rectified, an emergency telegram with the error code 0x0000 is sent,
and the emergency trigger contains the description of the error that has
been corrected. Errors that are still current are signaled here in the bit
fields. Once the Bus Coupler is free of errors, it sends an emergency
telegram containing zeros everywhere other than in the emergency
trigger.
0x01 CAN warning limit exceeded (too

many error frames)
0x02 CAN bus OFF state has been

reached. Since the coupler can no
longer send an emergency
telegram, an emergency telegram
with trigger 0x40 is sent when the
bus leaves the "off" state (a new
CAN controller initialization).

0x03 Transmit queue overrun: CAN
messages are being lost

0x04 Transmit queue overrun: CAN
messages are being lost

0x06 Incorrect PDO length
parameterized (check mapping).
Info 0: parameterized (expected)
PDO length in bytes
Info 1: current PDO length (results
from the added lengths of the
mapped objects)

0x07 Sync delayed (time-out after
communication cycle period, index
0x1006) or failed

0x08 Guarding or heartbeat delayed
(timeout following guard time x
lifetime factor, or following
consumer heartbeat time) or failed.

0x09 Altered HW configuration. The
inserted terminals or the
composition of the extension
modules has been changed since
the last save.

0x0A Event timer timeout: RxPDO not
received in time

0x0B Logical Tx queue overrun: SYNC
interval too short.
The coupler could not deliver all
the TxPDOs before the following
SYNC telegram. The TxPDOs are
then, for instance, delivered in
every second SYNC interval.
Remedy: Lengthen the SYNC
interval or raise the transmission
type. In some cases it may be
appropriate to reduce the I/O count
at this bus station (e.g. by moving I/
Os to the neighboring station)

0x0C Unsupported terminal plugged in
(BK5110 or LC5100) Info 1:
terminal number (1...64)

0x0E EEPROM error; an error occurred
when saving the configuration in
the EEPROM

0x0F K-Bus error
Info 0: Error type:
0x03: command error (no terminal
number),
0x04: Interruption in the K-Bus or in
IP-Link
0x05: Error in register
communication
0x0B: Timeout in extension box
0x0C: More than 120 modules in
the IP-Link ring
0x0D: K-Bus command error, or IP-
Link: Unknown extension box
0x0E: Alignment error
0x0F: Number of terminals
changed
0x10: K-Bus reset: Bit length of K-
Bus changed
0x11: K-Bus reset: Number of
terminals changed
0x12: K-Bus reset: Type of a
terminal changed
Info 1: terminal number (1...64)

0x10 Terminal error
Info 0: terminal number (1...64)
Info 1: general diagnostic status
code for the terminal:
Bit 0,1: Channel number (00:
channel 1; 01: channel 2; 10:
channel 3; 11: channel 4)
Bit 2...6: reserved
Bit 7: Error (=1: occurred; =0:
corrected).
See the status register of the
terminal or of the extension module
for more detailed information about
the type of error.

Error handling and diagnosis

127Version: 1.2.3

Parameters Explanation
Info 0, Info 1 Contains additional error information; its meaning depends on the

emergency trigger (see above)

Example of emergency behaviour

1. The CAN error counter in a Bus Coupler has exceeded the warning limit (too many error frames). It
sends an emergency telegram with the identifier 0x80 + node address (default setting) with the follow-
ing contents:
00 81 91 80 00 01 00 00
The first three bytes (0x00 81 91) identify a communication error, while the bit field 0 (0x80) indicates
that the CAN Warning Limit has been exceeded. The EMCY trigger (0x01) shows that the emergency
was triggered as a result of exceeding the warning limit.

2. Immediately afterwards a cable goes open circuit on the second channel of the 4-20 mA analog input
terminal plugged into the tenth location. The Bus Coupler sends another emergency telegram with the
following contents:
00 50 91 80 01 10 0A 82
The first two bytes (0x00 50) identify a hardware error. Bits 0 (generic error), 4 (communication) and 7
(manufacturer-specific) are set in the error register (0x91). Bit 7 is set in bit field 0 (0x80), showing that
the CAN warning limit continues to be exceeded. Bit 0 is set in bit field 1 (0x01), indicating a terminal
error. The EMCY trigger (0x10) indicates that it is this terminal error that has triggered the emergency
telegram. Finally, Info 0 (0x0A) indicates the terminal number (10) while Info 1 (0x82) shows in bit 1
and bit 7 that channel 2 has an error.

3. If the error counter now falls below the warning limit again, the coupler sends the following emergency
telegram:
00 00 81 00 01 01 0A 82
The error code (00 00) in the first two bytes shows that an error has been reset. The error register
(0x81) continues to show the device error, because the cable is still broken. Bit field 0 (0x00) shows
that the communication error is no longer present. According to bit field 1 (0x01) the terminal error
continues to be present. The EMCY trigger (0x01) indicates that the reason for the transmission was
the resetting of the CAN warning limit. Info 0 and Info 1 continue to show the terminal's diagnostics
status code.

4. Once the broken cable has been repaired this error is also reset, and the coupler sends the following
emergency telegram:
00 00 00 00 00 00 00 00

Error handling and diagnosis

128 Version: 1.2.3

5.5 CANopen Trouble Shooting

Error Frames

One sign of errors in the CAN wiring, the address assignment or the setting of the baud rate is an increased
number of error frames: the diagnostic LEDs then show Warning Limit exceeded or Bus-off state entered.

Error frames
Warning limit exceeded, passive error or bus-off state are indicated first of all at those nodes that
have detected the most errors. These nodes are not necessarily the cause for the occurrence of er-
ror frames! If, for instance, one node contributes unusually heavily to the bus traffic (perhaps be-
cause it is the only one with analog inputs, the data for which triggers event-driven PDOs at a high
rate), then the probability of its telegrams being damaged increases. Its error counter will, corre-
spondingly, be the first to reach a critical level.

Node ID / Setting the Baud Rate

Care must be taken to ensure that node addresses are not assigned twice: there may only be one sender for
each CAN data telegram.

Test 1

Check node addresses. If the CAN communication functions at least some of the time, and if all the devices
support the boot up message, then the address assignment can also be examined by recording the boot up
messages after the devices are switched on. This will not, however, recognize node addresses that have
been swapped.

Test 2

Check that the same baud rate has been set everywhere. For special devices, if the bit timing parameters
are accessible, do they agree with the CANopen definitions (sampling time, SJW, oscillator).

Testing the CAN wiring

Do not carry out these tests when the network is active - communication should not take place during the
tests. The following tests should be carried out in the stated sequence, because some of the tests assume
that the previous test was successful. Not all the tests are generally necessary.

Network terminator and signal leads

The nodes should be switched off or the CAN cable unplugged for this test, because the results of the
measurements can otherwise be distorted by the active CAN transceiver.

Error handling and diagnosis

129Version: 1.2.3

Test 3

Determine the resistance between CAN high and CAN low - at each device, if necessary.

If the measured value is greater than 65 Ohms, it indicates the absence of a terminating resistor or a break
in a signal lead. If the measured value is less than 50 Ohms, look for a short circuit between the CAN lines,
more than the correct number of terminating resistors, or faulty transceivers.

Test 4

Check for a short circuit between the CAN ground and the signal leads, or between the screen and signal
leads.

Test 5

Remove the earth connection from the CAN ground and screen. Check for a short circuit between the CAN
ground and screen.

Topology

The possible cable length in CAN networks depends heavily on the selected baud rate. CAN will tolerate
short drop lines - although this again depends on the baud rate. The maximum permitted length of drop lines
should not be exceeded. The length of cable that has been installed is often underestimated - estimates can
even be a factor of 10 less than the actual length. The following test is therefore recommended:

Test 6

Measure the lengths of the drop lines and the total bus lengths (do not just make rough estimates!) and
compare them with the topology rules for the relevant baud rate.

Screening and earthing

The power supply and the screen should be carefully earthed at the power supply unit, once only and with
low resistance. At all connecting points, branches and so forth the screen of the CAN cable (and possibly the
CAN GND) must also be connected, as well as the signal leads. In the Beckhoff IP20 Bus Couplers, the
screen is grounded for high frequencies via an R/C element.

Error handling and diagnosis

130 Version: 1.2.3

Test 7

Use a DC ammeter (16 amp max.) to measure the current between the power supply ground and the screen
at the end of the network most remote from the power supply unit. An equalization current should be present.
If there is no current, then either the screen is not connected all the way through, or the power supply unit is
not properly earthed. If the power supply unit is somewhere in the middle of the network, the measurement
should be performed at both ends. When appropriate, this test can also be carried out at the ends of the drop
lines.

Test 8

Interrupt the screen at a number of locations and measure the connection current. If current is flowing, the
screen is earthed at more than one place, creating a ground loop.

Potential differences

The screen must be connected all the way through for this test, and must not be carrying any current - this
has previously been tested.

Test 9

Measure and record the voltage between the screen and the power supply ground at each node. The
maximum potential difference between any two devices should be less than 5 volts.

Detect and localize faults

The "low-tech approach" usually works best: disconnect parts of the network, and observe when the fault
disappears.

However, this does not work well for problems such as excessive potential differences, ground loops, EMC
or signal distortion, since the reduction in the size of the network often solves the problem without the
"missing" piece being the cause. The bus loading also changes as the network is reduced in size, which can
mean that external interference "hits" CAN telegrams less often.

Diagnosis with an oscilloscope is not usually successful: even when they are in good condition, CAN signals
can look really chaotic. It may be possible to trigger on error frames using a storage oscilloscope - this type
of diagnosis, however, is only possible for expert technicians.

Protocol problems

In rare cases, protocol problems (such as faulty or incomplete CANopen implementation, unfavorable timing
at boot up etc.) can be the cause of faults. In this case it is necessary to trace the bus traffic for evaluation by
a CANopen experts - the Beckhoff support team can help here.
A free channel on a Beckhoff FC5102 CANopen PCI card is appropriate for such a trace - Beckhoff make the
necessary trace software available on the internet. Alternatively, it is of course possible to use a normal
commercial CAN analysis tool.

Protocol problems can be avoided if devices that have not been conformance tested are not used. The
official CANopen Conformance Test (and the appropriate certificate) can be obtained from the CAN in
Automation Association (http://www.can-cia.de).

http://www.can-cia.de

Appendix

131Version: 1.2.3

6 Appendix

6.1 Quick Start for Experienced Users

Target group

This brief introduction is intended for users who are already familiar with CAN. It clarifies the CAN messages
that are required in order to work with BECKHOFF CANopen input/output groups in the initial configuration
(default settings).

It remains necessary to read and use the full documentation.

Hardware configuration

The DIP switches must be used to set a consistent transmission rate and differing node addresses (node ID)
on the Bus Couplers. The switch assignments are printed on the modules. It should be noted that CANopen
uses address ”0" to address all modules (broadcast), so that this can not be set as the address of a
particular module.

Starting the modules

CANopen allows the modules to be started with a single network management telegram:

11 bit
identifier

2 bytes of user data

0x00 0x01 0x00

The first data byte here contains the start command (Start_Remote_Node), while the second data byte
contains the node address (here: 0, which addresses all nodes).

The inputs and outputs are enabled after the modules have been started. In the default setting the modules
communicate in event-driven mode, so that changes at the digital inputs are immediately transmitted and
outputs are immediately set in accordance with received telegrams containing output data.

CAN identifier

The CAN identifiers for the input and output data are derived from the node address (1-63):

Data type Default CAN identifier
digital inputs 1...64 0x180 (=384dec) + node address

digital outputs 1...64 0x200 (=512dec) + node address
analog inputs 1...4 0x280 (=640dec) + node address

analog outputs 1...4 0x300 (=768dec) + node address
analog inputs 5...8* 0x380 (=896dec) + node address

analog outputs 5...8* 0x400 (=1024dec) + node address
analog inputs 9...12* 0x480 (=1152dec) + node address

analog outputs 9...12* 0x500 (=1280dec) + node address

* The range is displaced correspondingly if more than 64 digital inputs or outputs are present. See the
Default Mapping section.

Digital inputs

The CAN messages with digital input data are composed as follows:

Appendix

132 Version: 1.2.3

11 bit
identifier

1-8 bytes of user data (depending on the number of input terminals or extension
modules)

0x180(=3
84dec) +
node ID

I0 I1 I2 I3 I4 I5 I6 I7

I0: input bytes on input terminals (or Fieldbus Box modules), from left to right.

Digital outputs

The CAN messages with digital output data have the following structure:

11 bit
identifier

1-8 bytes of user data (depending on the number of output terminals or extension
modules)

0x200(=5
12dec) +
node ID

O0 O1 O2 O3 O4 O5 O6 O7

O0: output bytes on output terminals (or Fieldbus Box modules), from left to right.

Analog inputs

CAN messages with analog input data look like this:

11 bit
identifier

4-8 bytes of user data (depending on the number of analog inputs)

0x280(640
dec) + node
ID

I0.0 I0.1 I1.0 I1.1 I2.0 I2.1 I3.0 I3.1

I x.0...I x.1: analog input x. The data format is described in detail in the object directory at object 0x6401.

The transmission behaviour of analog inputs

To avoid ”swamping" the bus with constantly changing analog input values, the analog CANopen input
modules do not generate any data telegrams in the default state. The analog data can be read out by means
of a remote access (Remote Transmit Request, a CAN message with no data and with the RTR bit set) to
the analog input telegrams. Alternatively, of course, the module can be re-configured in such a way that an
alteration of the input value does trigger the sending of a telegram. For this purpose a value > 0 is written
into index 0x6423 of the object directory. The corresponding SDO telegram looks like this:

11 bit
identifier

8 bytes of user data

0x600(=7
68dec) +
node ID

0x22 0x23 0x64 0x00 0x01 0x00 0x00 0x00

It is recommended that event control (where every change in the LSB is considered an event, resulting in the
corresponding telegram being transmitted) is not used for the transmission of input data, but that either
cyclic, synchronous transmission or the event timer is used to send the data. If event control is indeed used,
then the quantity of data should be reduced by setting a delta value (object directory index 0x6426), limit
values (0x6424 + 0x6425) or an inhibit time (no new data transmission until the inhibit time has elapsed,
0x1801ff). Details of parameter communication are found in the section on Service data: SDO [} 38]..

