BECKHOFF New Automation Technology

Dokumentation | DE

EPP43x4-1002

2-Kanal-Analog-Eingang + 2-Kanal-Analog-Ausgang

Inhaltsverzeichnis

1	Vorw	vort		
	1.1	Sicherh	neitshinweise	<u>E</u>
	1.2	Hinweis	se zur Dokumentation	6
	1.3	Ausgab	estände der Dokumentation	7
2	Prod	luktgrup	pe: EtherCAT P-Box-Module	8
3	Prod	luktüber	sicht	9
	3.1	Einführ	ung	10
	3.2	Technis	sche Daten	11
		3.2.1	Digitale Eingänge	12
		3.2.2	Analoge Eingänge	12
		3.2.3	Analoge Ausgänge	13
		3.2.4	Messbereiche	14
		3.2.5	Ausgangs-Signalbereiche	20
	3.3	Lieferur	mfang	23
	3.4	Prozess	sabbild	24
4	Mon	tage und	I Anschlüsse	26
	4.1	Montag	je	26
		4.1.1	Abmessungen	26
		4.1.2	Befestigung	27
		4.1.3	Funktionserdung (FE)	27
	4.2	Anschlü	üsse	28
		4.2.1	Steckverbinder-Übersicht	28
		4.2.2	EtherCAT P	29
		4.2.3	Signal-Eingänge und -Ausgänge	33
	4.3	UL-Anfo	orderungen	37
	4.4	Entsorg	gung	38
5	Inbe	triebnah	me und Konfiguration	39
	5.1	Einbind	len in ein TwinCAT-Projekt	39
	5.2		e Eingänge	
		5.2.1	Signalfluss	40
		5.2.2	Messbereich	41
		5.2.3	Filter	46
		5.2.4	Grenzwert-Überwachung	48
		5.2.5	Abgleich und Skalierung	49
	5.3	Analoge	e Ausgänge	52
		5.3.1	Signalfluss	52
		5.3.2	Ausgangs-Signalbereich	53
		5.3.3	Diagnose	54
		5.3.4	Verhalten bei Kommunikations-Unterbrechung: Watchdog	
		5.3.5	Abgleich und Skalierung	58
	5.4	Wiederl	herstellen des Auslieferungszustands	
6	CoF.	-Paramet	ter	6:
-	6.1		Verzeichnis	
			=	

Version: 1.3

	6.2	Objekt-E	Beschreibung	. 64
		6.2.1	Objekte zur Parametrierung	. 64
		6.2.2	Standard-Objekte	. 66
		6.2.3	Profilspezifische Objekte	. 72
7	Anha	ng		. 76
	7.1	Allgeme	ine Betriebsbedingungen	. 76
	7.2	Zubehöi	-	. 77
	7.3	Weiterfü	ıhrende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen	. 78
	7.4	Versions	sidentifikation von EtherCAT-Geräten	. 79
		7.4.1	Allgemeine Hinweise zur Kennzeichnung	. 79
		7.4.2	Versionsidentifikation von IP67-Modulen	. 80
		7.4.3	Beckhoff Identification Code (BIC)	. 81
		7.4.4	Elektronischer Zugriff auf den BIC (eBIC)	. 83
	7.5	Support	und Service	85

1 Vorwort

1.1 Sicherheitshinweise

Sicherheitsbestimmungen

Beachten Sie die folgenden Sicherheitshinweise und Erklärungen! Produktspezifische Sicherheitshinweise finden Sie auf den folgenden Seiten oder in den Bereichen Montage, Verdrahtung, Inbetriebnahme usw.

Haftungsausschluss

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard- oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen, sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

Qualifikation des Personals

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs-, Automatisierungs- und Antriebstechnik, das mit den geltenden Normen vertraut ist.

Signalwörter

Im Folgenden werden die Signalwörter eingeordnet, die in der Dokumentation verwendet werden. Um Personen- und Sachschäden zu vermeiden, lesen und befolgen Sie die Sicherheits- und Warnhinweise.

Warnungen vor Personenschäden

▲ GEFAHR

Es besteht eine Gefährdung mit hohem Risikograd, die den Tod oder eine schwere Verletzung zur Folge hat.

MARNUNG

Es besteht eine Gefährdung mit mittlerem Risikograd, die den Tod oder eine schwere Verletzung zur Folge haben kann.

NORSICHT

Es besteht eine Gefährdung mit geringem Risikograd, die eine mittelschwere oder leichte Verletzung zur Folge haben kann.

Warnung vor Umwelt- oder Sachschäden

HINWEIS

Es besteht eine mögliche Schädigung für Umwelt, Geräte oder Daten.

Information zum Umgang mit dem Produkt

Diese Information beinhaltet z. B.:

Handlungsempfehlungen, Hilfestellungen oder weiterführende Informationen zum Produkt.

1.2 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen Normen vertraut ist.

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der Dokumentation und der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal ist verpflichtet, stets die aktuell gültige Dokumentation zu verwenden.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte werden jedoch ständig weiterentwickelt.

Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern.

Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® ist eine eingetragene Marke und patentierte Technologie lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
1.3	EPP4314-1002 hinzugefügt
1.2	EtherCAT P Status-LEDs aktualisiert
1.1	Technische Daten aktualisiert
	Struktur-Update
1.0	Erste Veröffentlichung

Firm- und Hardware-Stände

Diese Dokumentation bezieht sich auf den zum Zeitpunkt ihrer Erstellung gültigen Firm- und Hardware-Stand.

Die Eigenschaften der Module werden stetig weiterentwickelt und verbessert. Module älteren Fertigungsstandes können nicht die gleichen Eigenschaften haben, wie Module neuen Standes. Bestehende Eigenschaften bleiben jedoch erhalten und werden nicht geändert, so dass ältere Module immer durch neue ersetzt werden können.

Den Firm- und Hardware-Stand (Auslieferungszustand) können Sie der auf der Seite der EtherCAT Box aufgedruckten Batch-Nummer (D-Nummer) entnehmen.

Syntax der Batch-Nummer (D-Nummer)

D: WW YY FF HH

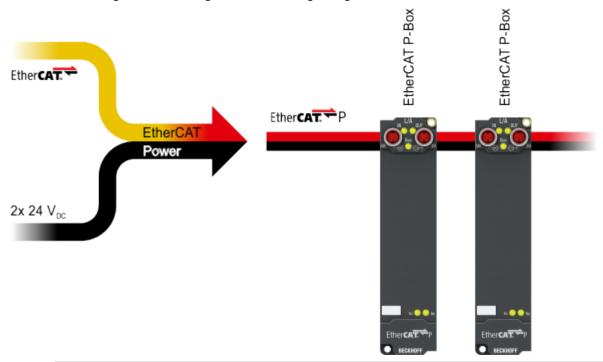
WW - Produktionswoche (Kalenderwoche)
YY - Produktionsjahr
FF - Firmware-Stand
HH - Hardware-Stand

Beispiel mit D-Nr. 29 10 02 01:
29 - Produktionswoche 29
10 - Produktionsjahr 2010
02 - Firmware-Stand 02
01 - Hardware-Stand 01

Weitere Informationen zu diesem Thema: <u>Versionsidentifikation von EtherCAT-Geräten [▶ 79]</u>.

2 Produktgruppe: EtherCAT P-Box-Module

EtherCAT P


EtherCAT P ergänzt die EtherCAT-Technologie um ein Verfahren, bei dem Kommunikation und Versorgungsspannungen auf einer gemeinsamen Leitung übertragen werden. Alle Eigenschaften von EtherCAT bleiben bei diesem Verfahren erhalten.

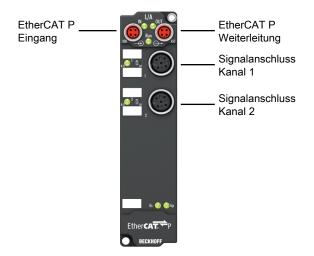
Es werden zwei Versorgungsspannungen pro EtherCAT P-Leitung übertragen. Die Versorgungsspannungen sind galvanisch voneinander getrennt und sind somit einzeln schaltbar. Die Nennspannung der Versorgungsspannungen ist 24 $V_{\rm DC}$.

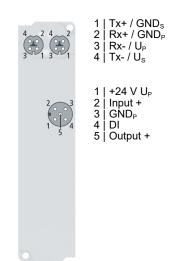
EtherCAT P verwendet den gleichen Leitungs-Aufbau wie EtherCAT: eine 4-adrige Ethernet-Leitung mit M8-Steckverbindern. Die Steckverbinder sind mechanisch codiert, so dass ein Vertauschen von EtherCAT-Steckverbindern und EtherCAT P-Steckverbindern nicht möglich ist.

EtherCAT P-Box-Module

EtherCAT P-Box-Module sind EtherCAT P-Slaves in Schutzart IP67. Sie sind vorgesehen für den Betrieb in nassen, schmutzigen oder staubigen Industrie-Umgebungen.

EtherCAT Grundlagen




3 Produktübersicht

Modul	Messgröße und Ausgangsgröße
EPP4304-1002	Spannung
EPP4314-1002	Strom

3.1 Einführung

2-Kanal-Analog-Eingang + 2-Kanal-Analog-Ausgang, parametrierbar, 16 Bit

Die EtherCAT P-Box-Module EPP43x4-1002 verfügen über zwei analoge Eingänge, zwei analoge Ausgänge und zwei digitale Eingänge. Die analogen Eingänge und Ausgänge können einzeln parametriert werden. Die folgenden Messbereiche und Ausgabebereiche stehen zur Verfügung:

- EPP4304-1002: ±10 V
- EPP4314-1002: ±10 mA oder ±20 mA

Die Auflösung der Messsignale und Ausgangssignale erfolgt mit 16 Bit. Die zwei Ausgangskanäle besitzen ein gemeinsames Massepotenzial mit der Versorgungsspannung 24 V_{DC} U_P.

Auf einer M12-Buchse befinden sich je ein digitaler Typ-3-Eingang mit 10 µs Eingangsfilterzeit, ein analoger Eingang und ein analoger Ausgang. Da der digitale Eingang sowie die analogen Eingänge und Ausgänge gemeinsam auf jeweils einer M12-Buchse angeordnet sind, können komplexe Endgeräte mit einem Anschlusskabel angesteuert werden. Das erspart zusätzliche Kosten, Kabelkanäle und Verlegearbeiten.

•

Fehlinterpretation der Messwerte möglich

In der Werkseinstellung ist der "Extended Range" Modus aktiviert.

Im "Extended Range" Modus ist der Messbereich etwas größer ist als der nominelle Messbereich. Der Wert 0x7FFF entspricht ungefähr 107% des Messbereichs-Endwerts.

- Berücksichtigen Sie den vergrößerten Messbereich bei der Auswertung der Messwerte. Siehe Kapitel Messbereiche [• 14].
 - -oder-
- Stellen Sie den "Legacy Range" Modus ein.
 Siehe Kapitel: Nomineller und technischer Messbereich [▶ 43]

Quick Links

Technische Daten [▶ 11]
Abmessungen [▶ 26]
Anschlüsse [▶ 28]

3.2 Technische Daten

Alle Werte sind typische Werte über den gesamten Temperaturbereich, wenn nicht anders angegeben.