Analog outputs

CAN messages with analog output data look like this:

Appendix

133Version: 1.2.3

11 bit
identifier

4-8 bytes of user data (depending on the number of analog outputs)

0x300(=7
68dec) +
node ID

O0.0 O0.1 O1.0 O1.1 O2.0 O2.1 O3.0 O3.1

O x.0...O x.1: analog output x. The data format is described in detail in the object directory at object 0x6411.

Default identifier

The appendix contains a tabular summary of all the default identifiers. The CAN messages displayed on a
CAN monitor can quickly and easily be identified with the help of that overview.

Stopping the modules

If necessary, the process data communication from the modules can be stopped with the following telegram:

11 bit
identifier

2 bytes of user data

0x00 0x80 0xYZ

0xXX: node address; 0xYZ=0x00 addresses all the modules

Guarding

The telegrams described above are themselves adequate for many applications. Since, however, the
modules operate in event-driven mode by default (no cyclical data exchange), the failure of a module is not
necessarily detected. A remedy for this is provided here through monitoring the modules by cyclically
interrogating their status, a process known as node guarding.

For this purpose a status telegram is requested cyclically by means of remote transmit request (RTR):

11 bit identifier No user data in the request telegram (RTR)
0x700(=1792dec) + node ID (RTR bit set in the header)

The modules answer with a telegram that includes a status byte.

11 bit
identifier

1 byte of user data

0x700(=1
792dec) +
node ID

0xYZ

0xYZ: Status byte:
bits 6...0 contain the node status (0x7F=127: pre-operational, 0x05=operational; 0x04= stopped or
prepared).
Bit 7 = toggle bit (inverts with every transmission).

So that the Bus Coupler can detect failure of the network master (watchdog function), the guard time (object
0x100C) and the life time factor (object 0x100D) must be set to have value different from 0. (Reaction time to
failure: guard time x life time factor).

Heartbeat

As an alternative to guarding, the module can also be monitored by means of what is called the heartbeat.
This involves a status telegram (the heartbeat) being issued cyclically by the node. Data request telegrams
(remote frames) are not required.

In order to activate the heartbeat telegram, the producer heartbeat time must be set. This is done with the
following SDO [} 38] telegram:

Appendix

134 Version: 1.2.3

11 bit
identifier

8 bytes of user data

0x600(=7
68dec) +
node ID

0x22 0x17 0x10 0x00 0xcd 0xab 0x00 0x00

where 0xabcd is the desired heartbeat cycle time, expressed in milliseconds.

With the telegrams that have now been described you are in a position to start and stop the modules, read
inputs, write outputs and to monitor the modules. Do not neglect to read the manual with attention. Only by
doing so can you properly use the many features of the BECKHOFF CANopen Bus Coupler.

Appendix

135Version: 1.2.3

6.2 CAN Identifier List
The list provided here should assist in identifying and assigning CANopen messages. All the identifiers
allocated by the CANopen default identifier allocation are listed, as well as the manufacturer-specific default
identifiers issued by BECKHOFF via object 0x5500 (only to be used in networks with node addresses less
than 64).

The following values can be used as search aids and "entry points" in the extensive identifier table in the
*chm edition of the documentation:

Decimal: 400 [} 135] 500 [} 135] 600 [} 135] 700 [} 135] 800 [} 135] 900 [} 135] 1000 [} 135]
1100 [} 135] 1200 [} 135] 1300 [} 135] 1400 [} 135] 1500 [} 135] 1600 [} 135] 1700 [} 135] 1800
[} 135] 1900 [} 135]

Hexadecimal: 0x181 [} 135] 0x1C1 [} 135] 0x201 [} 135] 0x301 [} 135] 0x401 [} 135] 0x501 [} 135] 0x601
[} 135] 0x701 [} 135]

Identifier allocation via object 0x5500 follows this scheme:

Object Resulting COB ID (hex) Resulting COB ID (dec)
Emergency 0x81 - 0xBF [0xFF] 129 - 191 [255]
TxPDO1 [} 135] 0x181 - 0x1BF [0x1FF] 385 - 447 [511]

RxPDO1 [} 135] 0x201 - 0x23F [0x27F] 513 - 575 [639]

TxPDO2 [} 135] 0x281 - 0x2BF [0x2FF] 641 - 676 [767]

RxPDO2 [} 135] 0x301 - 0x33F [0x37F] 769 - 831 [895]

TxDPO3 [} 135] 0x381 - 0x3BF [0x3FF] 897 - 959 [1023]

RxPDO3 [} 135] 0x401 - 0x43F [0x47F] 1025 - 1087 [1151]

TxPDO4 [} 135] 0x481 - 0x4BF [0x4FF] 1153 - 1215 [1279]

RxPDO4 [} 135] 0x501 - 0x53F [0x57F] 1281- 1343 [1407]

TxPDO5 [} 135] 0x681 - 0x6BF 1665 - 1727

RxPDO5 [} 135] 0x781 - 0x7BF 1921- 1983

TxPDO6 [} 135] 0x1C1 - 0x1FF 449 - 511

RxPDO6 [} 135] 0x241 - 0x27F 577 - 639

TxDPO7 [} 135] 0x2C1 - 0x2FF 705 - 767

RxPDO7 [} 135] 0x341 - 0x37F 833 - 895

TxPDO8 [} 135] 0x3C1- 0x3FF 961 - 1023

RxPDO8 [} 135] 0x441 - 0x47F 1089 - 1151

TxPDO9 [} 135] 0x4C1 - 0x4FF 1217 - 1279

RxPDO9 [} 135] 0x541 - 0x57F 1345 - 1407

TxDPO10 [} 135] 0x5C1 - 0x5FF 1473 - 1535

RxPDO10 [} 135] 0x641 - 0x67F 1601- 1663

TxPDO11 [} 135] 0x6C1 - 0x6FF 1729 - 1791

RxPDO11 [} 135] 0x741 - 0x77F 1857 - 1919
SDO (Tx) 0x581 - 0x5BF [0x5FF] 1409 - 1471 [1535]
SDO (Rx) 0x601 - 0x63F [0x67F] 1537 - 1599 [1663]
Guarding / Heartbeat/ Bootup
[} 135]

0x701 - 0x73F [0x77F] 1793 - 1855 [1919]

Identifier List

Identifiers marked with * are given manufacturer-specific assignments on the Bus Couplers after writing
index 0x5500