EtherCAT P	
Anschluss	2 x M8-Buchse, 4-polig, P-kodiert, rot
Distributed Clocks	ja

Versorgungsspannungen	
Anschluss	Siehe EtherCAT P-Anschluss
U _s Nennspannung	24 V _{DC} (-15 % / +20 %)
U _S Summenstrom: I _{S,sum}	max. 3 A
Stromaufnahme aus U _s	100 mA
U _P Nennspannung	24 V _{DC} (-15 % / +20 %)
U _P Summenstrom: I _{P,sum}	max. 3 A
Stromaufnahme aus U _P	Stromaufnahme von angeschlossenen Sensoren und Aktoren

Signal-Eingänge und -Ausgänge	
Anschluss	2x M12-Buchse, 5-polig, A-kodiert
Leitungslänge	max. 30 m
Bezugsmasse	GND _P (Massepotential der Peripheriespannung U _P)
Sensorversorgung	24 V _{DC} aus der Peripheriespannung U _P
	max. 0,5 A in Summe, kurzschlussfest
Weitere Spezifikationen	Digitale Eingänge [▶ 12]
	Analoge Eingänge [▶ 12]
	Analoge Ausgänge [▶ 13]

Umgebungsbedingungen		
Umgebungstemperatur im Betrieb	-25 +60 °C -25 +55 °C gemäß cULus	
Umgebungstemperatur bei Lagerung	-40 +85 °C	
Schwingungsfestigkeit, Schockfestigkeit	gemäß EN 60068-2-6 / EN 60068-2-27	
	Zusätzliche Prüfungen [▶ 11]	
EMV-Festigkeit / Störaussendung	gemäß EN 61000-6-2 / EN 61000-6-4	
Schutzart	IP65, IP66, IP67 (gemäß EN 60529)	

Gehäusedaten	
Abmessungen B x H x T	30 mm x 126 mm x 26,5 mm (ohne Steckverbinder)
Gewicht	ca. 165 g
Einbaulage	beliebig
Material	PA6 (Polyamid)

Zulassungen / Kennzeichnungen		
Zulassungen / Kennzeichnungen *)	CE, <u>cULus</u> [▶ <u>37]</u>	

^{*)} Real zutreffende Zulassungen/Kennzeichnungen siehe seitliches Typenschild (Produktbeschriftung).

Zusätzliche Prüfungen

Die Geräte sind folgenden zusätzlichen Prüfungen unterzogen worden:

Prüfung	Erläuterung
Vibration	10 Frequenzdurchläufe, in 3 Achsen
	5 Hz < f < 60 Hz Auslenkung 0,35 mm, konstante Amplitude
	60,1 Hz < f < 500 Hz Beschleunigung 5 g, konstante Amplitude
Schocken	1000 Schocks je Richtung, in 3 Achsen
	35 g, 11 ms

3.2.1 Digitale Eingänge

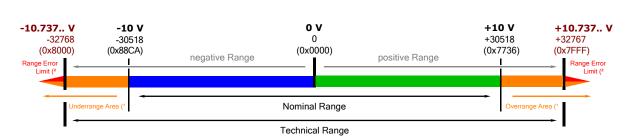
Technische Daten	Digitale Eingänge
Anzahl	2
Charakteristik	Typ 3 gemäß EN 61131-2, kompatibel mit Typ 1
Nennspannung High-Pegel	24 V
Schaltschwelle	9,5 V
Eingangsstrom	2,2 mA bei 24 V
Eingangsfilter	10 µs
Galvanische Trennung	Ja

3.2.2 Analoge Eingänge

Technische Daten	EPP4304-1002	EPP4314-1002
Anzahl	2	2
Messbereiche	• <u>-10 +10 V [▶ 14]</u>	• <u>-10 +10 mA [▶ 16]</u>
	• <u>0 10 V [</u> ▶ <u>15]</u>	• <u>-20 +20 mA [</u> ▶ <u>17]</u>
		• <u>0 20 mA [</u> ▶ <u>18]</u>
		• <u>4 20 mA [</u> • <u>19]</u>
Eingangsart	Single-ended	
Eingangswiderstand	> 200 kΩ	85 Ω typ.
Spannungsfestigkeit	max. 30 V _{DC}	
Digitale Auflösung	16 Bit inklusive Vorzeichen	
Messunsicherheit	< 0,3 % vom Messbereichs-End	dwert
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung	100 % vom Messbereichs-Endv	vert
Analoges Eingangsfilter: Grenzfrequenz	5 kHz	

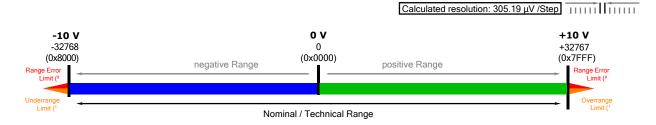
3.2.3 Analoge Ausgänge

Technische Daten	EPP4304-1002	EPP4314-1002
Anzahl	2	2
Ausgangs-Signalbereiche	• <u>-10 +10 V [▶ 20]</u>	• <u>-10 +10 mA [▶ 21]</u>
	• <u>0 10 V [▶ 20]</u>	• <u>-20 +20 mA [▶ 21]</u>
		• <u>0 20 mA [</u> ▶ <u>22]</u>
		• 4 20 mA [> 22]
Digitale Auflösung	16 Bit inklusive Vorzeichen	16 Bit inklusive Vorzeichen
Ausgabefehler	< 0,1 % vom Signalbereichs- Endwert	< 0,1 % vom Signalbereichs- Endwert bei einer Umgebungstemperatur von 0 +55 °C.
		< 0,2 % vom Signalbereichs- Endwert. bei einer Umgebungstemperatur < 0 °C oder > 55 °C
Lastwiderstand / Bürde	> 5 kΩ	max. 500 Ω
Kurzschlussfest	Ja	Ja
Größte kurzzeitige Abweichung während einer festgelegten elektrischen Störprüfung	5 % vom Signalbereichs- Endwert	1,5 % vom Signalbereichs- Endwert


Defined resolution: 327.68 μV /Step

3.2.4 Messbereiche

3.2.4.1 Messbereich -10 ... +10 V

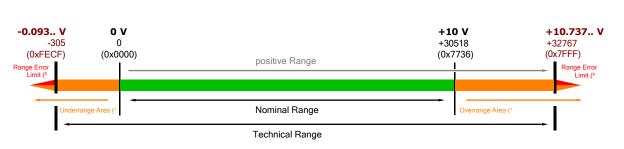

Technische Daten	Messbereich
Messbereich, nominell	-10+10 V
Messbereich, Endwert (MBE)	10 V
Messbereich, technisch nutzbar	-10,737+10,737 V
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB (Extended Range)	327,68 μV
PDO LSB (Legacy Range)	305,19 μV

Werkseinstellung: "Extended Range" Modus

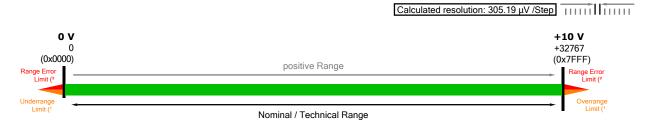
Underrange/Overrange Limit/Area: corresponding bit is set when measurement value is out of nominal range

Optional: "Legacy Range" Modus

² Range Error: Error Bit + Error LED (detection level adjustabel by user, default: technical range)


Defined resolution: 327.68 μV /Step

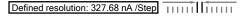
3.2.4.2 Messbereich 0 ... 10 V

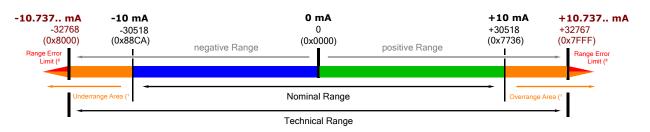

Technische Daten	Messbereich
Messbereich, nominell	010 V
Messbereich, Endwert (MBE)	10 V
Messbereich, technisch nutzbar	-0,093+10,737 V
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB (Extended Range)	327,68 μV
PDO LSB (Legacy Range)	305,19 μV

Werkseinstellung: "Extended Range" Modus

¹ Underrange/Overrange Limit/Area; corresponding bit is set when measurement value is out of nominal range

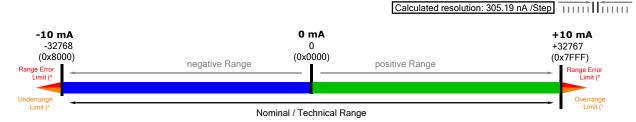
Optional: "Legacy Range" Modus


² Range Error: Error Bit + Error LED (detection level adjustabel by user, default: technical range)



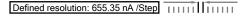
3.2.4.3 Messbereich -10 ... +10 mA

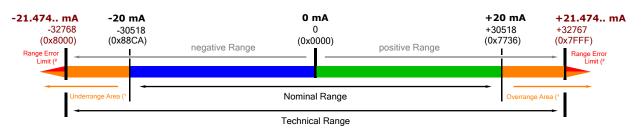
Technische Daten	Messbereich
Messbereich, nominell	-10+10 mA
Messbereich, Endwert (MBE)	10 mA
Messbereich, technisch nutzbar	-10,737+10,737 mA, überstromgeschützt
Absicherung	Interne Überlastbegrenzung, dauerstromfest
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB (Extended Range)	327,68 nA
PDO LSB (Legacy Range)	305,19 nA


Werkseinstellung: "Extended Range" Modus

¹ Underrange/Overrange Limit/Area: corresponding bit is set when measurement value is out of nominal range

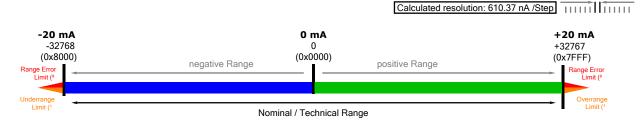
Optional: "Legacy Range" Modus


² Range Error: Error Bit + Error LED (detection level adjustabel by user, default: technical range)



3.2.4.4 Messbereich -20 ... +20 mA

Technische Daten	Messbereich
Messbereich, nominell	-20+20 mA
Messbereich, Endwert (MBE)	20 mA
Messbereich, technisch nutzbar	-21,474+21,474 mA, überstromgeschützt
Absicherung	Interne Überlastbegrenzung, dauerstromfest
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB (Extended Range)	655,35 nA
PDO LSB (Legacy Range)	610,37 nA


Werkseinstellung: "Extended Range" Modus

¹ Underrange/Overrange Limit/Area: corresponding bit is set when measurement value is out of nominal range

Optional: "Legacy Range" Modus

² Range Error: Error Bit + Error LED (detection level adjustabel by user, default: technical range)

Defined resolution: 655.35 nA /Step

3.2.4.5 Messbereich 0 ... 20 mA

Technische Daten	Messbereich 020 mA
Messbereich, nominell	020 mA
Messbereich, Endwert (MBE)	20 mA
Messbereich, technisch nutzbar	-0,186+21,474 mA, überstromgeschützt
Absicherung	Interne Überlastbegrenzung, dauerstromfest
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB (Extended Range)	655,35 nA
PDO LSB (Legacy Range)	610,37 nA

Werkseinstellung: "Extended Range" Modus

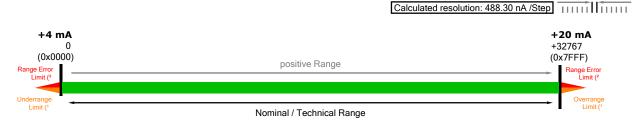
¹ Underrange/Overrange Limit/Area: corresponding bit is set when measurement value is out of nominal rango

Optional: "Legacy Range" Modus

² Range Error: Error Bit + Error LED (detection level adjustabel by user, default: technical range)