Appendix

136 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

0 0 NMT 874 36A RxPDO7*,
Nd.42

1430 596 SDO Tx
Nd.22

128 80 SYNC 875 36B RxPDO7*,
Nd.43

1431 597 SDO Tx
Nd.23

129 81 EMCY
Nd.1

876 36C RxPDO7*,
Nd.44

1432 598 SDO Tx
Nd.24

130 82 EMCY
Nd.2

877 36D RxPDO7*,
Nd.45

1433 599 SDO Tx
Nd.25

131 83 EMCY
Nd.3

878 36E RxPDO7*,
Nd.46

1434 59A SDO Tx
Nd.26

132 84 EMCY
Nd.4

879 36F RxPDO7*,
Nd.47

1435 59B SDO Tx
Nd.27

133 85 EMCY
Nd.5

880 370 RxPDO7*,
Nd.48

1436 59C SDO Tx
Nd.28

134 86 EMCY
Nd.6

881 371 RxPDO7*,
Nd.49

1437 59D SDO Tx
Nd.29

135 87 EMCY
Nd.7

882 372 RxPDO7*,
Nd.50

1438 59E SDO Tx
Nd.30

136 88 EMCY
Nd.8

883 373 RxPDO7*,
Nd.51

1439 59F SDO Tx
Nd.31

137 89 EMCY
Nd.9

884 374 RxPDO7*,
Nd.52

1440 5A0 SDO Tx
Nd.32

138 8A EMCY
Nd.10

885 375 RxPDO7*,
Nd.53

1441 5A1 SDO Tx
Nd.33

139 8B EMCY
Nd.11

886 376 RxPDO7*,
Nd.54

1442 5A2 SDO Tx
Nd.34

140 8C EMCY
Nd.12

887 377 RxPDO7*,
Nd.55

1443 5A3 SDO Tx
Nd.35

141 8D EMCY
Nd.13

888 378 RxPDO7*,
Nd.56

1444 5A4 SDO Tx
Nd.36

142 8E EMCY
Nd.14

889 379 RxPDO7*,
Nd.57

1445 5A5 SDO Tx
Nd.37

143 8F EMCY
Nd.15

890 37A RxPDO7*,
Nd.58

1446 5A6 SDO Tx
Nd.38

144 90 EMCY
Nd.16

891 37B RxPDO7*,
Nd.59

1447 5A7 SDO Tx
Nd.39

145 91 EMCY
Nd.17

892 37C RxPDO7*,
Nd.60

1448 5A8 SDO Tx
Nd.40

146 92 EMCY
Nd.18

893 37D RxPDO7*,
Nd.61

1449 5A9 SDO Tx
Nd.41

147 93 EMCY
Nd.19

894 37E RxPDO7*,
Nd.62

1450 5AA SDO Tx
Nd.42

148 94 EMCY
Nd.20

895 37F RxPDO7*,
Nd.63

1451 5AB SDO Tx
Nd.43

149 95 EMCY
Nd.21

897 381 TxPDO3*,
Nd.1

1452 5AC SDO Tx
Nd.44

150 96 EMCY
Nd.22

898 382 TxPDO3*,
Nd.2

1453 5AD SDO Tx
Nd.45

151 97 EMCY
Nd.23

899 383 TxPDO3*,
Nd.3

1454 5AE SDO Tx
Nd.46

152 98 EMCY
Nd.24

900 384 TxPDO3*,
Nd.4

1455 5AF SDO Tx
Nd.47

Appendix

137Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

153 99 EMCY
Nd.25

901 385 TxPDO3*,
Nd.5

1456 5B0 SDO Tx
Nd.48

154 9A EMCY
Nd.26

902 386 TxPDO3*,
Nd.6

1457 5B1 SDO Tx
Nd.49

155 9B EMCY
Nd.27

903 387 TxPDO3*,
Nd.7

1458 5B2 SDO Tx
Nd.50

156 9C EMCY
Nd.28

904 388 TxPDO3*,
Nd.8

1459 5B3 SDO Tx
Nd.51

157 9D EMCY
Nd.29

905 389 TxPDO3*,
Nd.9

1460 5B4 SDO Tx
Nd.52

158 9E EMCY
Nd.30

906 38A TxPDO3*,
Nd.10

1461 5B5 SDO Tx
Nd.53

159 9F EMCY
Nd.31

907 38B TxPDO3*,
Nd.11

1462 5B6 SDO Tx
Nd.54

160 A0 EMCY
Nd.32

908 38C TxPDO3*,
Nd.12

1463 5B7 SDO Tx
Nd.55

161 A1 EMCY
Nd.33

909 38D TxPDO3*,
Nd.13

1464 5B8 SDO Tx
Nd.56

162 A2 EMCY
Nd.34

910 38E TxPDO3*,
Nd.14

1465 5B9 SDO Tx
Nd.57

163 A3 EMCY
Nd.35

911 38F TxPDO3*,
Nd.15

1466 5BA SDO Tx
Nd.58

164 A4 EMCY
Nd.36

912 390 TxPDO3*,
Nd.16

1467 5BB SDO Tx
Nd.59

165 A5 EMCY
Nd.37

913 391 TxPDO3*,
Nd.17

1468 5BC SDO Tx
Nd.60

166 A6 EMCY
Nd.38

914 392 TxPDO3*,
Nd.18

1469 5BD SDO Tx
Nd.61

167 A7 EMCY
Nd.39

915 393 TxPDO3*,
Nd.19

1470 5BE SDO Tx
Nd.62

168 A8 EMCY
Nd.40

916 394 TxPDO3*,
Nd.20

1471 5BF SDO Tx
Nd.63

169 A9 EMCY
Nd.41

917 395 TxPDO3*,
Nd.21

1473 5C1 TxPDO10
*, Nd.1

170 AA EMCY
Nd.42

918 396 TxPDO3*,
Nd.22

1474 5C2 TxPDO10
*, Nd.2

171 AB EMCY
Nd.43

919 397 TxPDO3*,
Nd.23

1475 5C3 TxPDO10
*, Nd.3

172 AC EMCY
Nd.44

920 398 TxPDO3*,
Nd.24

1476 5C4 TxPDO10
*, Nd.4

173 AD EMCY
Nd.45

921 399 TxPDO3*,
Nd.25

1477 5C5 TxPDO10
*, Nd.5

174 AE EMCY
Nd.46

922 39A TxPDO3*,
Nd.26

1478 5C6 TxPDO10
*, Nd.6

175 AF EMCY
Nd.47

923 39B TxPDO3*,
Nd.27

1479 5C7 TxPDO10
*, Nd.7

176 B0 EMCY
Nd.48

924 39C TxPDO3*,
Nd.28

1480 5C8 TxPDO10
*, Nd.8

177 B1 EMCY
Nd.49

925 39D TxPDO3*,
Nd.29

1481 5C9 TxPDO10
*, Nd.9

178 B2 EMCY
Nd.50

926 39E TxPDO3*,
Nd.30

1482 5CA TxPDO10
*, Nd.10

Appendix

138 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

179 B3 EMCY
Nd.51

927 39F TxPDO3*,
Nd.31

1483 5CB TxPDO10
*, Nd.11

180 B4 EMCY
Nd.52

928 3A0 TxPDO3*,
Nd.32

1484 5CC TxPDO10
*, Nd.12

181 B5 EMCY
Nd.53

929 3A1 TxPDO3*,
Nd.33

1485 5CD TxPDO10
*, Nd.13

182 B6 EMCY
Nd.54

930 3A2 TxPDO3*,
Nd.34

1486 5CE TxPDO10
*, Nd.14

183 B7 EMCY
Nd.55

931 3A3 TxPDO3*,
Nd.35

1487 5CF TxPDO10
*, Nd.15

184 B8 EMCY
Nd.56

932 3A4 TxPDO3*,
Nd.36

1488 5D0 TxPDO10
*, Nd.16

185 B9 EMCY
Nd.57

933 3A5 TxPDO3*,
Nd.37

1489 5D1 TxPDO10
*, Nd.17

186 BA EMCY
Nd.58

934 3A6 TxPDO3*,
Nd.38

1490 5D2 TxPDO10
*, Nd.18

187 BB EMCY
Nd.59

935 3A7 TxPDO3*,
Nd.39

1491 5D3 TxPDO10
*, Nd.19

188 BC EMCY
Nd.60

936 3A8 TxPDO3*,
Nd.40

1492 5D4 TxPDO10
*, Nd.20

189 BD EMCY
Nd.61

937 3A9 TxPDO3*,
Nd.41

1493 5D5 TxPDO10
*, Nd.21

190 BE EMCY
Nd.62

938 3AA TxPDO3*,
Nd.42

1494 5D6 TxPDO10
*, Nd.22

191 BF EMCY
Nd.63

939 3AB TxPDO3*,
Nd.43

1495 5D7 TxPDO10
*, Nd.23

385 181 TxPDO1,
DI, Nd.1

940 3AC TxPDO3*,
Nd.44

1496 5D8 TxPDO10
*, Nd.24

386 182 TxPDO1,
DI, Nd.2

941 3AD TxPDO3*,
Nd.45

1497 5D9 TxPDO10
*, Nd.25

387 183 TxPDO1,
DI, Nd.3

942 3AE TxPDO3*,
Nd.46

1498 5DA TxPDO10
*, Nd.26

388 184 TxPDO1,
DI, Nd.4

943 3AF TxPDO3*,
Nd.47

1499 5DB TxPDO10
*, Nd.27

389 185 TxPDO1,
DI, Nd.5

944 3B0 TxPDO3*,
Nd.48

1500 5DC TxPDO10
*, Nd.28

390 186 TxPDO1,
DI, Nd.6

945 3B1 TxPDO3*,
Nd.49

1501 5DD TxPDO10
*, Nd.29

391 187 TxPDO1,
DI, Nd.7

946 3B2 TxPDO3*,
Nd.50

1502 5DE TxPDO10
*, Nd.30

392 188 TxPDO1,
DI, Nd.8

947 3B3 TxPDO3*,
Nd.51

1503 5DF TxPDO10
*, Nd.31

393 189 TxPDO1,
DI, Nd.9

948 3B4 TxPDO3*,
Nd.52

1504 5E0 TxPDO10
*, Nd.32

394 18A TxPDO1,
DI, Nd.10

949 3B5 TxPDO3*,
Nd.53

1505 5E1 TxPDO10
*, Nd.33

395 18B TxPDO1,
DI, Nd.11

950 3B6 TxPDO3*,
Nd.54

1506 5E2 TxPDO10
*, Nd.34

396 18C TxPDO1,
DI, Nd.12

951 3B7 TxPDO3*,
Nd.55

1507 5E3 TxPDO10
*, Nd.35

397 18D TxPDO1,
DI, Nd.13

952 3B8 TxPDO3*,
Nd.56

1508 5E4 TxPDO10
*, Nd.36

Appendix

139Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

398 18E TxPDO1,
DI, Nd.14

953 3B9 TxPDO3*,
Nd.57

1509 5E5 TxPDO10
*, Nd.37

399 18F TxPDO1,
DI, Nd.15

954 3BA TxPDO3*,
Nd.58

1510 5E6 TxPDO10
*, Nd.38

400 190 TxPDO1,
DI, Nd.16

955 3BB TxPDO3*,
Nd.59

1511 5E7 TxPDO10
*, Nd.39

401 191 TxPDO1,
DI, Nd.17

956 3BC TxPDO3*,
Nd.60

1512 5E8 TxPDO10
*, Nd.40

402 192 TxPDO1,
DI, Nd.18

957 3BD TxPDO3*,
Nd.61

1513 5E9 TxPDO10
*, Nd.41

403 193 TxPDO1,
DI, Nd.19

958 3BE TxPDO3*,
Nd.62

1514 5EA TxPDO10
*, Nd.42

404 194 TxPDO1,
DI, Nd.20

959 3BF TxPDO3*,
Nd.63

1515 5EB TxPDO10
*, Nd.43

405 195 TxPDO1,
DI, Nd.21

961 3C1 TxPDO8*,
Nd.1

1516 5EC TxPDO10
*, Nd.44

406 196 TxPDO1,
DI, Nd.22

962 3C2 TxPDO8*,
Nd.2

1517 5ED TxPDO10
*, Nd.45

407 197 TxPDO1,
DI, Nd.23

963 3C3 TxPDO8*,
Nd.3

1518 5EE TxPDO10
*, Nd.46

408 198 TxPDO1,
DI, Nd.24

964 3C4 TxPDO8*,
Nd.4

1519 5EF TxPDO10
*, Nd.47

409 199 TxPDO1,
DI, Nd.25

965 3C5 TxPDO8*,
Nd.5

1520 5F0 TxPDO10
*, Nd.48

410 19A TxPDO1,
DI, Nd.26

966 3C6 TxPDO8*,
Nd.6

1521 5F1 TxPDO10
*, Nd.49

411 19B TxPDO1,
DI, Nd.27

967 3C7 TxPDO8*,
Nd.7

1522 5F2 TxPDO10
*, Nd.50

412 19C TxPDO1,
DI, Nd.28

968 3C8 TxPDO8*,
Nd.8

1523 5F3 TxPDO10
*, Nd.51

413 19D TxPDO1,
DI, Nd.29

969 3C9 TxPDO8*,
Nd.9

1524 5F4 TxPDO10
*, Nd.52

414 19E TxPDO1,
DI, Nd.30

970 3CA TxPDO8*,
Nd.10

1525 5F5 TxPDO10
*, Nd.53

415 19F TxPDO1,
DI, Nd.31

971 3CB TxPDO8*,
Nd.11

1526 5F6 TxPDO10
*, Nd.54

416 1A0 TxPDO1,
DI, Nd.32

972 3CC TxPDO8*,
Nd.12

1527 5F7 TxPDO10
*, Nd.55

417 1A1 TxPDO1,
DI, Nd.33

973 3CD TxPDO8*,
Nd.13

1528 5F8 TxPDO10
*, Nd.56

418 1A2 TxPDO1,
DI, Nd.34

974 3CE TxPDO8*,
Nd.14

1529 5F9 TxPDO10
*, Nd.57

419 1A3 TxPDO1,
DI, Nd.35

975 3CF TxPDO8*,
Nd.15

1530 5FA TxPDO10
*, Nd.58

420 1A4 TxPDO1,
DI, Nd.36

976 3D0 TxPDO8*,
Nd.16

1531 5FB TxPDO10
*, Nd.59

421 1A5 TxPDO1,
DI, Nd.37

977 3D1 TxPDO8*,
Nd.17

1532 5FC TxPDO10
*, Nd.60

422 1A6 TxPDO1,
DI, Nd.38

978 3D2 TxPDO8*,
Nd.18

1533 5FD TxPDO10
*, Nd.61

423 1A7 TxPDO1,
DI, Nd.39

979 3D3 TxPDO8*,
Nd.19

1534 5FE TxPDO10
*, Nd.62

Appendix

140 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

424 1A8 TxPDO1,
DI, Nd.40

980 3D4 TxPDO8*,
Nd.20

1535 5FF TxPDO10
*, Nd.63

425 1A9 TxPDO1,
DI, Nd.41

981 3D5 TxPDO8*,
Nd.21

1537 601 SDO Rx
Nd.1

426 1AA TxPDO1,
DI, Nd.42

982 3D6 TxPDO8*,
Nd.22

1538 602 SDO Rx
Nd.2

427 1AB TxPDO1,
DI, Nd.43

983 3D7 TxPDO8*,
Nd.23

1539 603 SDO Rx
Nd.3

428 1AC TxPDO1,
DI, Nd.44

984 3D8 TxPDO8*,
Nd.24

1540 604 SDO Rx
Nd.4

429 1AD TxPDO1,
DI, Nd.45

985 3D9 TxPDO8*,
Nd.25

1541 605 SDO Rx
Nd.5

430 1AE TxPDO1,
DI, Nd.46

986 3DA TxPDO8*,
Nd.26

1542 606 SDO Rx
Nd.6

431 1AF TxPDO1,
DI, Nd.47

987 3DB TxPDO8*,
Nd.27

1543 607 SDO Rx
Nd.7

432 1B0 TxPDO1,
DI, Nd.48

988 3DC TxPDO8*,
Nd.28

1544 608 SDO Rx
Nd.8

433 1B1 TxPDO1,
DI, Nd.49

989 3DD TxPDO8*,
Nd.29

1545 609 SDO Rx
Nd.9

434 1B2 TxPDO1,
DI, Nd.50

990 3DE TxPDO8*,
Nd.30

1546 60A SDO Rx
Nd.10

435 1B3 TxPDO1,
DI, Nd.51

991 3DF TxPDO8*,
Nd.31

1547 60B SDO Rx
Nd.11

436 1B4 TxPDO1,
DI, Nd.52

992 3E0 TxPDO8*,
Nd.32

1548 60C SDO Rx
Nd.12

437 1B5 TxPDO1,
DI, Nd.53

993 3E1 TxPDO8*,
Nd.33

1549 60D SDO Rx
Nd.13

438 1B6 TxPDO1,
DI, Nd.54

994 3E2 TxPDO8*,
Nd.34

1550 60E SDO Rx
Nd.14

439 1B7 TxPDO1,
DI, Nd.55

995 3E3 TxPDO8*,
Nd.35

1551 60F SDO Rx
Nd.15

440 1B8 TxPDO1,
DI, Nd.56

996 3E4 TxPDO8*,
Nd.36

1552 610 SDO Rx
Nd.16

441 1B9 TxPDO1,
DI, Nd.57

997 3E5 TxPDO8*,
Nd.37

1553 611 SDO Rx
Nd.17

442 1BA TxPDO1,
DI, Nd.58

998 3E6 TxPDO8*,
Nd.38

1554 612 SDO Rx
Nd.18

443 1BB TxPDO1,
DI, Nd.59

999 3E7 TxPDO8*,
Nd.39

1555 613 SDO Rx
Nd.19

444 1BC TxPDO1,
DI, Nd.60

1000 3E8 TxPDO8*,
Nd.40

1556 614 SDO Rx
Nd.20

445 1BD TxPDO1,
DI, Nd.61

1001 3E9 TxPDO8*,
Nd.41

1557 615 SDO Rx
Nd.21

446 1BE TxPDO1,
DI, Nd.62

1002 3EA TxPDO8*,
Nd.42

1558 616 SDO Rx
Nd.22

447 1BF TxPDO1,
DI, Nd.63

1003 3EB TxPDO8*,
Nd.43

1559 617 SDO Rx
Nd.23

449 1C1 TxPDO6*,
Nd.1

1004 3EC TxPDO8*,
Nd.44

1560 618 SDO Rx
Nd.24

450 1C2 TxPDO6*,
Nd.2

1005 3ED TxPDO8*,
Nd.45

1561 619 SDO Rx
Nd.25

Appendix

141Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

451 1C3 TxPDO6*,
Nd.3

1006 3EE TxPDO8*,
Nd.46

1562 61A SDO Rx
Nd.26

452 1C4 TxPDO6*,
Nd.4

1007 3EF TxPDO8*,
Nd.47

1563 61B SDO Rx
Nd.27

453 1C5 TxPDO6*,
Nd.5

1008 3F0 TxPDO8*,
Nd.48

1564 61C SDO Rx
Nd.28

454 1C6 TxPDO6*,
Nd.6

1009 3F1 TxPDO8*,
Nd.49

1565 61D SDO Rx
Nd.29

455 1C7 TxPDO6*,
Nd.7

1010 3F2 TxPDO8*,
Nd.50

1566 61E SDO Rx
Nd.30

456 1C8 TxPDO6*,
Nd.8

1011 3F3 TxPDO8*,
Nd.51

1567 61F SDO Rx
Nd.31

457 1C9 TxPDO6*,
Nd.9

1012 3F4 TxPDO8*,
Nd.52

1568 620 SDO Rx
Nd.32

458 1CA TxPDO6*,
Nd.10

1013 3F5 TxPDO8*,
Nd.53

1569 621 SDO Rx
Nd.33

459 1CB TxPDO6*,
Nd.11

1014 3F6 TxPDO8*,
Nd.54

1570 622 SDO Rx
Nd.34

460 1CC TxPDO6*,
Nd.12

1015 3F7 TxPDO8*,
Nd.55

1571 623 SDO Rx
Nd.35

461 1CD TxPDO6*,
Nd.13

1016 3F8 TxPDO8*,
Nd.56

1572 624 SDO Rx
Nd.36

462 1CE TxPDO6*,
Nd.14

1017 3F9 TxPDO8*,
Nd.57

1573 625 SDO Rx
Nd.37

463 1CF TxPDO6*,
Nd.15

1018 3FA TxPDO8*,
Nd.58

1574 626 SDO Rx
Nd.38

464 1D0 TxPDO6*,
Nd.16

1019 3FB TxPDO8*,
Nd.59

1575 627 SDO Rx
Nd.39

465 1D1 TxPDO6*,
Nd.17

1020 3FC TxPDO8*,
Nd.60

1576 628 SDO Rx
Nd.40

466 1D2 TxPDO6*,
Nd.18

1021 3FD TxPDO8*,
Nd.61

1577 629 SDO Rx
Nd.41

467 1D3 TxPDO6*,
Nd.19

1022 3FE TxPDO8*,
Nd.62

1578 62A SDO Rx
Nd.42

468 1D4 TxPDO6*,
Nd.20

1023 3FF TxPDO8*,
Nd.63

1579 62B SDO Rx
Nd.43

469 1D5 TxPDO6*,
Nd.21

1025 401 RxPDO3*,
Nd.1

1580 62C SDO Rx
Nd.44

470 1D6 TxPDO6*,
Nd.22

1026 402 RxPDO3*,
Nd.2

1581 62D SDO Rx
Nd.45

471 1D7 TxPDO6*,
Nd.23

1027 403 RxPDO3*,
Nd.3

1582 62E SDO Rx
Nd.46

472 1D8 TxPDO6*,
Nd.24

1028 404 RxPDO3*,
Nd.4

1583 62F SDO Rx
Nd.47

473 1D9 TxPDO6*,
Nd.25

1029 405 RxPDO3*,
Nd.5

1584 630 SDO Rx
Nd.48

474 1DA TxPDO6*,
Nd.26

1030 406 RxPDO3*,
Nd.6

1585 631 SDO Rx
Nd.49

475 1DB TxPDO6*,
Nd.27

1031 407 RxPDO3*,
Nd.7

1586 632 SDO Rx
Nd.50

476 1DC TxPDO6*,
Nd.28

1032 408 RxPDO3*,
Nd.8

1587 633 SDO Rx
Nd.51

Appendix

142 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

477 1DD TxPDO6*,
Nd.29

1033 409 RxPDO3*,
Nd.9

1588 634 SDO Rx
Nd.52

478 1DE TxPDO6*,
Nd.30

1034 40A RxPDO3*,
Nd.10

1589 635 SDO Rx
Nd.53

479 1DF TxPDO6*,
Nd.31

1035 40B RxPDO3*,
Nd.11

1590 636 SDO Rx
Nd.54

480 1E0 TxPDO6*,
Nd.32

1036 40C RxPDO3*,
Nd.12

1591 637 SDO Rx
Nd.55

481 1E1 TxPDO6*,
Nd.33

1037 40D RxPDO3*,
Nd.13

1592 638 SDO Rx
Nd.56

482 1E2 TxPDO6*,
Nd.34

1038 40E RxPDO3*,
Nd.14

1593 639 SDO Rx
Nd.57

483 1E3 TxPDO6*,
Nd.35

1039 40F RxPDO3*,
Nd.15

1594 63A SDO Rx
Nd.58

484 1E4 TxPDO6*,
Nd.36

1040 410 RxPDO3*,
Nd.16

1595 63B SDO Rx
Nd.59

485 1E5 TxPDO6*,
Nd.37

1041 411 RxPDO3*,
Nd.17

1596 63C SDO Rx
Nd.60

486 1E6 TxPDO6*,
Nd.38

1042 412 RxPDO3*,
Nd.18

1597 63D SDO Rx
Nd.61

487 1E7 TxPDO6*,
Nd.39

1043 413 RxPDO3*,
Nd.19

1598 63E SDO Rx
Nd.62

488 1E8 TxPDO6*,
Nd.40

1044 414 RxPDO3*,
Nd.20

1599 63F SDO Rx
Nd.63

489 1E9 TxPDO6*,
Nd.41

1045 415 RxPDO3*,
Nd.21

1601 641 RxPDO10
*, Nd.1

490 1EA TxPDO6*,
Nd.42

1046 416 RxPDO3*,
Nd.22

1602 642 RxPDO10
*, Nd.2

491 1EB TxPDO6*,
Nd.43

1047 417 RxPDO3*,
Nd.23

1603 643 RxPDO10
*, Nd.3

492 1EC TxPDO6*,
Nd.44

1048 418 RxPDO3*,
Nd.24

1604 644 RxPDO10
*, Nd.4

493 1ED TxPDO6*,
Nd.45

1049 419 RxPDO3*,
Nd.25

1605 645 RxPDO10
*, Nd.5

494 1EE TxPDO6*,
Nd.46

1050 41A RxPDO3*,
Nd.26

1606 646 RxPDO10
*, Nd.6

495 1EF TxPDO6*,
Nd.47

1051 41B RxPDO3*,
Nd.27

1607 647 RxPDO10
*, Nd.7

496 1F0 TxPDO6*,
Nd.48

1052 41C RxPDO3*,
Nd.28

1608 648 RxPDO10
*, Nd.8

497 1F1 TxPDO6*,
Nd.49

1053 41D RxPDO3*,
Nd.29

1609 649 RxPDO10
*, Nd.9

498 1F2 TxPDO6*,
Nd.50

1054 41E RxPDO3*,
Nd.30

1610 64A RxPDO10
*, Nd.10

499 1F3 TxPDO6*,
Nd.51

1055 41F RxPDO3*,
Nd.31

1611 64B RxPDO10
*, Nd.11

500 1F4 TxPDO6*,
Nd.52

1056 420 RxPDO3*,
Nd.32

1612 64C RxPDO10
*, Nd.12

501 1F5 TxPDO6*,
Nd.53

1057 421 RxPDO3*,
Nd.33

1613 64D RxPDO10
*, Nd.13

502 1F6 TxPDO6*,
Nd.54

1058 422 RxPDO3*,
Nd.34

1614 64E RxPDO10
*, Nd.14

Appendix

143Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

503 1F7 TxPDO6*,
Nd.55

1059 423 RxPDO3*,
Nd.35

1615 64F RxPDO10
*, Nd.15

504 1F8 TxPDO6*,
Nd.56

1060 424 RxPDO3*,
Nd.36

1616 650 RxPDO10
*, Nd.16

505 1F9 TxPDO6*,
Nd.57

1061 425 RxPDO3*,
Nd.37

1617 651 RxPDO10
*, Nd.17

506 1FA TxPDO6*,
Nd.58

1062 426 RxPDO3*,
Nd.38

1618 652 RxPDO10
*, Nd.18

507 1FB TxPDO6*,
Nd.59

1063 427 RxPDO3*,
Nd.39

1619 653 RxPDO10
*, Nd.19

508 1FC TxPDO6*,
Nd.60

1064 428 RxPDO3*,
Nd.40

1620 654 RxPDO10
*, Nd.20

509 1FD TxPDO6*,
Nd.61

1065 429 RxPDO3*,
Nd.41

1621 655 RxPDO10
*, Nd.21

510 1FE TxPDO6*,
Nd.62

1066 42A RxPDO3*,
Nd.42

1622 656 RxPDO10
*, Nd.22

511 1FF TxPDO6*,
Nd.63

1067 42B RxPDO3*,
Nd.43

1623 657 RxPDO10
*, Nd.23

513 201 RxPDO1,
DO, Nd.1

1068 42C RxPDO3*,
Nd.44

1624 658 RxPDO10
*, Nd.24

514 202 RxPDO1,
DO, Nd.2

1069 42D RxPDO3*,
Nd.45

1625 659 RxPDO10
*, Nd.25

515 203 RxPDO1,
DO, Nd.3

1070 42E RxPDO3*,
Nd.46

1626 65A RxPDO10
*, Nd.26

516 204 RxPDO1,
DO, Nd.4

1071 42F RxPDO3*,
Nd.47

1627 65B RxPDO10
*, Nd.27

517 205 RxPDO1,
DO, Nd.5

1072 430 RxPDO3*,
Nd.48

1628 65C RxPDO10
*, Nd.28

518 206 RxPDO1,
DO, Nd.6

1073 431 RxPDO3*,
Nd.49

1629 65D RxPDO10
*, Nd.29

519 207 RxPDO1,
DO, Nd.7

1074 432 RxPDO3*,
Nd.50

1630 65E RxPDO10
*, Nd.30

520 208 RxPDO1,
DO, Nd.8

1075 433 RxPDO3*,
Nd.51

1631 65F RxPDO10
*, Nd.31

521 209 RxPDO1,
DO, Nd.9

1076 434 RxPDO3*,
Nd.52

1632 660 RxPDO10
*, Nd.32

522 20A RxPDO1,
DO, Nd.10

1077 435 RxPDO3*,
Nd.53

1633 661 RxPDO10
*, Nd.33

523 20B RxPDO1,
DO, Nd.11

1078 436 RxPDO3*,
Nd.54

1634 662 RxPDO10
*, Nd.34

524 20C RxPDO1,
DO, Nd.12

1079 437 RxPDO3*,
Nd.55

1635 663 RxPDO10
*, Nd.35

525 20D RxPDO1,
DO, Nd.13

1080 438 RxPDO3*,
Nd.56

1636 664 RxPDO10
*, Nd.36

526 20E RxPDO1,
DO, Nd.14

1081 439 RxPDO3*,
Nd.57

1637 665 RxPDO10
*, Nd.37

527 20F RxPDO1,
DO, Nd.15

1082 43A RxPDO3*,
Nd.58

1638 666 RxPDO10
*, Nd.38

528 210 RxPDO1,
DO, Nd.16

1083 43B RxPDO3*,
Nd.59

1639 667 RxPDO10
*, Nd.39

529 211 RxPDO1,
DO, Nd.17

1084 43C RxPDO3*,
Nd.60

1640 668 RxPDO10
*, Nd.40

Appendix

144 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

530 212 RxPDO1,
DO, Nd.18

1085 43D RxPDO3*,
Nd.61

1641 669 RxPDO10
*, Nd.41

531 213 RxPDO1,
DO, Nd.19

1086 43E RxPDO3*,
Nd.62

1642 66A RxPDO10
*, Nd.42

532 214 RxPDO1,
DO, Nd.20

1087 43F RxPDO3*,
Nd.63

1643 66B RxPDO10
*, Nd.43

533 215 RxPDO1,
DO, Nd.21

1089 441 RxPDO8*,
Nd.1

1644 66C RxPDO10
*, Nd.44

534 216 RxPDO1,
DO, Nd.22

1090 442 RxPDO8*,
Nd.2

1645 66D RxPDO10
*, Nd.45

535 217 RxPDO1,
DO, Nd.23

1091 443 RxPDO8*,
Nd.3

1646 66E RxPDO10
*, Nd.46

536 218 RxPDO1,
DO, Nd.24

1092 444 RxPDO8*,
Nd.4

1647 66F RxPDO10
*, Nd.47

537 219 RxPDO1,
DO, Nd.25

1093 445 RxPDO8*,
Nd.5

1648 670 RxPDO10
*, Nd.48

538 21A RxPDO1,
DO, Nd.26

1094 446 RxPDO8*,
Nd.6

1649 671 RxPDO10
*, Nd.49

539 21B RxPDO1,
DO, Nd.27

1095 447 RxPDO8*,
Nd.7

1650 672 RxPDO10
*, Nd.50

540 21C RxPDO1,
DO, Nd.28

1096 448 RxPDO8*,
Nd.8

1651 673 RxPDO10
*, Nd.51

541 21D RxPDO1,
DO, Nd.29

1097 449 RxPDO8*,
Nd.9

1652 674 RxPDO10
*, Nd.52

542 21E RxPDO1,
DO, Nd.30

1098 44A RxPDO8*,
Nd.10

1653 675 RxPDO10
*, Nd.53

543 21F RxPDO1,
DO, Nd.31

1099 44B RxPDO8*,
Nd.11

1654 676 RxPDO10
*, Nd.54

544 220 RxPDO1,
DO, Nd.32

1100 44C RxPDO8*,
Nd.12

1655 677 RxPDO10
*, Nd.55

545 221 RxPDO1,
DO, Nd.33

1101 44D RxPDO8*,
Nd.13

1656 678 RxPDO10
*, Nd.56

546 222 RxPDO1,
DO, Nd.34

1102 44E RxPDO8*,
Nd.14

1657 679 RxPDO10
*, Nd.57

547 223 RxPDO1,
DO, Nd.35

1103 44F RxPDO8*,
Nd.15

1658 67A RxPDO10
*, Nd.58

548 224 RxPDO1,
DO, Nd.36

1104 450 RxPDO8*,
Nd.16

1659 67B RxPDO10
*, Nd.59

549 225 RxPDO1,
DO, Nd.37

1105 451 RxPDO8*,
Nd.17

1660 67C RxPDO10
*, Nd.60

550 226 RxPDO1,
DO, Nd.38

1106 452 RxPDO8*,
Nd.18

1661 67D RxPDO10
*, Nd.61

551 227 RxPDO1,
DO, Nd.39

1107 453 RxPDO8*,
Nd.19

1662 67E RxPDO10