Defined resolution: 524.28 nA /Step

3.2.4.6 Messbereich 4 ... 20 mA

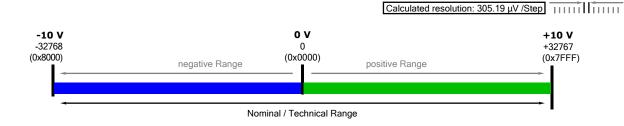

Technische Daten	Messbereich 420 mA
Messbereich, nominell	420 mA
Messbereich, Endwert (MBE)	20 mA
Messbereich, technisch nutzbar	0+21,179 mA, überstromgeschützt
Absicherung	Interne Überlastbegrenzung, dauerstromfest
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB (Extended Range)	524,28 nA
PDO LSB (Legacy Range)	488,30 nA

Werkseinstellung: "Extended Range" Modus

Technical Range

Optional: "Legacy Range" Modus

¹ Underrange/Overrange Limit/Area: corresponding bit is set when measurement value is out of nominal rango

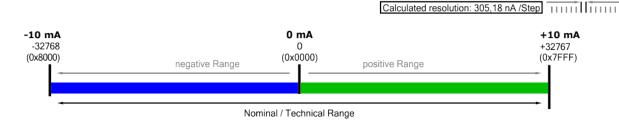

² Range Error: Error Bit + Error LED (detection level adjustabel by user, default: technical range)

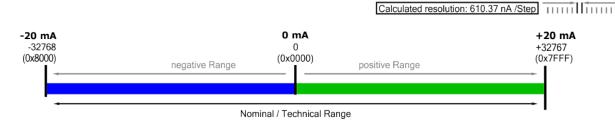
3.2.5 Ausgangs-Signalbereiche

3.2.5.1 Ausgangs-Signalbereich -10 ... +10 V

Technische Daten	Ausgangs-Signalbereich -10+10 V
Signalbereichs-Endwert	10 V
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB	305,19 μV

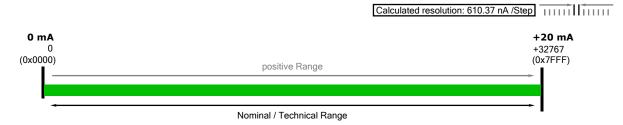
3.2.5.2 Ausgangs-Signalbereich 0 ... 10 V

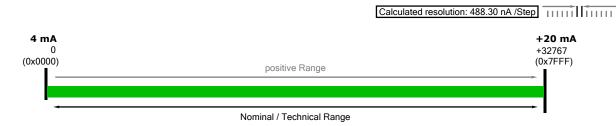

Technische Daten	Ausgangs-Signalbereich 010 V
Signalbereichs-Endwert	10 V
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB	305,19 μV


3.2.5.3 Ausgangs-Signalbereich -10 ... +10 mA

Technische Daten	Ausgangs-Signalbereich -10+10 mA
Signalbereichs-Endwert	10 mA
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB	305,18 nA

3.2.5.4 Ausgangs-Signalbereich -20 ... +20 mA


Technische Daten	Ausgangs-Signalbereich 420 mA	
Signalbereichs-Endwert	20 mA	
PDO Auflösung	16 Bit inklusive Vorzeichen	
PDO LSB	610,37 nA	


3.2.5.5 Ausgangs-Signalbereich 0 ... 20 mA

Technische Daten	Ausgangs-Signalbereich 020 mA
Signalbereichs-Endwert	20 mA
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB	610,37 nA

3.2.5.6 Ausgangs-Signalbereich 4 ... 20 mA

Technische Daten	Ausgangs-Signalbereich 420 mA
Signalbereichs-Endwert	20 mA
PDO Auflösung	16 Bit inklusive Vorzeichen
PDO LSB	488,30 nA

3.3 Lieferumfang

Vergewissern Sie sich, dass folgende Komponenten im Lieferumfang enthalten sind:

- 1x EtherCAT P-Box EPP43x4-1002
- 2x Schutzkappe für EtherCAT P-Buchse, M8, rot (vormontiert)
- 10x Beschriftungsschild unbedruckt (1 Streifen à 10 Stück)

Vormontierte Schutzkappen gewährleisten keinen IP67-Schutz

Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u.U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

Stellen Sie den korrekten Sitz der Schutzkappen sicher, um die Schutzart IP67 zu gewährleisten.

3.4 Prozessabbild

Der Buchstabe *n* dient im Folgenden als Platzhalter für die Kanal-Nummer.

Screenshots, die Prozessdatenobjekte von Kanal 1 zeigen, sind beispielhaft für beide Kanäle. Die Prozessdatenobjekte von Kanal 1 und Kanal 2 haben die gleiche Inhalts-Struktur.

DI Inputs

- Input 1
- Input 2
- TxPDO State
- TxPDO Toggle

✓ Input 1 Digitaler Eingang, Kanal 1

Input 2

Digitaler Eingang, Kanal 2

TxPDO State

Wenn dieses Bit TRUE ist:

- Die digitalen Eingänge konnten aufgrund eines Fehlers nicht korrekt eingelesen werden.
- Die aktuellen Werte der Variablen "Input 1" und "Input 2" sind ungültig.

TxPDO Toggle

Dieses Bit wird bei jeder Aktualisierung der Eingangsdaten invertiert.

Al Standard Channel n

AI Standard Channel 1

- Underrange
- Overrange
- Limit 1
- Limit 2
- Error
- TxPDO State
- TxPDO Toggle
- Value

Status

• "Underrange"

Der aktuelle Messwert ist kleiner als der kleinste Wert des nominellen Messbereichs. Siehe Messbereichs-Überwachung [• 44].

"Overrange"

Der aktuelle Messwert ist größer als der Messbereichs-Endwert. Siehe <u>Messbereichs-Überwachung</u> [▶ 44].

• "Limit 1"

Status-Bit der <u>Grenzwert-Überwachung</u> [▶ 48]

• "Limit 2"

Status-Bit der Grenzwert-Überwachung [\(\frac{48}{} \)]

• "Error"

Status-Bit der Messbereichs-Überwachung [▶ 44]. Dieses Bit ist mit der der LED "R/E" [▶ 36] gekoppelt: Wenn das Bit TRUE ist, leuchtet die LED rot.

"TxPDO State"

Falls dieses Bit TRUE ist:

- Der Messwert konnte aufgrund eines Fehlers nicht korrekt eingelesen werden.
- Der aktuelle Wert der Variablen "Value" ist ungültig.
- "TxPDO Toggle"
 Dieses Bit wird bei jeder Aktualisierung des Messwerts invertiert.

Value

Der aktuelle Messwert. Datentyp: INT

AO Standard Channel n

A O Standard Channel 1

Analog output

Analog output Analoger Ausgang. Datentyp: INT

AO Inputs Channel n

EPP4304-1002:

AO Inputs Channel 1

Load Impedance too Low

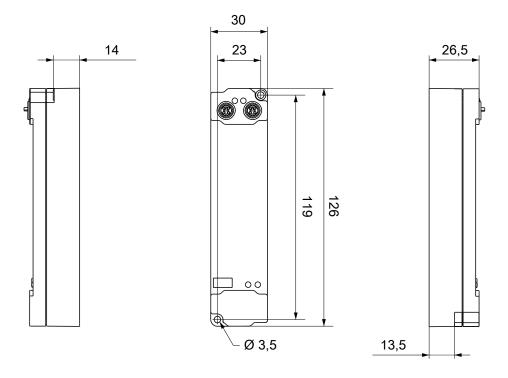
Error

EPP4314-1002:

AO Inputs Channel 1

Load Impedance too High

Error


Dieses Prozessdatenobjekt ist in der Werkseinstellung deaktiviert. Die Aktivierung und Auswertung sind im Kapitel <u>Diagnose</u> [• <u>54</u>] beschrieben.

4 Montage und Anschlüsse

4.1 Montage

4.1.1 Abmessungen

Alle Maße sind in Millimeter angegeben. Die Zeichnung ist nicht maßstabsgetreu.

Gehäuseeigenschaften

Gehäusematerial	PA6 (Polyamid)	
Vergussmasse	Polyurethan	
Montage	zwei Befestigungslöcher Ø 3,5 mm für M3	
Metallteile	Messing, vernickelt	
Kontakte	CuZn, vergoldet	
Einbaulage	beliebig	
Schutzart	im verschraubten Zustand IP65, IP66, IP67 (gemäß EN 60529)	
Abmessungen (H x B x T)	ca. 126 x 30 x 26,5 mm (ohne Steckverbinder)	

4.1.2 Befestigung

HINWEIS

Verschmutzung bei der Montage

Verschmutzte Steckverbinder können zu Fehlfunktion führen. Die Schutzart IP67 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind.

• Schützen Sie die Steckverbinder bei der Montage vor Verschmutzung.

Montieren Sie das Modul mit zwei M3-Schrauben an den Befestigungslöchern in den Ecken des Moduls. Die Befestigungslöcher haben kein Gewinde.

4.1.3 Funktionserdung (FE)

Das obere Befestigungsloch dient gleichzeitig als Anschluss für die Funktionserdung (FE).

Stellen Sie sicher, dass die Box über den Anschluss für die Funktionserdung (FE) niederimpedant geerdet ist. Das erreichen Sie z.B., indem Sie die Box an einem geerdeten Maschinenbett montieren.

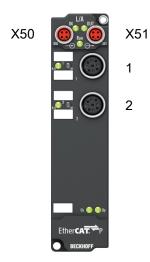


Abb. 1: Anschluss für die Funktionserdung (FE)

4.2 Anschlüsse

4.2.1 Steckverbinder-Übersicht

Name	Funktion	Steckverbinder-Typ	Anzugs- Drehmoment
1	Signal-Eingänge und -Ausgänge, Kanal 1 [▶ 33]	M12-Buchse	0,6 Nm ¹⁾
2	Signal-Eingänge und -Ausgänge, Kanal 2 [▶ 33]	M12-Buchse	0,6 Nm ¹⁾
X50	EtherCAT P Eingang [> 29]	M8-Buchse, P-kodiert	0,4 Nm ¹⁾
X51	EtherCAT P Weiterleitung [▶ 29]	M8-Buchse, P-kodiert	0,4 Nm ¹⁾

¹⁾ Montieren Sie Stecker an diesen Steckverbindern mit einem Drehmomentschlüssel; z.B. ZB8801 von Beckhoff.

Schutzkappen

- Verschließen Sie nicht benutzte Steckverbinder mit Schutzkappen.
- Stellen Sie den korrekten Sitz von vormontierten Schutzkappen sicher.
 Schutzkappen werden werksseitig vormontiert, um Steckverbinder beim Transport zu schützen. Sie sind u. U. nicht fest genug angezogen, um die Schutzart IP67 zu gewährleisten.

4.2.2 EtherCAT P

⚠ WARNUNG

Spannungsversorgung aus SELV/PELV-Netzteil!

Zur Versorgung des EtherCAT P Power Sourcing Device (PSD) müssen SELV/PELV-Stromkreise (Schutzkleinspannung, Sicherheitskleinspannung) nach IEC 61010-2-201 verwendet werden.

Hinweise:

- Durch SELV/PELV-Stromkreise entstehen eventuell weitere Vorgaben aus Normen wie IEC 60204-1 et al., zum Beispiel bezüglich Leitungsabstand und -isolierung.
- Eine SELV-Versorgung (Safety Extra Low Voltage) liefert sichere elektrische Trennung und Begrenzung der Spannung ohne Verbindung zum Schutzleiter, eine PELV-Versorgung (Protective Extra Low Voltage) benötigt zusätzlich eine sichere Verbindung zum Schutzleiter.