*, Nd.62

552 228 RxPDO1,
DO, Nd.40

1108 454 RxPDO8*,
Nd.20

1663 67F RxPDO10
*, Nd.63

553 229 RxPDO1,
DO, Nd.41

1109 455 RxPDO8*,
Nd.21

1665 681 TxPDO5*,
Nd.1

554 22A RxPDO1,
DO, Nd.42

1110 456 RxPDO8*,
Nd.22

1666 682 TxPDO5*,
Nd.2

555 22B RxPDO1,
DO, Nd.43

1111 457 RxPDO8*,
Nd.23

1667 683 TxPDO5*,
Nd.3

Appendix

145Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

556 22C RxPDO1,
DO, Nd.44

1112 458 RxPDO8*,
Nd.24

1668 684 TxPDO5*,
Nd.4

557 22D RxPDO1,
DO, Nd.45

1113 459 RxPDO8*,
Nd.25

1669 685 TxPDO5*,
Nd.5

558 22E RxPDO1,
DO, Nd.46

1114 45A RxPDO8*,
Nd.26

1670 686 TxPDO5*,
Nd.6

559 22F RxPDO1,
DO, Nd.47

1115 45B RxPDO8*,
Nd.27

1671 687 TxPDO5*,
Nd.7

560 230 RxPDO1,
DO, Nd.48

1116 45C RxPDO8*,
Nd.28

1672 688 TxPDO5*,
Nd.8

561 231 RxPDO1,
DO, Nd.49

1117 45D RxPDO8*,
Nd.29

1673 689 TxPDO5*,
Nd.9

562 232 RxPDO1,
DO, Nd.50

1118 45E RxPDO8*,
Nd.30

1674 68A TxPDO5*,
Nd.10

563 233 RxPDO1,
DO, Nd.51

1119 45F RxPDO8*,
Nd.31

1675 68B TxPDO5*,
Nd.11

564 234 RxPDO1,
DO, Nd.52

1120 460 RxPDO8*,
Nd.32

1676 68C TxPDO5*,
Nd.12

565 235 RxPDO1,
DO, Nd.53

1121 461 RxPDO8*,
Nd.33

1677 68D TxPDO5*,
Nd.13

566 236 RxPDO1,
DO, Nd.54

1122 462 RxPDO8*,
Nd.34

1678 68E TxPDO5*,
Nd.14

567 237 RxPDO1,
DO, Nd.55

1123 463 RxPDO8*,
Nd.35

1679 68F TxPDO5*,
Nd.15

568 238 RxPDO1,
DO, Nd.56

1124 464 RxPDO8*,
Nd.36

1680 690 TxPDO5*,
Nd.16

569 239 RxPDO1,
DO, Nd.57

1125 465 RxPDO8*,
Nd.37

1681 691 TxPDO5*,
Nd.17

570 23A RxPDO1,
DO, Nd.58

1126 466 RxPDO8*,
Nd.38

1682 692 TxPDO5*,
Nd.18

571 23B RxPDO1,
DO, Nd.59

1127 467 RxPDO8*,
Nd.39

1683 693 TxPDO5*,
Nd.19

572 23C RxPDO1,
DO, Nd.60

1128 468 RxPDO8*,
Nd.40

1684 694 TxPDO5*,
Nd.20

573 23D RxPDO1,
DO, Nd.61

1129 469 RxPDO8*,
Nd.41

1685 695 TxPDO5*,
Nd.21

574 23E RxPDO1,
DO, Nd.62

1130 46A RxPDO8*,
Nd.42

1686 696 TxPDO5*,
Nd.22

575 23F RxPDO1,
DO, Nd.63

1131 46B RxPDO8*,
Nd.43

1687 697 TxPDO5*,
Nd.23

577 241 RxPDO6*,
Nd.1

1132 46C RxPDO8*,
Nd.44

1688 698 TxPDO5*,
Nd.24

578 242 RxPDO6*,
Nd.2

1133 46D RxPDO8*,
Nd.45

1689 699 TxPDO5*,
Nd.25

579 243 RxPDO6*,
Nd.3

1134 46E RxPDO8*,
Nd.46

1690 69A TxPDO5*,
Nd.26

580 244 RxPDO6*,
Nd.4

1135 46F RxPDO8*,
Nd.47

1691 69B TxPDO5*,
Nd.27

581 245 RxPDO6*,
Nd.5

1136 470 RxPDO8*,
Nd.48

1692 69C TxPDO5*,
Nd.28

582 246 RxPDO6*,
Nd.6

1137 471 RxPDO8*,
Nd.49

1693 69D TxPDO5*,
Nd.29

Appendix

146 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

583 247 RxPDO6*,
Nd.7

1138 472 RxPDO8*,
Nd.50

1694 69E TxPDO5*,
Nd.30

584 248 RxPDO6*,
Nd.8

1139 473 RxPDO8*,
Nd.51

1695 69F TxPDO5*,
Nd.31

585 249 RxPDO6*,
Nd.9

1140 474 RxPDO8*,
Nd.52

1696 6A0 TxPDO5*,
Nd.32

586 24A RxPDO6*,
Nd.10

1141 475 RxPDO8*,
Nd.53

1697 6A1 TxPDO5*,
Nd.33

587 24B RxPDO6*,
Nd.11

1142 476 RxPDO8*,
Nd.54

1698 6A2 TxPDO5*,
Nd.34

588 24C RxPDO6*,
Nd.12

1143 477 RxPDO8*,
Nd.55

1699 6A3 TxPDO5*,
Nd.35

589 24D RxPDO6*,
Nd.13

1144 478 RxPDO8*,
Nd.56

1700 6A4 TxPDO5*,
Nd.36

590 24E RxPDO6*,
Nd.14

1145 479 RxPDO8*,
Nd.57

1701 6A5 TxPDO5*,
Nd.37

591 24F RxPDO6*,
Nd.15

1146 47A RxPDO8*,
Nd.58

1702 6A6 TxPDO5*,
Nd.38

592 250 RxPDO6*,
Nd.16

1147 47B RxPDO8*,
Nd.59

1703 6A7 TxPDO5*,
Nd.39

593 251 RxPDO6*,
Nd.17

1148 47C RxPDO8*,
Nd.60

1704 6A8 TxPDO5*,
Nd.40

594 252 RxPDO6*,
Nd.18

1149 47D RxPDO8*,
Nd.61

1705 6A9 TxPDO5*,
Nd.41

595 253 RxPDO6*,
Nd.19

1150 47E RxPDO8*,
Nd.62

1706 6AA TxPDO5*,
Nd.42

596 254 RxPDO6*,
Nd.20

1151 47F RxPDO8*,
Nd.63

1707 6AB TxPDO5*,
Nd.43

597 255 RxPDO6*,
Nd.21

1153 481 TxPDO4*,
Nd.1

1708 6AC TxPDO5*,
Nd.44

598 256 RxPDO6*,
Nd.22

1154 482 TxPDO4*,
Nd.2

1709 6AD TxPDO5*,
Nd.45

599 257 RxPDO6*,
Nd.23

1155 483 TxPDO4*,
Nd.3

1710 6AE TxPDO5*,
Nd.46

600 258 RxPDO6*,
Nd.24

1156 484 TxPDO4*,
Nd.4

1711 6AF TxPDO5*,
Nd.47

601 259 RxPDO6*,
Nd.25

1157 485 TxPDO4*,
Nd.5

1712 6B0 TxPDO5*,
Nd.48

602 25A RxPDO6*,
Nd.26

1158 486 TxPDO4*,
Nd.6

1713 6B1 TxPDO5*,
Nd.49

603 25B RxPDO6*,
Nd.27

1159 487 TxPDO4*,
Nd.7

1714 6B2 TxPDO5*,
Nd.50

604 25C RxPDO6*,
Nd.28

1160 488 TxPDO4*,
Nd.8

1715 6B3 TxPDO5*,
Nd.51

605 25D RxPDO6*,
Nd.29

1161 489 TxPDO4*,
Nd.9

1716 6B4 TxPDO5*,
Nd.52

606 25E RxPDO6*,
Nd.30

1162 48A TxPDO4*,
Nd.10

1717 6B5 TxPDO5*,
Nd.53

607 25F RxPDO6*,
Nd.31

1163 48B TxPDO4*,
Nd.11

1718 6B6 TxPDO5*,
Nd.54

608 260 RxPDO6*,
Nd.32

1164 48C TxPDO4*,
Nd.12

1719 6B7 TxPDO5*,
Nd.55

Appendix

147Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

609 261 RxPDO6*,
Nd.33

1165 48D TxPDO4*,
Nd.13

1720 6B8 TxPDO5*,
Nd.56

610 262 RxPDO6*,
Nd.34

1166 48E TxPDO4*,
Nd.14

1721 6B9 TxPDO5*,
Nd.57

611 263 RxPDO6*,
Nd.35

1167 48F TxPDO4*,
Nd.15

1722 6BA TxPDO5*,
Nd.58

612 264 RxPDO6*,
Nd.36

1168 490 TxPDO4*,
Nd.16

1723 6BB TxPDO5*,
Nd.59

613 265 RxPDO6*,
Nd.37

1169 491 TxPDO4*,
Nd.17

1724 6BC TxPDO5*,
Nd.60

614 266 RxPDO6*,
Nd.38

1170 492 TxPDO4*,
Nd.18

1725 6BD TxPDO5*,
Nd.61

615 267 RxPDO6*,
Nd.39

1171 493 TxPDO4*,
Nd.19

1726 6BE TxPDO5*,
Nd.62

616 268 RxPDO6*,
Nd.40

1172 494 TxPDO4*,
Nd.20

1727 6BF TxPDO5*,
Nd.63

617 269 RxPDO6*,
Nd.41

1173 495 TxPDO4*,
Nd.21

1729 6C1 TxPDO11
*, Nd.1

618 26A RxPDO6*,
Nd.42

1174 496 TxPDO4*,
Nd.22

1730 6C2 TxPDO11
*, Nd.2

619 26B RxPDO6*,
Nd.43

1175 497 TxPDO4*,
Nd.23

1731 6C3 TxPDO11
*, Nd.3

620 26C RxPDO6*,
Nd.44

1176 498 TxPDO4*,
Nd.24

1732 6C4 TxPDO11
*, Nd.4

621 26D RxPDO6*,
Nd.45

1177 499 TxPDO4*,
Nd.25

1733 6C5 TxPDO11
*, Nd.5

622 26E RxPDO6*,
Nd.46

1178 49A TxPDO4*,
Nd.26

1734 6C6 TxPDO11
*, Nd.6

623 26F RxPDO6*,
Nd.47

1179 49B TxPDO4*,
Nd.27

1735 6C7 TxPDO11
*, Nd.7

624 270 RxPDO6*,
Nd.48

1180 49C TxPDO4*,
Nd.28

1736 6C8 TxPDO11
*, Nd.8

625 271 RxPDO6*,
Nd.49

1181 49D TxPDO4*,
Nd.29

1737 6C9 TxPDO11
*, Nd.9

626 272 RxPDO6*,
Nd.50

1182 49E TxPDO4*,
Nd.30

1738 6CA TxPDO11
*, Nd.10

627 273 RxPDO6*,
Nd.51

1183 49F TxPDO4*,
Nd.31

1739 6CB TxPDO11
*, Nd.11

628 274 RxPDO6*,
Nd.52

1184 4A0 TxPDO4*,
Nd.32

1740 6CC TxPDO11
*, Nd.12

629 275 RxPDO6*,
Nd.53

1185 4A1 TxPDO4*,
Nd.33

1741 6CD TxPDO11
*, Nd.13

630 276 RxPDO6*,
Nd.54

1186 4A2 TxPDO4*,
Nd.34

1742 6CE TxPDO11
*, Nd.14

631 277 RxPDO6*,
Nd.55

1187 4A3 TxPDO4*,
Nd.35

1743 6CF TxPDO11
*, Nd.15

632 278 RxPDO6*,
Nd.56

1188 4A4 TxPDO4*,
Nd.36

1744 6D0 TxPDO11
*, Nd.16

633 279 RxPDO6*,
Nd.57

1189 4A5 TxPDO4*,
Nd.37

1745 6D1 TxPDO11
*, Nd.17

634 27A RxPDO6*,
Nd.58

1190 4A6 TxPDO4*,
Nd.48

1746 6D2 TxPDO11
*, Nd.18

Appendix

148 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

635 27B RxPDO6*,
Nd.59

1191 4A7 TxPDO4*,
Nd.49

1747 6D3 TxPDO11
*, Nd.19

636 27C RxPDO6*,
Nd.60

1192 4A8 TxPDO4*,
Nd.40

1748 6D4 TxPDO11
*, Nd.20

637 27D RxPDO6*,
Nd.61

1193 4A9 TxPDO4*,
Nd.41

1749 6D5 TxPDO11
*, Nd.21

638 27E RxPDO6*,
Nd.62

1194 4AA TxPDO4*,
Nd.42

1750 6D6 TxPDO11
*, Nd.22

639 27F RxPDO6*,
Nd.63

1195 4AB TxPDO4*,
Nd.43

1751 6D7 TxPDO11
*, Nd.23

641 281 TxPDO2,
AI, Nd.1

1196 4AC TxPDO4*,
Nd.44

1752 6D8 TxPDO11
*, Nd.24

642 282 TxPDO2,
AI, Nd.2

1197 4AD TxPDO4*,
Nd.45

1753 6D9 TxPDO11
*, Nd.25

643 283 TxPDO2,
AI, Nd.3

1198 4AE TxPDO4*,
Nd.46

1754 6DA TxPDO11
*, Nd.26

644 284 TxPDO2,
AI, Nd.4

1199 4AF TxPDO4*,
Nd.47

1755 6DB TxPDO11
*, Nd.27

645 285 TxPDO2,
AI, Nd.5

1200 4B0 TxPDO4*,
Nd.48

1756 6DC TxPDO11
*, Nd.28

646 286 TxPDO2,
AI, Nd.6

1201 4B1 TxPDO4*,
Nd.49

1757 6DD TxPDO11
*, Nd.29

647 287 TxPDO2,
AI, Nd.7

1202 4B2 TxPDO4*,
Nd.50

1758 6DE TxPDO11
*, Nd.30

648 288 TxPDO2,
AI, Nd.8

1203 4B3 TxPDO4*,
Nd.51

1759 6DF TxPDO11
*, Nd.31

649 289 TxPDO2,
AI, Nd.9

1204 4B4 TxPDO4*,
Nd.52

1760 6E0 TxPDO11
*, Nd.32

650 28A TxPDO2,
AI, Nd.10

1205 4B5 TxPDO4*,
Nd.53

1761 6E1 TxPDO11
*, Nd.33

651 28B TxPDO2,
AI, Nd.11

1206 4B6 TxPDO4*,
Nd.54

1762 6E2 TxPDO11
*, Nd.34

652 28C TxPDO2,
AI, Nd.12

1207 4B7 TxPDO4*,
Nd.55

1763 6E3 TxPDO11
*, Nd.35

653 28D TxPDO2,
AI, Nd.13

1208 4B8 TxPDO4*,
Nd.56

1764 6E4 TxPDO11
*, Nd.36

654 28E TxPDO2,
AI, Nd.14

1209 4B9 TxPDO4*,
Nd.57

1765 6E5 TxPDO11
*, Nd.37

655 28F TxPDO2,
AI, Nd.15

1210 4BA TxPDO4*,
Nd.58

1766 6E6 TxPDO11
*, Nd.38

656 290 TxPDO2,
AI, Nd.16

1211 4BB TxPDO4*,
Nd.59

1767 6E7 TxPDO11
*, Nd.39

657 291 TxPDO2,
AI, Nd.17

1212 4BC TxPDO4*,
Nd.60

1768 6E8 TxPDO11
*, Nd.40

658 292 TxPDO2,
AI, Nd.18

1213 4BD TxPDO4*,
Nd.61

1769 6E9 TxPDO11
*, Nd.41

659 293 TxPDO2,
AI, Nd.19

1214 4BE TxPDO4*,
Nd.62

1770 6EA TxPDO11
*, Nd.42

660 294 TxPDO2,
AI, Nd.20

1215 4BF TxPDO4*,
Nd.63

1771 6EB TxPDO11
*, Nd.43

661 295 TxPDO2,
AI, Nd.21

1217 4C1 TxPDO9*,
Nd.1

1772 6EC TxPDO11
*, Nd.44

Appendix

149Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

662 296 TxPDO2,
AI, Nd.22

1218 4C2 TxPDO9*,
Nd.2

1773 6ED TxPDO11
*, Nd.45

663 297 TxPDO2,
AI, Nd.23

1219 4C3 TxPDO9*,
Nd.3

1774 6EE TxPDO11
*, Nd.46

664 298 TxPDO2,
AI, Nd.24

1220 4C4 TxPDO9*,
Nd.4

1775 6EF TxPDO11
*, Nd.47

665 299 TxPDO2,
AI, Nd.25

1221 4C5 TxPDO9*,
Nd.5

1776 6F0 TxPDO11
*, Nd.48

666 29A TxPDO2,
AI, Nd.26

1222 4C6 TxPDO9*,
Nd.6

1777 6F1 TxPDO11
*, Nd.49

667 29B TxPDO2,
AI, Nd.27

1223 4C7 TxPDO9*,
Nd.7

1778 6F2 TxPDO11
*, Nd.50

668 29C TxPDO2,
AI, Nd.28

1224 4C8 TxPDO9*,
Nd.8

1779 6F3 TxPDO11
*, Nd.51

669 29D TxPDO2,
AI, Nd.29

1225 4C9 TxPDO9*,
Nd.9

1780 6F4 TxPDO11
*, Nd.52

670 29E TxPDO2,
AI, Nd.30

1226 4CA TxPDO9*,
Nd.10

1781 6F5 TxPDO11
*, Nd.53

671 29F TxPDO2,
AI, Nd.31

1227 4CB TxPDO9*,
Nd.11

1782 6F6 TxPDO11
*, Nd.54

672 2A0 TxPDO2,
AI, Nd.32

1228 4CC TxPDO9*,
Nd.12

1783 6F7 TxPDO11
*, Nd.55

673 2A1 TxPDO2,
AI, Nd.33

1229 4CD TxPDO9*,
Nd.13

1784 6F8 TxPDO11
*, Nd.56

674 2A2 TxPDO2,
AI, Nd.34

1230 4CE TxPDO9*,
Nd.14

1785 6F9 TxPDO11
*, Nd.57

675 2A3 TxPDO2,
AI, Nd.35

1231 4CF TxPDO9*,
Nd.15

1786 6FA TxPDO11
*, Nd.58

676 2A4 TxPDO2,
AI, Nd.36

1232 4D0 TxPDO9*,
Nd.16

1787 6FB TxPDO11
*, Nd.59

677 2A5 TxPDO2,
AI, Nd.37

1233 4D1 TxPDO9*,
Nd.17

1788 6FC TxPDO11
*, Nd.60

678 2A6 TxPDO2,
AI, Nd.38

1234 4D2 TxPDO9*,
Nd.18

1789 6FD TxPDO11
*, Nd.61

679 2A7 TxPDO2,
AI, Nd.39

1235 4D3 TxPDO9*,
Nd.19

1790 6FE TxPDO11
*, Nd.62

680 2A8 TxPDO2,
AI, Nd.40

1236 4D4 TxPDO9*,
Nd.20

1791 6FF TxPDO11
*, Nd.63

681 2A9 TxPDO2,
AI, Nd.41

1237 4D5 TxPDO9*,
Nd.21

1793 701 Guarding
Nd.1

682 2AA TxPDO2,
AI, Nd.42

1238 4D6 TxPDO9*,
Nd.22

1794 702 Guarding
Nd.2

683 2AB TxPDO2,
AI, Nd.43

1239 4D7 TxPDO9*,
Nd.23

1795 703 Guarding
Nd.3

684 2AC TxPDO2,
AI, Nd.44

1240 4D8 TxPDO9*,
Nd.24

1796 704 Guarding
Nd.4

685 2AD TxPDO2,
AI, Nd.45

1241 4D9 TxPDO9*,
Nd.25

1797 705 Guarding
Nd.5

686 2AE TxPDO2,
AI, Nd.46

1242 4DA TxPDO9*,
Nd.26

1798 706 Guarding
Nd.6

687 2AF TxPDO2,
AI, Nd.47

1243 4DB TxPDO9*,
Nd.27

1799 707 Guarding
Nd.7

Appendix

150 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

688 2B0 TxPDO2,
AI, Nd.48

1244 4DC TxPDO9*,
Nd.28

1800 708 Guarding
Nd.8

689 2B1 TxPDO2,
AI, Nd.49

1245 4DD TxPDO9*,
Nd.29

1801 709 Guarding
Nd.9

690 2B2 TxPDO2,
AI, Nd.50

1246 4DE TxPDO9*,
Nd.30

1802 70A Guarding
Nd.10

691 2B3 TxPDO2,
AI, Nd.51

1247 4DF TxPDO9*,
Nd.31

1803 70B Guarding
Nd.11

692 2B4 TxPDO2,
AI, Nd.52

1248 4E0 TxPDO9*,
Nd.32

1804 70C Guarding
Nd.12

693 2B5 TxPDO2,
AI, Nd.53

1249 4E1 TxPDO9*,
Nd.33

1805 70D Guarding
Nd.13

694 2B6 TxPDO2,
AI, Nd.54

1250 4E2 TxPDO9*,
Nd.34

1806 70E Guarding
Nd.14

695 2B7 TxPDO2,
AI, Nd.55

1251 4E3 TxPDO9*,
Nd.35

1807 70F Guarding
Nd.15

696 2B8 TxPDO2,
AI, Nd.56

1252 4E4 TxPDO9*,
Nd.36

1808 710 Guarding
Nd.16

697 2B9 TxPDO2,
AI, Nd.57

1253 4E5 TxPDO9*,
Nd.37

1809 711 Guarding
Nd.17

698 2BA TxPDO2,
AI, Nd.58

1254 4E6 TxPDO9*,
Nd.38

1810 712 Guarding
Nd.18

699 2BB TxPDO2,
AI, Nd.59

1255 4E7 TxPDO9*,
Nd.39

1811 713 Guarding
Nd.19

700 2BC TxPDO2,
AI, Nd.60

1256 4E8 TxPDO9*,
Nd.40

1812 714 Guarding
Nd.20

701 2BD TxPDO2,
AI, Nd.61

1257 4E9 TxPDO9*,
Nd.41

1813 715 Guarding
Nd.21

702 2BE TxPDO2,
AI, Nd.62

1258 4EA TxPDO9*,
Nd.42

1814 716 Guarding
Nd.22

703 2BF TxPDO2,
AI, Nd.63

1259 4EB TxPDO9*,
Nd.43

1815 717 Guarding
Nd.23

705 2C1 TxPDO7*,
Nd.1

1260 4EC TxPDO9*,
Nd.44

1816 718 Guarding
Nd.24

706 2C2 TxPDO7*,
Nd.2

1261 4ED TxPDO9*,
Nd.45

1817 719 Guarding
Nd.25

707 2C3 TxPDO7*,
Nd.3

1262 4EE TxPDO9*,
Nd.46

1818 71A Guarding
Nd.26

708 2C4 TxPDO7*,
Nd.4

1263 4EF TxPDO9*,
Nd.47

1819 71B Guarding
Nd.27

709 2C5 TxPDO7*,
Nd.5

1264 4F0 TxPDO9*,
Nd.48

1820 71C Guarding
Nd.28

710 2C6 TxPDO7*,
Nd.6

1265 4F1 TxPDO9*,
Nd.49

1821 71D Guarding
Nd.29

711 2C7 TxPDO7*,
Nd.7

1266 4F2 TxPDO9*,
Nd.50

1822 71E Guarding
Nd.30

712 2C8 TxPDO7*,
Nd.8

1267 4F3 TxPDO9*,
Nd.51

1823 71F Guarding
Nd.31

713 2C9 TxPDO7*,
Nd.9

1268 4F4 TxPDO9*,
Nd.52

1824 720 Guarding
Nd.32

714 2CA TxPDO7*,
Nd.10

1269 4F5 TxPDO9*,
Nd.53

1825 721 Guarding
Nd.33

Appendix

151Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

715 2CB TxPDO7*,
Nd.11

1270 4F6 TxPDO9*,
Nd.54

1826 722 Guarding
Nd.34

716 2CC TxPDO7*,
Nd.12

1271 4F7 TxPDO9*,
Nd.55

1827 723 Guarding
Nd.35

717 2CD TxPDO7*,
Nd.13

1272 4F8 TxPDO9*,
Nd.56

1828 724 Guarding
Nd.36

718 2CE TxPDO7*,
Nd.14

1273 4F9 TxPDO9*,
Nd.57

1829 725 Guarding
Nd.37

719 2CF TxPDO7*,
Nd.15

1274 4FA TxPDO9*,
Nd.58

1830 726 Guarding
Nd.38

720 2D0 TxPDO7*,
Nd.16

1275 4FB TxPDO9*,
Nd.59

1831 727 Guarding
Nd.39

721 2D1 TxPDO7*,
Nd.17

1276 4FC TxPDO9*,
Nd.60

1832 728 Guarding
Nd.40

722 2D2 TxPDO7*,
Nd.18

1277 4FD TxPDO9*,
Nd.61

1833 729 Guarding
Nd.41

723 2D3 TxPDO7*,
Nd.19

1278 4FE TxPDO9*,
Nd.62

1834 72A Guarding
Nd.42

724 2D4 TxPDO7*,
Nd.20

1279 4FF TxPDO9*,
Nd.63

1835 72B Guarding
Nd.43

725 2D5 TxPDO7*,
Nd.21

1281 501 RxPDO4*,
Nd.1

1836 72C Guarding
Nd.44

726 2D6 TxPDO7*,
Nd.22

1282 502 RxPDO4*,
Nd.2

1837 72D Guarding
Nd.45

727 2D7 TxPDO7*,
Nd.23

1283 503 RxPDO4*,
Nd.3

1838 72E Guarding
Nd.46

728 2D8 TxPDO7*,
Nd.24

1284 504 RxPDO4*,
Nd.4

1839 72F Guarding
Nd.47

729 2D9 TxPDO7*,
Nd.25

1285 505 RxPDO4*,
Nd.5

1840 730 Guarding
Nd.48

730 2DA TxPDO7*,
Nd.26

1286 506 RxPDO4*,
Nd.6

1841 731 Guarding
Nd.49

731 2DB TxPDO7*,
Nd.27

1287 507 RxPDO4*,
Nd.7

1842 732 Guarding
Nd.50

732 2DC TxPDO7*,
Nd.28

1288 508 RxPDO4*,
Nd.8

1843 733 Guarding
Nd.51

733 2DD TxPDO7*,
Nd.29

1289 509 RxPDO4*,
Nd.9

1844 734 Guarding
Nd.52

734 2DE TxPDO7*,
Nd.30

1290 50A RxPDO4*,
Nd.10

1845 735 Guarding
Nd.53

735 2DF TxPDO7*,
Nd.31

1291 50B RxPDO4*,
Nd.11

1846 736 Guarding
Nd.54

736 2E0 TxPDO7*,
Nd.32

1292 50C RxPDO4*,
Nd.12

1847 737 Guarding
Nd.55

737 2E1 TxPDO7*,
Nd.33

1293 50D RxPDO4*,
Nd.13

1848 738 Guarding
Nd.56

738 2E2 TxPDO7*,
Nd.34

1294 50E RxPDO4*,
Nd.14

1849 739 Guarding
Nd.57

739 2E3 TxPDO7*,
Nd.35

1295 50F RxPDO4*,
Nd.15

1850 73A Guarding
Nd.58

740 2E4 TxPDO7*,
Nd.36

1296 510 RxPDO4*,
Nd.16

1851 73B Guarding
Nd.59

Appendix

152 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

741 2E5 TxPDO7*,
Nd.37

1297 511 RxPDO4*,
Nd.17

1852 73C Guarding
Nd.60

742 2E6 TxPDO7*,
Nd.38

1298 512 RxPDO4*,
Nd.18

1853 73D Guarding
Nd.61

743 2E7 TxPDO7*,
Nd.39

1299 513 RxPDO4*,
Nd.19

1854 73E Guarding
Nd.62

744 2E8 TxPDO7*,
Nd.40

1300 514 RxPDO4*,
Nd.20

1855 73F Guarding
Nd.63

745 2E9 TxPDO7*,
Nd.41

1301 515 RxPDO4*,
Nd.21

1857 741 RxPDO11
*, Nd.1

746 2EA TxPDO7*,
Nd.42

1302 516 RxPDO4*,
Nd.22

1858 742 RxPDO11
*, Nd.2

747 2EB TxPDO7*,
Nd.43

1303 517 RxPDO4*,
Nd.23

1859 743 RxPDO11
*, Nd.3

748 2EC TxPDO7*,
Nd.44

1304 518 RxPDO4*,
Nd.24

1860 744 RxPDO11
*, Nd.4

749 2ED TxPDO7*,
Nd.45

1305 519 RxPDO4*,
Nd.25

1861 745 RxPDO11
*, Nd.5

750 2EE TxPDO7*,
Nd.46

1306 51A RxPDO4*,
Nd.26

1862 746 RxPDO11
*, Nd.6

751 2EF TxPDO7*,
Nd.47

1307 51B RxPDO4*,
Nd.27

1863 747 RxPDO11
*, Nd.7

752 2F0 TxPDO7*,
Nd.48

1308 51C RxPDO4*,
Nd.28

1864 748 RxPDO11
*, Nd.8

753 2F1 TxPDO7*,
Nd.49

1309 51D RxPDO4*,
Nd.29

1865 749 RxPDO11
*, Nd.9

754 2F2 TxPDO7*,
Nd.50

1310 51E RxPDO4*,
Nd.30

1866 74A RxPDO11
*, Nd.10

755 2F3 TxPDO7*,
Nd.51

1311 51F RxPDO4*,
Nd.31

1867 74B RxPDO11
*, Nd.11

756 2F4 TxPDO7*,
Nd.52

1312 520 RxPDO4*,
Nd.32

1868 74C RxPDO11
*, Nd.12

757 2F5 TxPDO7*,
Nd.53

1313 521 RxPDO4*,
Nd.33

1869 74D RxPDO11
*, Nd.13

758 2F6 TxPDO7*,
Nd.54

1314 522 RxPDO4*,
Nd.34

1870 74E RxPDO11
*, Nd.14

759 2F7 TxPDO7*,
Nd.55

1315 523 RxPDO4*,
Nd.35

1871 74F RxPDO11
*, Nd.15

760 2F8 TxPDO7*,
Nd.56

1316 524 RxPDO4*,
Nd.36

1872 750 RxPDO11
*, Nd.16

761 2F9 TxPDO7*,
Nd.57

1317 525 RxPDO4*,
Nd.37

1873 751 RxPDO11
*, Nd.17

762 2FA TxPDO7*,
Nd.58

1318 526 RxPDO4*,
Nd.38

1874 752 RxPDO11
*, Nd.18

763 2FB TxPDO7*,
Nd.59

1319 527 RxPDO4*,
Nd.39

1875 753 RxPDO11
*, Nd.19

764 2FC TxPDO7*,
Nd.60

1320 528 RxPDO4*,
Nd.40

1876 754 RxPDO11
*, Nd.20

765 2FD TxPDO7*,
Nd.61

1321 529 RxPDO4*,
Nd.41

1877 755 RxPDO11
*, Nd.21

766 2FE TxPDO7*,
Nd.62

1322 52A RxPDO4*,
Nd.42

1878 756 RxPDO11
*, Nd.22

Appendix

153Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

767 2FF TxPDO7*,
Nd.63

1323 52B RxPDO4*,
Nd.43

1879 757 RxPDO11
*, Nd.23

769 301 RxPDO2,
AO, Nd.1

1324 52C RxPDO4*,
Nd.44

1880 758 RxPDO11
*, Nd.24

770 302 RxPDO2,
AO, Nd.2

1325 52D RxPDO4*,
Nd.45

1881 759 RxPDO11
*, Nd.25

771 303 RxPDO2,
AO, Nd.3

1326 52E RxPDO4*,
Nd.46

1882 75A RxPDO11
*, Nd.26

772 304 RxPDO2,
AO, Nd.4

1327 52F RxPDO4*,
Nd.47

1883 75B RxPDO11
*, Nd.27

773 305 RxPDO2,
AO, Nd.5

1328 530 RxPDO4*,
Nd.48

1884 75C RxPDO11
*, Nd.28

774 306 RxPDO2,
AO, Nd.6

1329 531 RxPDO4*,
Nd.49

1885 75D RxPDO11
*, Nd.29

775 307 RxPDO2,
AO, Nd.7

1330 532 RxPDO4*,
Nd.50

1886 75E RxPDO11
*, Nd.30

776 308 RxPDO2,
AO, Nd.8

1331 533 RxPDO4*,
Nd.51

1887 75F RxPDO11
*, Nd.31

777 309 RxPDO2,
AO, Nd.9

1332 534 RxPDO4*,
Nd.52