↑ VORSICHT

UL-Anforderungen beachten

• Beachten Sie beim Betrieb unter UL-Bedingungen die Warnhinweise im Kapitel <u>UL-Anforderungen</u> [• 37].

EtherCAT P überträgt zwei Versorgungsspannungen:

Steuerspannung U_s

Die folgenden Teilfunktionen werden aus der Steuerspannung Us versorgt:

- Der Feldbus
- Die Prozessor-Logik
- typischerweise die Eingänge und die Sensorik, falls die EtherCAT P-Box Eingänge hat.
- Peripheriespannung U_P

Bei EtherCAT P-Box-Modulen mit digitalen Ausgängen werden die digitalen Ausgänge typischerweise aus der Peripheriespannung U_P versorgt. U_P kann separat zugeführt werden. Falls U_P abgeschaltet wird, bleiben die Feldbus-Funktion, die Funktion der Eingänge und die Versorgung der Sensorik erhalten.

Die genaue Zuordnung von Us und Up finden Sie in der Pinbelegung der I/O-Anschlüsse.

Weiterleitung der Versorgungsspannungen

Die Versorgungsspannungen werden intern vom Anschluss "IN" zum Anschluss "OUT" weitergeleitet. Somit können auf einfache Weise die Versorgungsspannungen U_s und U_p von einer EtherCAT P-Box zur nächsten EtherCAT P-Box weitergereicht werden.

HINWEIS

Maximalen Strom beachten.

Beachten Sie bei der Weiterleitung von EtherCAT P, dass jeweils der für die M8-Steckverbinder maximal zulässige Strom von 3 A nicht überschritten wird.

4.2.2.1 Steckverbinder

HINWEIS

Beschädigung des Gerätes möglich!

Setzen Sie das EtherCAT-/ EtherCAT P-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der Module beginnen!

Die Einspeisung und Weiterleitung von EtherCAT P erfolgt über zwei M8-Buchsen am oberen Ende der Module:

- IN: linke M8-Buchse zur Einspeisung von EtherCAT P
- OUT: rechte M8-Buchse zur Weiterleitung von EtherCAT P

Die Metallgewinde der EtherCAT P M8-Buchsen sind intern per hochimpedanter RC-Kombination mit dem FE-Anschluss verbunden. Siehe Kapitel <u>Funktionserdung (FE) [▶ 27]</u>.

Abb. 2: Steckverbinder für EtherCAT P

Abb. 3: M8-Buchse, P-kodiert

Kontakt	Signal	Spannung	Aderfarbe 1)
1	Tx +	GNDs	gelb
2	Rx +	GND _P	weiß
3	Rx -	U _P : Peripheriespannung, +24 V _{DC}	blau
4	Tx -	U _s : Steuerspannung, +24 V _{DC} orange	
Gehäuse	Schirm	Schirm Schirm	

¹⁾ Die Aderfarben gelten für EtherCAT P-Leitungen und ECP-Leitungen von Beckhoff.

4.2.2.2 Status-LEDs

4.2.2.2.1 Versorgungsspannungen

EtherCAT P-Box-Module zeigen den Status der Versorgungsspannungen über zwei Status-LEDs an. Die Status-LEDs sind mit den Bezeichnungen der Versorgungsspannungen beschriftet: Us und Up.

LED	Anzeige	Bedeutung	
Us	aus Die Versorgungsspannung U _s ist nicht vorhanden.		
(Steuerspannung)	leuchtet grün Die Versorgungsspannung U _s ist vorhanden.		
U _P	aus Die Versorgungsspannung U _P ist nicht vorhanden.		
(Peripheriespannung)	leuchtet grün	Die Versorgungsspannung U _P ist vorhanden.	

4.2.2.2.2 EtherCAT

L/A (Link/Act)

Neben jeder EtherCAT- / EtherCAT P-Buchse befindet sich eine grüne LED, die mit "L/A" oder "Link/Act" beschriftet ist. Die LED signalisiert den Kommunikationsstatus der jeweiligen Buchse:

LED	Bedeutung	
aus	keine Verbindung zum angeschlossenen EtherCAT-Gerät	
leuchtet	LINK: Verbindung zum angeschlossenen EtherCAT-Gerät	
blinkt	ACT: Kommunikation mit dem angeschlossenen EtherCAT-Gerät	

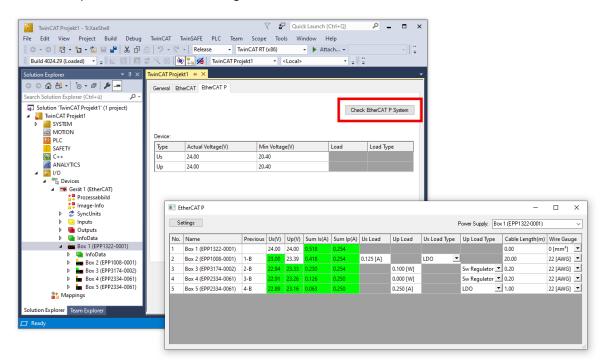
Run

Jeder EtherCAT-Slave hat eine grüne LED, die mit "Run" beschriftet ist. Die LED signalisiert den Status des Slaves im EtherCAT-Netzwerk:

LED	Bedeutung	
aus	Slave ist im Status "Init"	
blinkt gleichmäßig	Slave ist im Status "Pre-Operational"	
blinkt vereinzelt	Slave ist im Status "Safe-Operational"	
leuchtet	Slave ist im Status "Operational"	

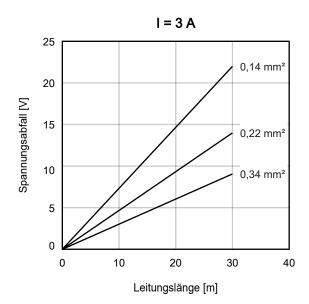
Beschreibung der Stati von EtherCAT-Slaves

4.2.2.3 Leitungsverluste


Beachten Sie bei der Planung einer Anlage den Spannungsabfall an der Versorgungs-Zuleitung. Vermeiden Sie, dass der Spannungsabfall so hoch wird, dass die Versorgungsspannungen an der Box die minimale Nennspannung unterschreiten.

Berücksichtigen Sie auch Spannungsschwankungen des Netzteils.

Planungstool für EtherCAT P



Sie können Leitungslängen, Spannungen und Ströme Ihres EtherCAT P-Systems mithilfe von TwinCAT 3 planen. Die Voraussetzung dafür ist TwinCAT 3 Build 4020 oder höher.

Weitere Informationen finden Sie in der Schnellstartanleitung <u>IO-Konfiguration in TwinCAT</u> im Kapitel "Konfiguration von EtherCAT P mit TwinCAT".

Spannungsabfall an der Versorgungs-Zuleitung

4.2.3 Signal-Eingänge und -Ausgänge

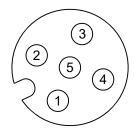
HINWEIS

Analoge Eingänge und Ausgänge müssen vor der Verkabelung parametriert werden

Defekt durch falsche Messbereiche und Ausgangs-Signalbereiche möglich.

• Stellen Sie die Messbereiche und Ausgangs-Signalbereiche ein, bevor Sie Sensoren und Aktoren anschließen.

4.2.3.1 Steckverbinder

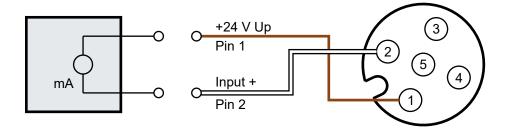

EMV-Schirmklammer

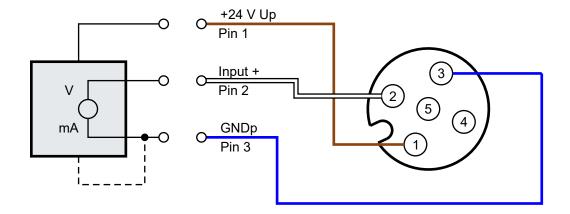
Applikationsbedingt kann es erforderlich sein, den Schirm der Sensorleitungen an den Signaleingängen der Box zusätzlich mit Schirmklammern ZB8513-0002 aufzulegen.

Siehe Kapitel: "Zubehör", Abschnitt "Leitungen" [▶ 77].

M12-Buchsen

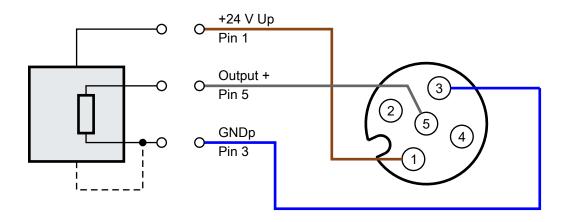
Pin	Aderfarbe	Symbol	Beschreibung	
1	braun	+24 V Up	Sensorversorgungsspannung	
2	weiß	Input +	Input + Analoger Eingang	
3	blau	GNDp	Masse	
4	schwarz	DI	Digitaler Eingang	
5	grau	Output +	Analoger Ausgang	


Die Bezugs-Masse für alle Eingänge und Ausgänge ist GND_P an Pin 3.


4.2.3.2 Anschluss-Beispiele

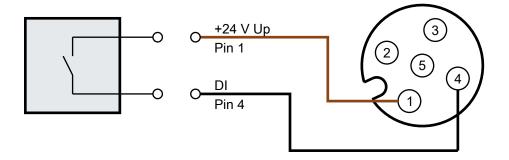
4.2.3.2.1 Analoge Sensoren

Zweileiter-Anschluss



Dreileiter-Anschluss

4.2.3.2.2 Analoge Aktoren


Dreileiter-Anschluss

4.2.3.2.3 Digitale Sensoren

Zweileiter-Anschluss

4.2.3.3 Status-LEDs

An jedem Steckverbinder für Signal-Eingänge und -Ausgänge gibt es zwei Status-LEDs.

LED "R/E" (links)

Die LED "R/E" signalisiert den Status des analogen Eingangs und des analogen Ausgangs. Im Fehlerfall leuchtet die LED rot.

Prüfen Sie das Statusbit "Error" des entsprechenden Eingangs, um zu ermitteln, ob der Fehler am Eingang oder am Ausgang aufgetreten ist.

LED "R/E"	Status-Bit "Error"	Bedeutung	
aus	Х	Der analoge Ausgang ist deaktiviert.	
		Sie können den analogen Ausgang aktivieren, indem Sie den <u>Ausgangs-Signalbereich [▶ 53]</u> auf einen Wert außer "disabled" setzen.	
grün	Х	Der analoge Ausgang ist aktiviert.	
rot	1	Der Messwert des analogen Eingangs ist außerhalb der <u>Fehlerschwellen [▶ 45]</u> .	
rot	0	EPP4304-1002: Der analoge Ausgang kann die Spannung nicht aufrechterhalten.	
		EPP4314-1002: Der analoge Ausgang kann den vorgegebenen Strom nicht treiben.	
		Siehe Kapitel <u>Diagnose</u> [▶ <u>54]</u> .	

x = ohne Bedeutung

LED "DI" (rechts)

Die LED "DI" signalisiert den Status des digitalen Eingangs. Sie leuchtet grün, wenn der digitale Eingang einen High-Pegel erkennt.