1888 760 RxPDO11
*, Nd.32

778 30A RxPDO2,
AO, Nd.10

1333 535 RxPDO4*,
Nd.53

1889 761 RxPDO11
*, Nd.33

779 30B RxPDO2,
AO, Nd.11

1334 536 RxPDO4*,
Nd.54

1890 762 RxPDO11
*, Nd.34

780 30C RxPDO2,
AO, Nd.12

1335 537 RxPDO4*,
Nd.55

1891 763 RxPDO11
*, Nd.35

781 30D RxPDO2,
AO, Nd.13

1336 538 RxPDO4*,
Nd.56

1892 764 RxPDO11
*, Nd.36

782 30E RxPDO2,
AO, Nd.14

1337 539 RxPDO4*,
Nd.57

1893 765 RxPDO11
*, Nd.37

783 30F RxPDO2,
AO, Nd.15

1338 53A RxPDO4*,
Nd.58

1894 766 RxPDO11
*, Nd.38

784 310 RxPDO2,
AO, Nd.16

1339 53B RxPDO4*,
Nd.59

1895 767 RxPDO11
*, Nd.39

785 311 RxPDO2,
AO, Nd.17

1340 53C RxPDO4*,
Nd.60

1896 768 RxPDO11
*, Nd.40

786 312 RxPDO2,
AO, Nd.18

1341 53D RxPDO4*,
Nd.61

1897 769 RxPDO11
*, Nd.41

787 313 RxPDO2,
AO, Nd.19

1342 53E RxPDO4*,
Nd.62

1898 76A RxPDO11
*, Nd.42

788 314 RxPDO2,
AO, Nd.20

1343 53F RxPDO4*,
Nd.63

1899 76B RxPDO11
*, Nd.43

789 315 RxPDO2,
AO, Nd.21

1345 541 RxPDO9*,
Nd.1

1900 76C RxPDO11
*, Nd.44

790 316 RxPDO2,
AO, Nd.22

1346 542 RxPDO9*,
Nd.2

1901 76D RxPDO11
*, Nd.45

791 317 RxPDO2,
AO, Nd.23

1347 543 RxPDO9*,
Nd.3

1902 76E RxPDO11
*, Nd.46

792 318 RxPDO2,
AO, Nd.24

1348 544 RxPDO9*,
Nd.4

1903 76F RxPDO11
*, Nd.47

793 319 RxPDO2,
AO, Nd.25

1349 545 RxPDO9*,
Nd.5

1904 770 RxPDO11
*, Nd.48

Appendix

154 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

794 31A RxPDO2,
AO, Nd.26

1350 546 RxPDO9*,
Nd.6

1905 771 RxPDO11
*, Nd.49

795 31B RxPDO2,
AO, Nd.27

1351 547 RxPDO9*,
Nd.7

1906 772 RxPDO11
*, Nd.50

796 31C RxPDO2,
AO, Nd.28

1352 548 RxPDO9*,
Nd.8

1907 773 RxPDO11
*, Nd.51

797 31D RxPDO2,
AO, Nd.29

1353 549 RxPDO9*,
Nd.9

1908 774 RxPDO11
*, Nd.52

798 31E RxPDO2,
AO, Nd.30

1354 54A RxPDO9*,
Nd.10

1909 775 RxPDO11
*, Nd.53

799 31F RxPDO2,
AO, Nd.31

1355 54B RxPDO9*,
Nd.11

1910 776 RxPDO11
*, Nd.54

800 320 RxPDO2,
AO, Nd.32

1356 54C RxPDO9*,
Nd.12

1911 777 RxPDO11
*, Nd.55

801 321 RxPDO2,
AO, Nd.33

1357 54D RxPDO9*,
Nd.13

1912 778 RxPDO11
*, Nd.56

802 322 RxPDO2,
AO, Nd.34

1358 54E RxPDO9*,
Nd.14

1913 779 RxPDO11
*, Nd.57

803 323 RxPDO2,
AO, Nd.35

1359 54F RxPDO9*,
Nd.15

1914 77A RxPDO11
*, Nd.58

804 324 RxPDO2,
AO, Nd.36

1360 550 RxPDO9*,
Nd.16

1915 77B RxPDO11
*, Nd.59

805 325 RxPDO2,
AO, Nd.37

1361 551 RxPDO9*,
Nd.17

1916 77C RxPDO11
*, Nd.60

806 326 RxPDO2,
AO, Nd.38

1362 552 RxPDO9*,
Nd.18

1917 77D RxPDO11
*, Nd.61

807 327 RxPDO2,
AO, Nd.39

1363 553 RxPDO9*,
Nd.19

1918 77E RxPDO11
*, Nd.62

808 328 RxPDO2,
AO, Nd.40

1364 554 RxPDO9*,
Nd.20

1919 77F RxPDO11
*, Nd.63

809 329 RxPDO2,
AO, Nd.41

1365 555 RxPDO9*,
Nd.21

1921 781 RxPDO5*,
Nd.1

810 32A RxPDO2,
AO, Nd.42

1366 556 RxPDO9*,
Nd.22

1922 782 RxPDO5*,
Nd.2

811 32B RxPDO2,
AO, Nd.43

1367 557 RxPDO9*,
Nd.23

1923 783 RxPDO5*,
Nd.3

812 32C RxPDO2,
AO, Nd.44

1368 558 RxPDO9*,
Nd.24

1924 784 RxPDO5*,
Nd.4

813 32D RxPDO2,
AO, Nd.45

1369 559 RxPDO9*,
Nd.25

1925 785 RxPDO5*,
Nd.5

814 32E RxPDO2,
AO, Nd.46

1370 55A RxPDO9*,
Nd.26

1926 786 RxPDO5*,
Nd.6

815 32F RxPDO2,
AO, Nd.47

1371 55B RxPDO9*,
Nd.27

1927 787 RxPDO5*,
Nd.7

816 330 RxPDO2,
AO, Nd.48

1372 55C RxPDO9*,
Nd.28

1928 788 RxPDO5*,
Nd.8

817 331 RxPDO2,
AO, Nd.49

1373 55D RxPDO9*,
Nd.29

1929 789 RxPDO5*,
Nd.9

818 332 RxPDO2,
AO, Nd.50

1374 55E RxPDO9*,
Nd.30

1930 78A RxPDO5*,
Nd.10

819 333 RxPDO2,
AO, Nd.51

1375 55F RxPDO9*,
Nd.31

1931 78B RxPDO5*,
Nd.11

Appendix

155Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

820 334 RxPDO2,
AO, Nd.52

1376 560 RxPDO9*,
Nd.32

1932 78C RxPDO5*,
Nd.12

821 335 RxPDO2,
AO, Nd.53

1377 561 RxPDO9*,
Nd.33

1933 78D RxPDO5*,
Nd.13

822 336 RxPDO2,
AO, Nd.54

1378 562 RxPDO9*,
Nd.34

1934 78E RxPDO5*,
Nd.14

823 337 RxPDO2,
AO, Nd.55

1379 563 RxPDO9*,
Nd.35

1935 78F RxPDO5*,
Nd.15

824 338 RxPDO2,
AO, Nd.56

1380 564 RxPDO9*,
Nd.36

1936 790 RxPDO5*,
Nd.16

825 339 RxPDO2,
AO, Nd.57

1381 565 RxPDO9*,
Nd.37

1937 791 RxPDO5*,
Nd.17

826 33A RxPDO2,
AO, Nd.58

1382 566 RxPDO9*,
Nd.38

1938 792 RxPDO5*,
Nd.18

827 33B RxPDO2,
AO, Nd.59

1383 567 RxPDO9*,
Nd.39

1939 793 RxPDO5*,
Nd.19

828 33C RxPDO2,
AO, Nd.60

1384 568 RxPDO9*,
Nd.40

1940 794 RxPDO5*,
Nd.20

829 33D RxPDO2,
AO, Nd.61

1385 569 RxPDO9*,
Nd.41

1941 795 RxPDO5*,
Nd.21

830 33E RxPDO2,
AO, Nd.62

1386 56A RxPDO9*,
Nd.42

1942 796 RxPDO5*,
Nd.22

831 33F RxPDO2,
AO, Nd.63

1387 56B RxPDO9*,
Nd.43

1943 797 RxPDO5*,
Nd.23

833 341 RxPDO7*,
Nd.1

1388 56C RxPDO9*,
Nd.44

1944 798 RxPDO5*,
Nd.24

834 342 RxPDO7*,
Nd.2

1389 56D RxPDO9*,
Nd.45

1945 799 RxPDO5*,
Nd.25

835 343 RxPDO7*,
Nd.3

1390 56E RxPDO9*,
Nd.46

1946 79A RxPDO5*,
Nd.26

836 344 RxPDO7*,
Nd.4

1391 56F RxPDO9*,
Nd.47

1947 79B RxPDO5*,
Nd.27

837 345 RxPDO7*,
Nd.5

1392 570 RxPDO9*,
Nd.48

1948 79C RxPDO5*,
Nd.28

838 346 RxPDO7*,
Nd.6

1393 571 RxPDO9*,
Nd.49

1949 79D RxPDO5*,
Nd.29

839 347 RxPDO7*,
Nd.7

1394 572 RxPDO9*,
Nd.50

1950 79E RxPDO5*,
Nd.30

840 348 RxPDO7*,
Nd.8

1395 573 RxPDO9*,
Nd.51

1951 79F RxPDO5*,
Nd.31

841 349 RxPDO7*,
Nd.9

1396 574 RxPDO9*,
Nd.52

1952 7A0 RxPDO5*,
Nd.32

842 34A RxPDO7*,
Nd.10

1397 575 RxPDO9*,
Nd.53

1953 7A1 RxPDO5*,
Nd.33

843 34B RxPDO7*,
Nd.11

1398 576 RxPDO9*,
Nd.54

1954 7A2 RxPDO5*,
Nd.34

844 34C RxPDO7*,
Nd.12

1399 577 RxPDO9*,
Nd.55

1955 7A3 RxPDO5*,
Nd.35

845 34D RxPDO7*,
Nd.13

1400 578 RxPDO9*,
Nd.56

1956 7A4 RxPDO5*,
Nd.36

846 34E RxPDO7*,
Nd.14

1401 579 RxPDO9*,
Nd.57

1957 7A5 RxPDO5*,
Nd.37

Appendix

156 Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

847 34F RxPDO7*,
Nd.15

1402 57A RxPDO9*,
Nd.58

1958 7A6 RxPDO5*,
Nd.38

848 350 RxPDO7*,
Nd.16

1403 57B RxPDO9*,
Nd.59

1959 7A7 RxPDO5*,
Nd.39

849 351 RxPDO7*,
Nd.17

1404 57C RxPDO9*,
Nd.60

1960 7A8 RxPDO5*,
Nd.40

850 352 RxPDO7*,
Nd.18

1405 57D RxPDO9*,
Nd.61

1961 7A9 RxPDO5*,
Nd.41

851 353 RxPDO7*,
Nd.19

1406 57E RxPDO9*,
Nd.62

1962 7AA RxPDO5*,
Nd.42

852 354 RxPDO7*,
Nd.20

1407 57F RxPDO9*,
Nd.63

1963 7AB RxPDO5*,
Nd.43

853 355 RxPDO7*,
Nd.21

1409 581 SDO Tx
Nd.1

1964 7AC RxPDO5*,
Nd.44

854 356 RxPDO7*,
Nd.22

1410 582 SDO Tx
Nd.2

1965 7AD RxPDO5*,
Nd.45

855 357 RxPDO7*,
Nd.23

1411 583 SDO Tx
Nd.3

1966 7AE RxPDO5*,
Nd.46

856 358 RxPDO7*,
Nd.24

1412 584 SDO Tx
Nd.4

1967 7AF RxPDO5*,
Nd.47

857 359 RxPDO7*,
Nd.25

1413 585 SDO Tx
Nd.5

1968 7B0 RxPDO5*,
Nd.48

858 35A RxPDO7*,
Nd.26

1414 586 SDO Tx
Nd.6

1969 7B1 RxPDO5*,
Nd.49

859 35B RxPDO7*,
Nd.27

1415 587 SDO Tx
Nd.7

1970 7B2 RxPDO5*,
Nd.50

860 35C RxPDO7*,
Nd.28

1416 588 SDO Tx
Nd.8

1971 7B3 RxPDO5*,
Nd.51

861 35D RxPDO7*,
Nd.29

1417 589 SDO Tx
Nd.9

1972 7B4 RxPDO5*,
Nd.52

862 35E RxPDO7*,
Nd.30

1418 58A SDO Tx
Nd.10

1973 7B5 RxPDO5*,
Nd.53

863 35F RxPDO7*,
Nd.31

1419 58B SDO Tx
Nd.11

1974 7B6 RxPDO5*,
Nd.54

864 360 RxPDO7*,
Nd.32

1420 58C SDO Tx
Nd.12

1975 7B7 RxPDO5*,
Nd.55

865 361 RxPDO7*,
Nd.33

1421 58D SDO Tx
Nd.13

1976 7B8 RxPDO5*,
Nd.56

866 362 RxPDO7*,
Nd.34

1422 58E SDO Tx
Nd.14

1977 7B9 RxPDO5*,
Nd.57

867 363 RxPDO7*,
Nd.35

1423 58F SDO Tx
Nd.15

1978 7BA RxPDO5*,
Nd.58

868 364 RxPDO7*,
Nd.36

1424 590 SDO Tx
Nd.16

1979 7BB RxPDO5*,
Nd.59

869 365 RxPDO7*,
Nd.37

1425 591 SDO Tx
Nd.17

1980 7BC RxPDO5*,
Nd.60

870 366 RxPDO7*,
Nd.38

1426 592 SDO Tx
Nd.18

1981 7BD RxPDO5*,
Nd.61

871 367 RxPDO7*,
Nd.39

1427 593 SDO Tx
Nd.19

1982 7BE RxPDO5*,
Nd.62

872 368 RxPDO7*,
Nd.40

1428 594 SDO Tx
Nd.20

1983 7BF RxPDO5*,
Nd.63

Appendix

157Version: 1.2.3

dec hex Telegram
type

dec hex Telegram
type

dec hex Telegram
type

873 369 RxPDO7*,
Nd.41

1429 595 SDO Tx
Nd.21

Appendix

158 Version: 1.2.3

6.3 CANopen Baud Rate and Bit Timing
Bit Timing

The following baud rates and entries in the bit-timing register are supported by the CANopen devices:

Baud rate [kBaud] BTR0 BTR1 Sampling Point
1000 0x00 0x14 75%
800 0x00 0x16 80%
500 0x00 0x1C 87%
250 0x01 0x1C 87%
125 0x03 0x1C 87%
100 0x04 0x1C 87%
50 0x09 0x1C 87%
20 0x18 0x1C 87%
10 0x31 0x1C 87%

The bit-timing register settings given (BTR0, BTR1) apply, for example, for the Philips 82C200, SJA1000,
Intel 80C527, Siemens 80C167 and other CAN controllers. They are optimized for the maximum bus length.

Appendix

159Version: 1.2.3

6.4 Automatic PDO Mapping

BK51x0, IL23x0-B510

PDO1 and PDO2 are occupied with digital and analog process data. For every other PDO, the CANopen
node uses the procedure shown in flow chart below and occupies the PDOs with process data in the
following order:

1. Digital I/Os (if more than than 64 are existent)
2. 1-byte terminals for special functions
3. Analog I/Os
4. 2-byte terminals for special functions
5. 3-byte terminals for special functions
6. ...10. 8-byte terminals for special functions

Data types are not mixed! For every new data type, a new PDO is filled (see example [} 160] below).

Appendix

160 Version: 1.2.3

Example

Example

A BK5120 (CANopen Coupler) has got

• 78 digital inputs und 48 digital outputs
• 6 analog inputs und 4 analog outputs
• one KL5001 (SSI-Sensor Interface: by default 4 byte inputs)
• one KL6001 (serial interface: by default 4 byte inputs and 4 byte outputs)
• one 1 KL5111 (Interface for incremental encoder - 6 byte inputs and 6 byte outputs)
• one KL6201 (AS-i master terminal) with default setting (22 byte process data interface).

PDO data content
(Mapping)

Object direc-
tory

PDO data content
(Mapping)

Object direc-
tory

RxPDO1 5 byte digital
outputs 1...48

0x6200,
SI 1..5

TxPDO1 8 byte digital
inputs 1...64

0x6000,
SI 1..8

RxPDO2 8 byte analog
outputs 1...4

0x6411,
SI 1..4

TxPDO2 4 byte analog
inputs 1...4

0x6401,
SI 1..4

RxPDO3 4 byte serial
interface

0x2900,
SI 1

TxPDO3 2 byte digital
inputs 65...78

0x6000,
SI 9..10

RxPDO4 6 byte encoder
outputs

0x2D00,
SI 1

TxPDO4 analog inputs 5
and 6

0x6401,
SI 5..6

RxPDO5 8 byte AS-i
master 1:
parameter data
block

0x3100,
SI 1

TxPDO5 8 byte: 4 Bytes
SSI and 4 Bytes
serial interface

0x2800,
SI 1..2

RxPDO6 8 byte AS-i
master 1:
process data
block outputs
AS-i slave
1...15

0x3100,
SI 2

TxPDO6 6 Byte encoder
inputs

0x2C00,
SI 1

RxPDO7 8 byte AS-i
master 1:
process data
block outputs
AS-i slave
16...31

0x3100,
SI 3

TxPDO7 8 byte AS-i
master 1:
parameter data
block

0x3000,
SI 1

TxPDO8 8 byte AS-i
master 1:
process data
block inputs AS-
i Slave 1...15

0x3000,
SI 2

TxPDO9 8 byte AS-i
master 1:
process data
block inputs AS-
i Slave 16...31

0x3000,
SI 3

Appendix

161Version: 1.2.3

6.5 General operating conditions

Protection degrees (IP-Code)

The standard IEC 60529 (DIN EN 60529) defines the degrees of protection in different classes.

1. Number: dust protection
and touch guard

Definition

0 Non-protected
1 Protected against access to hazardous parts with the

back of a hand. Protected against solid foreign
objects of Ø50 mm

2 Protected against access to hazardous parts with a
finger. Protected against solid foreign objects of
Ø12,5 mm.

3 Protected against access to hazardous parts with a
tool. Protected against solid foreign objects Ø2,5 mm.

4 Protected against access to hazardous parts with a
wire. Protected against solid foreign objects Ø1 mm.

5 Protected against access to hazardous parts with a
wire. Dust-protected. Intrusion of dust is not totally
prevented, but dust shall not penetrate in a quantity
to interfere with satisfactory operation of the device or
to impair safety.

6 Protected against access to hazardous parts with a
wire. Dust-tight. No intrusion of dust.

2. Number: water* protection Definition
0 Non-protected
1 Protected against water drops
2 Protected against water drops when enclosure tilted

up to 15°.
3 Protected against spraying water. Water sprayed at

an angle up to 60° on either side of the vertical shall
have no harmful effects.

4 Protected against splashing water. Water splashed
against the disclosure from any direction shall have
no harmful effects

5 Protected against water jets
6 Protected against powerful water jets
7 Protected against the effects of temporary immersion

in water. Intrusion of water in quantities causing
harmful effects shall not be possible when the
enclosure is temporarily immersed in water for 30
min. in 1 m depth.

*) These protection classes define only protection against water!

Chemical Resistance

The Resistance relates to the Housing of the Fieldbus Box and the used metal parts.

Appendix

162 Version: 1.2.3

Character Resistance
Steam at temperatures >100°C: not resistant
Sodium base liquor
(ph-Value > 12)

at room temperature: resistant
> 40°C: not resistant

Acetic acid not resistant
Argon (technical clean) resistant

Key

resistant: Lifetime several months
non inherently resistant: Lifetime several weeks
not resistant: Lifetime several hours resp. early decomposition

Appendix

163Version: 1.2.3

6.6 Approvals

Approvals

UL E172151

Conformity mark

CE

Type of protection

IP65/66/67 in accordance with EN60529

Appendix

164 Version: 1.2.3

6.7 Test standards for device testing

EMC

Resistance: EN 61000-6-2

Emission: EN 61000-6-4

Resistance to Vibration

EN 60068-2-2 Vibration test, Amplitude 2 g (Standard 1 g)

EN 60068-2-27 Shock Test, Shock count 1000 (Standard 2)

Appendix

165Version: 1.2.3

6.8 Bibliography

English books
• Konrad Etschberger: Controller Area Network, Ixxat Press, 2001. 440 pages. ISBN 3-00-007376-0
• M. Farsi, M. Barbosa: CANopen Implementation, RSP 2000. 210 pages. ISBN 0-86380-247-8

German books
• Holger Zeltwander (Pub.): CANopen, VDE Verlag, 2001. 197 pages, ISBN 3-800-724480

• Konrad Etschberger: Controller Area Network, Grundlagen, Protokolle, Bausteine, Anwendungen.
(Principles, protocols, components, applications.) Hanser Verlag, 2000. 431 pages. ISBN
3-446-19431-2

General fieldbus technology
• Gerhard Gruhler (Pub.): Feldbusse und Geräte-Kommunikationssysteme, Praktisches Know-How

mit Vergleichsmöglichkeiten. (Fieldbus and Device Communication Systems, Practical Know-how with
Comparative Resources) Franzis Verlag, 2001. 244 pages. ISBN 3-7723-5745-8

Standards
• ISO 11898: Road Vehicles - Interchange of digital information - Controller Area Network (CAN) for high

speed communication.
• CiA DS 301: CANopen Application Layer and Communication Profile. Available from the CAN in

Automation Association (http://www.can-cia.org).
• CiA DS 401: CANopen Device Profile for Generic I/O Modules. Available from the CAN in Automation

Association (http://www.can-cia.org).

http://www.can-cia.org
http://www.can-cia.org

Appendix

166 Version: 1.2.3

6.9 List of Abbreviations

CAN

Controller Area Network. A serial bus system standardized in ISO 11898. The technology on which
CANopen is based.

CiA

CAN in Automation e.V.. An international association of manufacturers and users based in Erlangen,
Germany.

COB

Communication Object. A CAN telegram with up to 8 data bytes.

COB-ID

Communication Object Identifier. Telegram address (not to be confused with the node address). CANopen
uses the 11-bit identifier according to CAN 2.0A.

NMT

Network Management. One of the service primitives of the CANopen specification. Network management is
used to initialise the network and to monitor nodes.

PDO

Process Data Object. A CAN telegram for the transfer of process data (e.g. I/O data).

RxPDO

Receive PDO. PDOs are always identified from the point of view of the device under consideration. Thus a
TxPDO with input data from an I/O module becomes an RxPDO from the controller's point of view.

SDO

Service Data Object. A CAN telegram with a protocol for communication with data in the object directory
(typically parameter data).

TxPDO

Transmit PDO (named from the point of view of the CAN node).

Appendix

167Version: 1.2.3

6.10 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com
web: https://www.beckhoff.com

https://www.beckhoff.com/support
https://www.beckhoff.com
https://www.beckhoff.com

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=
https://www.beckhoff.com

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Documentation Issue Status

	2 System Overview
	2.1 The Fieldbus Box System
	2.2 Fieldbus Box - Naming conventions
	2.3 Firmware and hardware issue status

	3 CANopen
	3.1 CANopen Introduction
	3.2 CANopen Cabling
	3.3 Technical data
	3.4 CANopen Protocol
	3.4.1 Network Management
	3.4.2 Process Data Objects (PDO)
	3.4.3 PDO Parameterization
	3.4.4 Service Data Objects (SDO)
	3.4.5 Identifier Allocation

	3.5 CANopen Object Directory
	3.5.1 Object Directory - Structure
	3.5.2 Object Directory – Summary
	3.5.3 Objects and Data

	4 Parameterisation and Commissioning
	4.1 Start-up behavior of the Fieldbus Box
	4.2 Address
	4.3 Baud Rate
	4.4 Mapping the Fieldbus Boxes
	4.5 Configuration Fieldbus
	4.5.1 Configuration Files
	4.5.2 Overview
	4.5.3 Configuration via TwinCAT
	4.5.4 Configuration with third party controllers

	4.6 Configuration of the complex I/O Modules
	4.6.1 KS2000 Configuration Software
	4.6.2 Parameterisation via Register
	4.6.2.1 General Register Description
	4.6.2.2 Register communication via SDO
	4.6.2.3 Example of register communication

	5 Error handling and diagnosis
	5.1 LEDs
	5.2 Diagnostic LEDs for local errors
	5.3 Check of the IP-Link connection
	5.4 Emergency Object
	5.5 CANopen Trouble Shooting

	6 Appendix
	6.1 Quick Start for Experienced Users
	6.2 CAN Identifier List
	6.3 CANopen Baud Rate and Bit Timing
	6.4 Automatic PDO Mapping
	6.5 General operating conditions
	6.6 Approvals
	6.7 Test standards for device testing
	6.8 Bibliography
	6.9 List of Abbreviations
	6.10 Support and Service