4.3 UL-Anforderungen

Die Installation der nach UL zertifizierten EtherCAT-Box-Module muss den folgenden Anforderungen entsprechen.

Versorgungsspannung

⚠ VORSICHT

VORSICHT!

Die folgenden genannten Anforderungen gelten für die Versorgung aller so gekennzeichneten EtherCAT-Box-Module.

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nur mit einer Spannung von 24 V_{DC} versorgt werden, die

- von einer isolierten, mit einer Sicherung (entsprechend UL248) von maximal 4 A geschützten Quelle, oder
- von einer Spannungsquelle die NEC class 2 entspricht stammt.
 Eine Spannungsquelle entsprechend NEC class 2 darf nicht seriell oder parallel mit einer anderen NEC class 2 entsprechenden Spannungsquelle verbunden werden!

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nicht mit unbegrenzten Spannungsquellen verbunden werden!

Netzwerke

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nicht mit Telekommunikations-Netzen verbunden werden!

Umgebungstemperatur

⚠ VORSICHT

VORSICHT!

Zur Einhaltung der UL-Anforderungen dürfen die EtherCAT-Box-Module nur in einem Umgebungstemperaturbereich von -25 °C bis +55 °C betrieben werden!

Kennzeichnung für UL

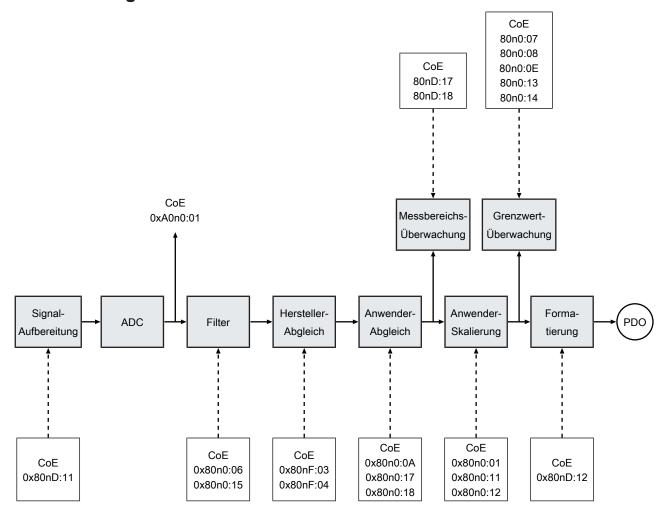
Alle nach UL (Underwriters Laboratories) zertifizierten EtherCAT-Box-Module sind mit der folgenden Markierung gekennzeichnet.

Abb. 4: UL-Markierung

4.4 Entsorgung

Mit einer durchgestrichenen Abfalltonne gekennzeichnete Produkte dürfen nicht in den Hausmüll. Das Gerät gilt bei der Entsorgung als Elektro- und Elektronik-Altgerät. Die nationalen Vorgaben zur Entsorgung von Elektro- und Elektronik-Altgeräten sind zu beachten.

5 Inbetriebnahme und Konfiguration


5.1 Einbinden in ein TwinCAT-Projekt

Die Vorgehensweise zum Einbinden in ein TwinCAT-Projekt ist in dieser <u>Schnellstartanleitung</u> beschrieben.

5.2 Analoge Eingänge

5.2.1 Signalfluss

5.2.2 Messbereich

Fehlinterpretation der Messwerte möglich

1

In der Werkseinstellung ist der "Extended Range" Modus aktiviert.

Im "Extended Range" Modus ist der Messbereich etwas größer ist als der nominelle Messbereich. Der Wert 0x7FFF entspricht ungefähr 107% des Messbereichs-Endwerts.

• Berücksichtigen Sie den vergrößerten Messbereich bei der Auswertung der Messwerte. Siehe Kapitel Messbereiche [▶14].

-oder-

Stellen Sie den "Legacy Range" Modus ein.
 Siehe Kapitel: Nomineller und technischer Messbereich [▶ 43]

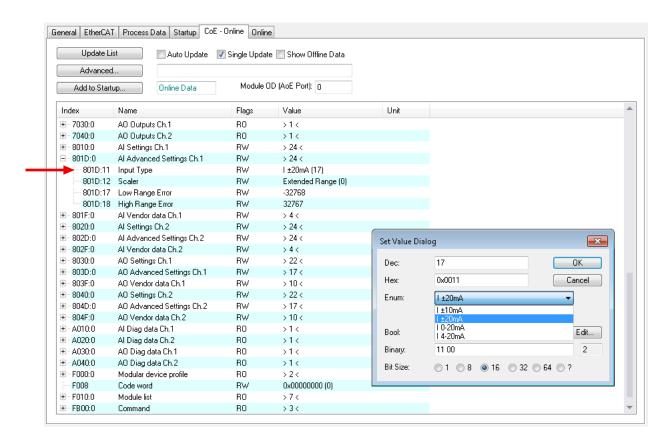
Der Messbereich kann für jeden analogen Eingang individuell gewählt werden.

Stellen Sie die Messbereiche in den CoE-Parametern "Input Type" ein:

Kanal	"Input Type"
1	0x801D:11
2	0x802D:11

Mögliche Werte für EPP4304-1002

Wert	Messbereich
2 _{dez} (Werkseinstellung)	U ±10V
14 _{dez}	U 0-10V


Mögliche Werte für EPP4314-1002

Wert	Messbereich
16 _{dez}	I ±10mA
17 _{dez} (Werkseinstellung)	I ±20mA
18 _{dez}	I 0-20mA
19 _{dez}	I 4-20mA

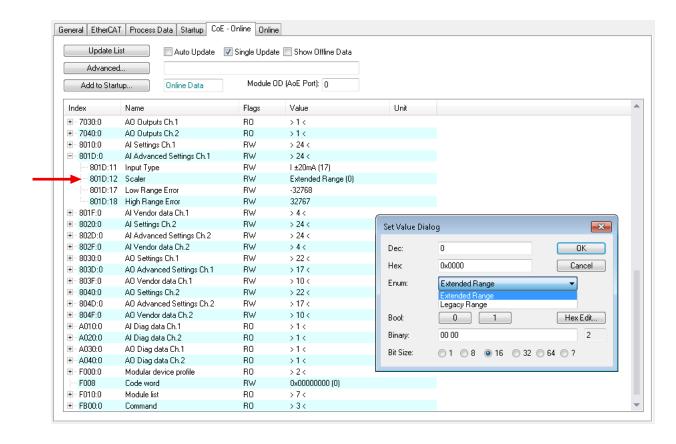
Im Kapitel Analoge Eingänge [▶ 12] finden Sie die Spezifikationen für die einzelnen Messbereiche.

Beispiel

5.2.2.1 Nomineller und technischer Messbereich

Der technische Messbereich ist ca. 7 ... 8 % größer als der nominelle Messbereich. Siehe Kapitel Messbereiche [▶ 14].

Sie können wählen, ob der technische Messbereich oder der nominelle Messbereich dargestellt wird. Der angegebene Messfehler ist unabhängig davon nur für Messwerte innerhalb des nominellen Messbereichs gewährleistet.


Wählen Sie den dargestellten Messbereich in den CoE-Parametern "Scaler" aus:

Kanal	"Scaler"
1	0x801D:12
2	0x802D:12

Mögliche Werte

Wert	Enum	Beschreibung
0 (Werkseinstellung)	"Extended Range"	Messbereich = Technischer Messbereich
3	"Legacy Range"	Messbereich = Nomineller Messbereich

Beispiel

5.2.2.2 Messbereichs-Überwachung: Status-Bits

HINWEIS

Fehlfunktion der Messbereichs-Überwachung nach falschem Anwender-Abgleich

Die Messbereichs-Überwachung ist im <u>Signalfluss [▶ 40]</u> nach dem <u>Anwender-Abgleich [▶ 50]</u> angeordnet. Falsche Koeffizienten (Offset, Gain) im Anwender-Abgleich können dazu führen, dass die Messbereichs-Überwachung nicht erwartungsgemäß funktioniert.

Drei Status-Bits signalisieren, ob der aktuelle Messwert eines analogen Eingangs außerhalb des Messbereichs liegt. Siehe Prozessdaten der analogen Eingänge.

Status-Bit "Overrange"

Wenn das Status-Bit "Overrange" gesetzt ist:

- · Der aktuelle Messwert ist größer als der Messbereichs-Endwert.
- Der in den technischen Daten angegebene Messfehler ist für den aktuellen Messwert nicht gewährleistet.
- Wenn "Legacy range" eingestellt ist, entspricht der aktuelle Wert der Variablen Value nicht dem Messwert.

Der aktuelle Messwert ist größer als der größte darstellbare Wert im "Legacy range".

Status-Bit "Underrange"

Wenn das Status-Bit "Underrange" gesetzt ist:

- · Der aktuelle Messwert ist kleiner als der kleinste Wert des nominellen Messbereichs.
- Der in den technischen Daten angegebene Messfehler ist für den aktuellen Messwert nicht gewährleistet.
- Wenn "Legacy range" eingestellt ist, entspricht der aktuelle Wert der Variablen Value nicht dem Messwert.

Der aktuelle Messwert ist kleiner als der kleinste darstellbare Wert im "Legacy range".

Status-Bit "Error"

Wenn das Status-Bit "Error" gesetzt ist:

- Der aktuelle Messwert ist kleiner als die untere <u>Fehlerschwelle [▶ 45]</u> oder größer als die obere Fehlerschwelle [▶ 45].
- Die LED "R/E" leuchtet rot. Sie ist mit dem Status-Bit "Error" verknüpft.

5.2.2.2.1 Fehlerschwellen

In der Werkseinstellung liegen die Fehlerschwellen auf dem kleinsten und größten darstellbaren Wert des technischen Messbereichs ("Extended range").

Das Überschreiten der Fehlerschwellen wird für jeden Kanal auf zwei Wegen signalisiert:

- Das <u>Status-Bit "Error"</u> [▶ <u>24]</u> ist TRUE.
- Die <u>Status-LED "R/E" [▶ 36]</u> leuchtet rot.

Die Fehlerschwellen können über CoE-Parameter eingestellt werden.

Empfehlung: passen Sie die Fehlerschwellen an den Ausgangssignal-Bereich des Sensors an.

Kanal	Untere Fehlerschwelle:	Obere Fehlerschwelle:
	"Low Range Error"	"High Range Error"
1	0x801D:17	0x801D:18
2	0x802D:17	0x802D:18

5.2.3 Filter

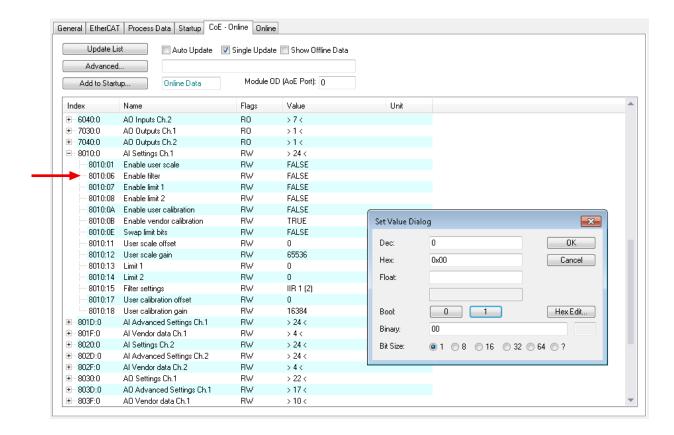
Der Messwert jedes analogen Eingangs kann mit einem digitalen Filter gefiltert werden.

HINWEIS

Messwert-Sprünge beim Aktivieren oder Deaktivieren von Filtern

Wenn Filter aktiviert oder deaktiviert werden, können kurzzeitig Messwert-Sprünge in den Prozessdaten auftreten, die nicht den physikalischen Werten entsprechen.

Filter beeinflussen den EtherCAT-Synchronisationsmodus


Wenn ein oder mehrere Filter aktiviert sind, läuft das Gerät automatisch im Synchronisationsmodus "Free Run".

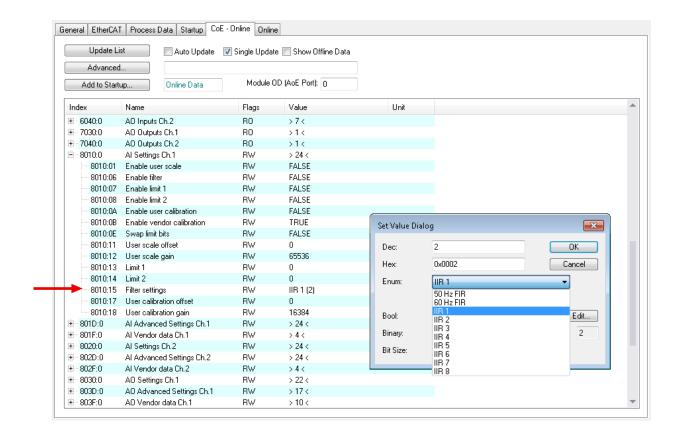
In der Werkseinstellung sind alle Filter deaktivert.

Sie können den Filter für jeden Eingang individuell aktivieren, indem Sie den entsprechenden CoE-Parameter "Enable filter" auf TRUE setzen:

Kanal	"Enable filter"	
1	0x8010:06	
2	0x8020:06	

Beispiel

46 Version: 1.3 EPP43x4-1002



Filter-Typ auswählen

Die Werkseinstellung des Filter-Typs ist "IIR 1".

Sie können den Filter-Typ für jeden Eingang individuell in den CoE-Parametern "Filter Settings" auswählen:

Kanal	"Filter Settings"	
1	0x8010:15	
2	0x8020:15	

Es stehen zwei Filter-Typen zur Auswahl. Nutzen Sie die folgende Beschreibung, um den passenden Filter-Typ für Ihre Anwendung auszuwählen.

FIR-Filter

Das Filter arbeitet als Notch-Filter (Kerbfilter) und bestimmt die Wandlungszeit des Moduls. Je höher die Filterfrequenz, desto schneller ist die Wandlungszeit. Es steht ein 50 Hz und ein 60 Hz Filter zur Verfügung. Kerbfilter bedeutet, dass der Filter bei der genannten Filterfrequenz und Vielfachen davon Nullstellen (Kerben) im Frequenzgang hat, diese Frequenzen also in der Amplitude dämpft.

Das FIR-Filter arbeitet als nicht-rekursives Filter.

IIR-Filter

Das Filter mit IIR-Charakteristik ist ein zeitdiskretes, lineares, zeitinvariantes Filter, welches in 8 Level eingestellt werden kann (Level 1 = schwaches rekursives Filter, bis Level 8 = starkes rekursives Filter) Der IIR kann als gleitende Mittelwertberechnung nach einem Tiefpass verstanden werden.

5.2.4 Grenzwert-Überwachung

Sie können für jeden analogen Eingang zwei Grenzwerte definieren:

- I imit 1
- Limit 2

Für jeden Grenzwert gibt es eine gleichnamige Variable in den Prozessdaten. Siehe Kapitel <u>Prozessabbild</u> [<u>▶ 24</u>]. Die Variable zeigt an, ob der aktuelle Messwert oberhalb oder unterhalb des Grenzwertes liegt.

Einen Grenzwert definieren

Tragen Sie Ihre Grenzwerte in den entsprechenden CoE-Parameter "Limit 1" und "Limit 2" ein.

Der zulässige Wertebereich beträgt -32768 bis +32767 (0x8000 ... 0x7FFF).

Kanal	"Limit 1"	"Limit 2"
1	0x8010:13	0x8010:14
2	0x8020:13	0x8020:14

Grenzwert-Überwachung aktivieren

In der Werkseinstellung ist die Grenzwert-Überwachung deaktiviert.

Sie können die Grenzwert-Überwachung für jeden Eingang individuell aktivieren, indem Sie den entsprechenden CoE-Parameter "Enable Limit 1/2" auf TRUE setzen:

Kanal	"Enable limit 1"	"Enable limit 2"
1	0x8010:07	0x8010:08
2	0x8020:07	0x8020:08

Auswerten

Werten Sie die Variablen "Limit 1" und "Limit 2" in den Prozessdaten gemäß folgender Tabelle aus:

Wert	Bedeutung	
	Für "Swap limit bits" 1) = FALSE Für "Swap limit bits" 1) = TRUE	
0	Die Überwachung ist für diesen Grenzwert nicht aktiviert.	
1	Der Messwert ist kleiner als der Grenzwert.	Der Messwert ist größer als der Grenzwert.
2	Der Messwert ist größer als der Grenzwert. Der Messwert ist kleiner als der Grenzwer	
3	Der Messwert ist genauso groß wie der Grei	nzwert.

^{1) &}quot;Swap limit bits" ist ein CoE-Parameter. In der Werkseinstellung ist "Swap limit bits" = FALSE.

Kanal	"Swap limit bits"
1	0x8010:0E
2	0x8020:0E

5.2.5 Abgleich und Skalierung

5.2.5.1 Hersteller-Abgleich

Jeder analoge Eingang wird werksseitig abgeglichen. Das Ergebnis des Abgleichs sind die Koeffizienten einer Korrekturfunktion. Die Korrekturfunktion lautet:

 $Y_v = G_v^* (X_v - O_v)$ Y_v : Messwert nach dem Hersteller-Abgleich

X_V: Messwert vor dem Hersteller-Abgleich

 G_{V} : Gain des Hersteller-Abgleichs

O_V: Offset des Hersteller-Abgleichs

Die Koeffizienten G_V und O_V sind vom Benutzer nicht veränderbar. Wenn Sie einen Abgleich selbst durchführen wollen, nutzen Sie den Anwender-Abgleich.

Sie finden die Koeffizienten für die unterschiedlichen Messbereiche in den folgenden CoE-Objekten:

Kanal	CoE-Objekt (nur Lesezugriff)	
1	801F _{hex}	Al Vendor data Ch.1
2	802F _{hex}	Al Vendor data Ch.2

Hersteller-Abgleich deaktivieren

HINWEIS

Messfehler bei deaktiviertem Hersteller-Abgleich

Der in den technischen Daten angegebene Messfehler ist nicht mehr gewährleistet, wenn Sie den Hersteller-Abgleich deaktivieren.

Wenn Sie den Anwender-Abgleich nutzen, kann es sinnvoll sein, den Hersteller-Abgleich zu deaktivieren.

Setzen Sie den CoE-Parameter "Enable vendor calibration" auf FALSE, um den Hersteller-Abgleich für den jeweiligen Eingang zu deaktivieren.

Kanal	"Enable vendor calibration"	
1	0x8010:0B	
2	0x8020:0B	

5.2.5.2 Anwender-Abgleich

HINWEIS

Der Anwender-Abgleich beeinflusst die Messbereichs-Überwachung.

Falsche Abgleich-Koeffizienten können dazu führen, dass sich Status-Bits und Status-LEDs nicht mehr erwartungsgemäß verhalten; siehe Messbereichs-Überwachung.

Der Anwender-Abgleich ist dazu vorgesehen, das Gerät z.B. in einem kleineren Messbereich als dem vom Hersteller abgeglichenen Bereich abzugleichen. Dadurch kann in dem kleineren Messbereich eine höhere Genauigkeit erzielt werden.

Die Korrekturfunktion hat die gleiche Form wie die Korrekturfunktion des Hersteller-Abgleichs:

 $Y_U = G_U^* (X_U - O_U)$ Y_U : Messwert nach dem Anwender-Abgleich

X_U: Messwert vor dem Anwender-Abgleich

 G_U : Gain O_U : Offset

Anwender-Abgleich aktivieren

Der Anwender-Abgleich ist in der Werkseinstellung deaktiviert. Er kann für jeden Eingang individuell aktiviert werden. Setzen Sie dazu den entsprechenden CoE-Parameter "Enable user calibration" auf TRUE:

Kanal	Index von "Enable user calibration"	
1	0x8010:0A	
2	0x8020:0A	

Abgleich-Koeffizienten einstellen

Stellen Sie die Abgleich-Koeffizienten über die CoE-Parameter "User calibration offset" und "User calibration gain" ein:

Kanal	"User calibration offset"	"User calibration gain"
1	0x8010:17	0x8010:18
2	0x8020:17	0x8020:18

50 Version: 1.3 EPP43x4-1002

5.2.5.3 Anwender-Skalierung

Die Übertragungsfunktion der Anwender-Skalierung für die analogen Eingänge lautet:

 $Y_s = G_s * (X_s - O_s)$ $Y_s : Messwert nach der Anwender-Skalierung$

X_S: Messwert vor der Anwender-Skalierung

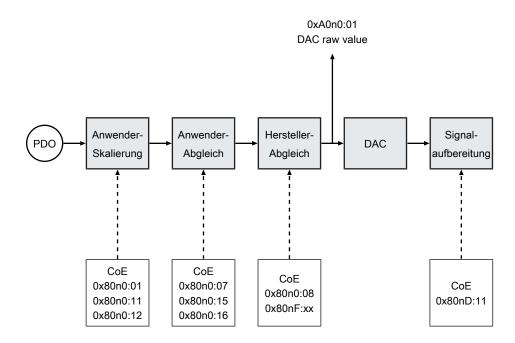
 G_s : Gain O_s : Offset

Anwender-Skalierung aktivieren

Die Anwender-Skalierung ist werksseitig deaktiviert. Sie kann für jeden Kanal individuell aktiviert werden. Setzen Sie dazu den jeweiligen CoE-Parameter "Enable user scale" auf TRUE:

Kanal	"Enable user scale"	
1	0x8010:01	
2	0x8020:01	

Skalierungs-Koeffizienten einstellen


Stellen Sie die Skalierungs-Koeffizienten über die CoE-Parameter "User scale offset" und "User scale gain" ein:

Kanal	"User scale offset"	"User scale gain"
1	0x8010:11	0x8010:12
2	0x8020:11	0x8020:12

5.3 Analoge Ausgänge

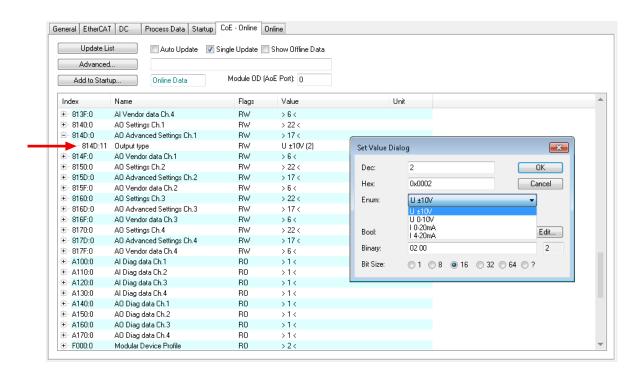
5.3.1 Signalfluss

5.3.2 Ausgangs-Signalbereich

Der Ausgangs-Signalbereich kann für jeden analogen Ausgang individuell gewählt werden.

Stellen Sie die Ausgangs-Signalbereiche in den CoE-Parametern "Output Type" ein:

Kanal	"Output Type"
1	0x803D:11
2	0x804D:11

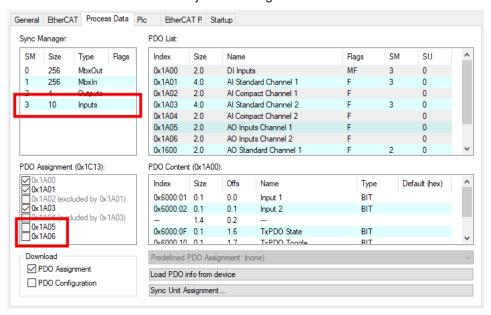

Mögliche Werte für EPP4304-1002

Wert	Ausgangs-Signalbereich
2 _{dez} (Werkseinstellung)	U ±10V
14 _{dez}	U 0-10V
65535 _{dez}	Disabled

Mögliche Werte für EPP4314-1002

Wert	Ausgangs-Signalbereich
16 _{dez}	I ±10mA
17 _{dez} (Werkseinstellung)	I ±20mA
18 _{dez}	I 0-20mA
19 _{dez}	I 4-20mA
65535 _{dez}	Disabled

Beispiel


5.3.3 Diagnose

Die Prozessdatenobjekte "AO Inputs Channel 1" und "AO Inputs Channel 2" enthalten Variablen zur Diagnose der analogen Ausgänge.

In der Werkseinstellung sind beide Prozessdatenobjekte deaktiviert.

Aktivieren

Sie können die Prozessdatenobjekte wie folgt aktivieren:

- 1. Die Registerkarte "Process Data" öffnen.
- 2. Im Feld "Sync Manager" die Zeile "Inputs" auswählen.
- 3. Im Feld "PDO Assignment (0x1C13)" die Kontrollkästchen "0x1A05" und/oder "0x1A06" aktivieren.

Index	Prozessdatenobjekt	
0x1A05	AO Inputs Channel 1	
0x1A06	AO Inputs Channel 2	

Auswerten

Die Prozessdatenobjekte "AO Inputs Channel 1" und "AO Inputs Channel 2" enthalten je zwei Statusbits:

- "Load Impedance too Low" (EPP4304-1002) "Load Impedance too High" (EPP4314-1002)
- "Error"

"Error" hat immer den gleichen Wert wie "Load Impedance too Low/High". Die folgende Tabelle zeigt die Bedeutung der Werte der Statusbits.

Wert	Bedeutung		
	EPP4304-1002	EPP4314-1002	
0	Normalbetrieb	Normalbetrieb	
1	Der analoge Ausgang kann den vorgegebenen Strom nicht treiben.	Der analoge Ausgang kann die Spannung nicht aufrechterhalten.	
	Mögliche Ursachen:	Mögliche Ursachen:	
	Drahtbruch.	Der Lastwiderstand ist zu klein.	
	Die Bürde ist zu hoch. Zulässige Bürde:	Siehe <u>Technische Daten der analogen</u>	
	Siehe <u>Technische Daten der analogen</u>	Ausgänge [▶ 13]	
	<u>Ausgänge [▶ 13]</u> .		

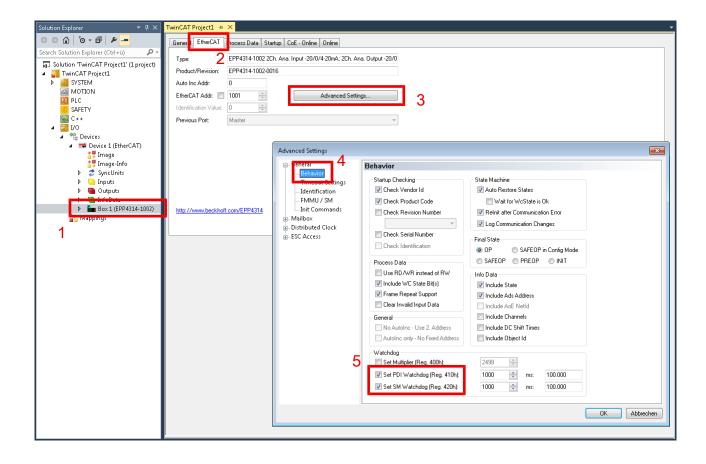
5.3.4 Verhalten bei Kommunikations-Unterbrechung: Watchdog

Wenn die Kommunikation zwischen der SPS und den analogen Ausgängen unterbrochen wird, erhalten die analogen Ausgänge keine Vorgabe-Werte mehr.

Watchdogs überwachen die Kommunikation und können die Steuerung der analogen Ausgänge übernehmen, wenn die Kommunikation unterbrochen wird.

Es gibt zwei Watchdogs:

- Der "SM Watchdog" überwacht die EtherCAT-Kommunikation.
- Der "PDI Watchdog" überwacht die Kommunikation innerhalb des Moduls.


In der Werkseinstellung sind beide Watchdogs deaktiviert.

5.3.4.1 Watchdog aktivieren

⚠ VORSICHT

Aktoren können sich unerwartet in Bewegung setzen, wenn ein Watchdog aktiv ist Verletzungen sind möglich.

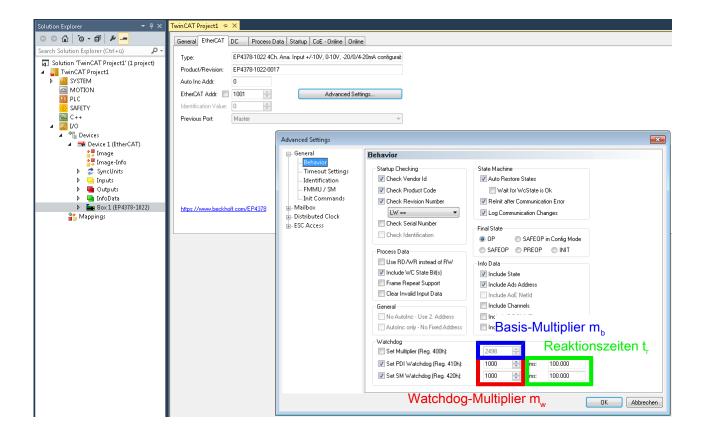
- 1. Karteireiter "EtherCAT" auswählen.
- 2. Schaltfläche "Advanced Settings" anklicken.
- 3. Menüpunkt "Behaviour" anklicken
- 4. Bei "Set PDI Watchdog" und/oder "Set SM Watchdog" einen Haken setzen.

5.3.4.2 Reaktionszeit einstellen

Die Reaktionszeit ist die Zeit zwischen dem Erkennen einer Kommunikations-Unterbrechung und der Reaktion des Watchdog: Wenn ein Watchdog eine Kommunikations-Unterbrechung erkennt, wartet er die Reaktionszeit ab, bevor er die Steuerung der analogen Ausgänge übernimmt.

Sie können die Reaktionszeit für jeden Watchdog individuell einstellen.

Wählen Sie die Reaktionszeiten lang genug, um zu verhindern, dass die Watchdogs auch bei sehr kurzen, vorübergehenden Kommunikations-Unterbrechungen reagieren.


Die Reaktionszeiten werden mit dieser Formel berechnet:

$$t_r = m_w \times \frac{(m_b + 2)}{25 \, MHz}$$

t_r: Reaktionszeit eines Watchdogs

mw: Watchdog-Multiplier

m_b: Basis-Multiplier (Werkseinstellung: 2498_{dez})

5.3.4.3 Verhalten einstellen

Sie können das Verhalten jedes analogen Ausgangs bei einer Kommunikations-Unterbrechung in den CoE-Parametern "Watchdog" einstellen:

Kanal	"Watchdog"
1	0x8030:05
2	0x8040:05

Mögliche Werte

Wert	Enum	Beschreibung
0 (Werkseinstellung)	"Default watchdog value"	Wenn die Reaktionszeit abgelaufen ist, setzt der Watchdog den Ausgang unverzüglich auf den Default- Wert (siehe unten).
1	"Watchdog ramp"	Lineare Rampe zu dem Default-Wert (siehe unten).
2	"Last output value"	Wert einfrieren:
		Der Ausgang gibt weiterhin den letzten Wert aus, der von der Steuerung empfangen wurde, bevor die Kommunikation unterbrochen wurde.

Default-Wert einstellen

Sie können den Default-Wert in den CoE-Parametern "Default output" festlegen:

Kanal	"Default output"	
1	8030:13	
2	8040:13	

Rampe

Sie können festlegen, in welcher Zeit der Default-Wert erreicht wird, wenn das Watchdog-Verhalten auf den Wert 1 "Watchdog ramp" eingestellt ist.

$$t = \frac{|n_{aktuell} - n_{default}|}{v_{rampe}}$$

t : Zeit in ms bis zum Erreichen des Default-Werts.

n_{aktuell}: der letzte Ausgangs-Wert, der vor der Kommunikations-Unterbrechung von der Steuerung empfangen wurde.

n_{default}: Default-Wert (CoE-Parameter 80*n*0:13).

 $v_{\mbox{\tiny rampe}}$: Rampen-Geschwindigkeit in digits/ms (CoE-Parameter $80 n0{:}14).$

5.3.5 Abgleich und Skalierung

5.3.5.1 Hersteller-Abgleich

Jeder analoge Ausgang wird werksseitig abgeglichen. Das Ergebnis des Abgleichs sind die Koeffizienten einer Korrekturfunktion. Die Korrekturfunktion lautet:

 $Y_{V} = G_{V} * X_{V} + O_{V}$

Y_v: Ausgabewert nach dem Hersteller-Abgleich

X_V: Ausgabewert vor dem Hersteller-Abgleich

 G_{V} : Gain des Hersteller-Abgleichs

O_V: Offset des Hersteller-Abgleichs

Die Koeffizienten G_V und O_V sind vom Benutzer nicht veränderbar. Wenn Sie einen Abgleich selbst durchführen wollen, nutzen Sie den Anwender-Abgleich.

Sie finden die Koeffizienten für die unterschiedlichen Ausgangs-Signalbereiche in den folgenden CoE-Objekten:

Kanal	CoE-Objekt (nur Lesezugriff)		
1	AO Vendor data Ch.1		
2	804F _{hex}	AO Vendor data Ch.2	

Hersteller-Abgleich deaktivieren

HINWEIS

Ausgabefehler bei deaktiviertem Hersteller-Abgleich

Der in den technischen Daten angegebene Ausgabefehler ist nicht mehr gewährleistet, wenn Sie den Hersteller-Abgleich deaktivieren.

Wenn Sie den Anwender-Abgleich nutzen, kann es sinnvoll sein, den Hersteller-Abgleich zu deaktivieren.

Setzen Sie den CoE-Parameter "Enable vendor calibration" auf FALSE, um den Hersteller-Abgleich für den jeweiligen Ausgang zu deaktivieren.

Kanal	"Enable vendor calibration"	
1	0x8030:08	
2	0x8040:08	

58 Version: 1.3 EPP43x4-1002

5.3.5.2 Anwender-Abgleich

Der Anwender-Abgleich ist dazu vorgesehen, das Gerät z.B. für einen kleineren Ausgangs-Signalbereich als den vom Hersteller abgeglichenen Bereich abzugleichen. Dadurch kann für den kleineren Ausgangs-Signalbereich eine höhere Genauigkeit erzielt werden.

Die Korrekturfunktion hat die gleiche Form wie die Korrekturfunktion des Hersteller-Abgleichs:

 $Y_U = G_U * X_U + O_U$ $Y_U : Ausgabewert nach dem Anwender-Abgleich$

X_U: Ausgabewert vor dem Anwender-Abgleich

 G_U : Gain O_U : Offset

Anwender-Abgleich aktivieren

Der Anwender-Abgleich ist werksseitig deaktiviert. Er kann für jeden Ausgang individuell aktiviert werden. Setzen Sie dazu den entsprechenden CoE-Parameter "Enable user calibration" auf TRUE:

Ans	schluss	"Enable user calibration"	
1		0x8030:07	
2		0x8040:07	

Abgleichs-Koeffizienten einstellen

Stellen Sie die Abgleichs-Koeffizienten über die CoE-Parameter "User calibration offset" und "User calibration gain" ein:

Anschluss	"User calibration offset"	"User calibration gain"	
1	0x8030:15	0x8030:16	
2	0x8040:15	0x8040:16	

5.3.5.3 Anwender-Skalierung

Die Übertragungsfunktion der Anwender-Skalierung für die analogen Ausgänge lautet:

 $Y_s = G_s * X_s + O_s$ Y_s : Ausgabewert nach der Anwender-Skalierung

X_s: Ausgabewert vor der Anwender-Skalierung

 G_s : Gain O_s : Offset

Anwender-Skalierung aktivieren

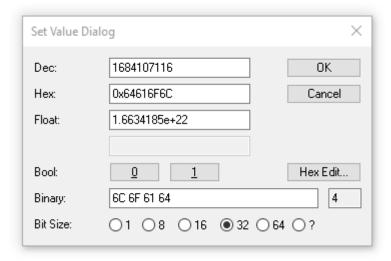
Die Anwender-Skalierung ist werksseitig deaktiviert. Sie kann für jeden Kanal individuell aktiviert werden. Setzen Sie dazu den entsprechenden CoE-Parameter "Enable user scale" auf TRUE:

Kanal	"Enable user scale"
1	8030:01
2	8040:01

Skalierungs-Koeffizienten einstellen

Stellen Sie die Skalierungs-Koeffizienten über die CoE-Parameter "User scale offset" und "User scale gain" ein:

Kanal "User scale offset"		"User scale gain"	
1	0x8030:11	8030:12	
2	0x8040:11	8040:12	


Wiederherstellen des Auslieferungszustands 5.4

Sie können den Auslieferungszustand der Backup-Objekte wie folgt wiederherstellen:

- 1. Sicherstellen, dass TwinCAT im Config-Modus läuft.
- 2. Im CoE-Objekt 1011:0 "Restore default parameters" den Parameter 1011:01 "Subindex 001" auswählen.

- 3. Auf "Subindex 001" doppelklicken.
 - ⇒ Das Dialogfenster "Set Value Dialog" öffnet sich.
- 4. Im Feld "Dec" den Wert 1684107116 eintragen. Alternativ: im Feld "Hex" den Wert 0x64616F6C eintragen.

- 5. Mit "OK" bestätigen.
- ⇒ Alle Backup-Objekte werden in den Auslieferungszustand zurückgesetzt.

Alternativer Restore-Wert

Bei einigen Modulen älterer Bauart lassen sich die Backup-Objekte mit einem alternativen Restore-Wert umstellen:

Dezimalwert: 1819238756 Hexadezimalwert: 0x6C6F6164

Eine falsche Eingabe des Restore-Wertes zeigt keine Wirkung.

6 CoE-Parameter

6.1 Objekt-Verzeichnis

Index (hex)	Name
1000	Device type [▶ 66]
1008	Device name [▶ 66]
1009	Hardware version [▶ 66]
100A	Software version [▶ 66]
100B	Bootloader version [▶ 66]
1011	Restore default parameters [▶ 66]
1018	Identity [▶ 66]
10E2	Manufacturer-specific Identification Code [▶ 67]
10F0	Backup parameter handling [▶ 67]
1600	AO RxPDO-Map Standard Ch.1 [▶ 67]
1601	AO RxPDO-Map Standard Ch.2 [▶ 67]
1801	Al TxPDO-Par Standard Ch.1 [▶ 67]
1802	Al TxPDO-Par Compact Ch.1 [▶ 67]
1803	Al TxPDO-Par Standard Ch.2 [▶ 67]
1804	Al TxPDO-Par Compact Ch.2 [▶ 67]
1A00	DI TxPDO-Map Inputs [▶ 68]
1A01	AI TxPDO-Map Standard Ch.1 [▶ 68]
1A02	Al TxPDO-Map Compact Ch.1 [▶ 68]
1A03	AI TxPDO-Map Standard Ch.2 [▶ 68]
1A04	Al TxPDO-Map Compact Ch.2 [▶ 69]
1A05	AO TxPDO-Map Inputs Ch.1 [▶ 69]
1A06	AO TxPDO-Map Inputs Ch.2 [▶ 69]
1C00	Sync manager type [▶ 69]
1C12	RxPDO assign [69]
1C13	TxPDO assign [▶ 70]
1C32	SM output parameter [> 70]
1C33	SM input parameter [▶ 71]
6000	DI Inputs [▶ 72]
6010	Al Inputs Ch.1 [72]
6020	Al Inputs Ch.2 [> 72]
6030	AO Inputs Ch.1
6040	AO Inputs Ch.2
7030	AO Outputs Ch.1 [> 73]
7040	AO Outputs Ch.2 [> 73]

Index (hex)	Name
8010	Al Settings Ch.1 [▶ 64]
801D	Al Advanced Settings Ch.1 [▶ 64]
801F	Al Vendor data Ch.1 [▶ 73]
8020	Al Settings Ch.2 [▶ 64]
802D	Al Advanced Settings Ch.2 [▶ 64]
802F	Al Vendor data Ch.2 [▶ 73]
8030	AO Settings Ch.1 [• 65]
803D	AO Advanced Settings Ch.1 [▶ 65]
803F	AO Vendor data Ch.1 [▶ 74]
8040	AO Settings Ch.2 [• 65]
804D	AO Advanced Settings Ch.2 [▶ 65]
804F	AO Vendor data Ch.2 [▶ 74]
A010	Al Diag data Ch.1 [▶ 74]
A020	Al Diag data Ch.2 [▶ 75]
A030	AO Diag data Ch.1 [▶ 75]
A040	AO Diag data Ch.2 [▶ 75]
F000	Modular device profile [▶ 75]
F008	Code word [▶ 75]
F010	Module list [▶ 75]
FB00	<u>Command</u> [▶ 75]

6.2 Objekt-Beschreibung

6.2.1 Objekte zur Parametrierung

Index 8010, 8020 AI Settings Ch.n

- Index 8010 AI Settings Ch.1: Analoger Eingang an Anschluss 1
- Index 8020 AI Settings Ch.2: Analoger Eingang an Anschluss 2

Index (hex)	Name	Beschreibung	Datentyp	Flags	Default
80n0:01	Enable user scale	Anwender-Skalierung [▶ 51] aktivieren.	BOOL	RW	FALSE
80n0:06	Enable filter	<u>Digitales Filter [▶ 46]</u> aktivieren.	BOOL	RW	FALSE
80n0:07	Enable limit 1	<u>Grenzwert-Überwachung [▶ 48]</u> für Grenzwert 1 aktivieren.	BOOL	RW	FALSE
80n0:08	Enable limit 2	<u>Grenzwert-Überwachung</u> [▶ <u>48]</u> für Grenzwert 2 aktivieren.	BOOL	RW	FALSE
80n0:0A	Enable user calibration	Anwender-Abgleich [▶ 50] aktivieren.	BOOL	RW	FALSE
80n0:0B	Enable vendor calibration	<u>Hersteller-Abgleich</u> [▶ 49] aktivieren.	BOOL	RW	TRUE
80n0:0E	Swap limit bits	Vergleichsoperation der <u>Grenzwert-Überwachung</u> [▶ 48] umkehren.	BOOL	RW	FALSE
80n0:11	User scale offset	Offset-Wert für die <u>Anwender-Skalierung</u> [▶ 51].	INT16	RW	0
80n0:12	User scale gain	Gain-Wert für die <u>Anwender-Skalierung</u> [▶ <u>51]</u> .	INT32	RW	65536 _{dez}
80n0:13	Limit 1	Grenzwert 1 der <u>Grenzwert-Überwachung</u> [▶ <u>48</u>].	INT16	RW	0
80n0:14	Limit 2	Grenzwert 2 der <u>Grenzwert-Überwachung</u> [▶ <u>48</u>].	INT16	RW	0
80n0:15	Filter settings	Typ des digitalen Filters [▶ 46].	UINT16	RW	2
80n0:17	User calibration offset	Offset-Wert für den Anwender-Abgleich [▶ 50].	INT16	RW	0
80n0:18	User calibration gain	Gain-Wert für den <u>Anwender-Abgleich [▶ 50]</u> .	INT16	RW	16384 _{dez}

Index 801D, 802D: Al Advanced Settings Ch.n

- 801D_{hex} Al Advanced Settings Ch.1: Analoger Eingang an Anschluss 1
- 802D_{hex} Al Advanced Settings Ch.2: Analoger Eingang an Anschluss 2

Index (hex)	Name	Beschreibung	Datentyp	Flags	Default
80nD:11	Input Type	Messbereich [▶ 41] auswählen.	UINT16	RW	2
80nD:12	Scaler	Nominellen oder technischen Messbereich [• 43] auswählen.	UINT16	RW	0
80nD:17	Low Range Error	Untere <u>Fehlerschwelle</u> [▶ <u>45]</u> .	INT32	RW	-32768 _{dez}
80nD:18	High Range Error	Untere <u>Fehlerschwelle</u> [▶ <u>45]</u> .	INT32	RW	32767 _{dez}

Index 8030, 8040 AO Settings Ch.n

- Index 8030 AO Settings Ch.1: Analoger Ausgang an Anschluss 1
- Index 8040 AO Settings Ch.2: Analoger Ausgang an Anschluss 2

Index (hex)	Name	Beschreibung	Datentyp	Flags	Default
80n0:01	Enable user scale	Anwender-Skalierung [▶ 60] aktivieren.	BOOL	RW	FALSE
80n0:05	Watchdog	Verhalten des Watchdogs [▶ 57] einstellen.	BIT2	RW	0
80n0:07	Enable user calibration	Anwender-Abgleich [> 59] aktivieren.	BOOL	RW	FALSE
80n0:08	Enable vendor calibration	Hersteller-Abgleich [▶ 58] aktivieren.	BOOL	RW	TRUE
80n0:11	User scale offset	Offset-Wert für die <u>Anwender-Skalierung</u> [▶ <u>60</u>].	INT16	RW	0
80n0:12	User scale gain	Gain-Wert für die <u>Anwender-Skalierung</u> [▶ <u>60</u>].	INT32	RW	65535 _{dez}
80n0:13	Default output	Default-Wert für <u>"Default Watchdog value"</u> [▶ 57] einstellen.	INT16	RW	0
80n0:14	Default output ramp	Änderungsrate des Ausgabewerts für <u>"Watchdog ramp" [▶ 57]</u> einstellen.	UINT16	RW	65535 _{dez}
80n0:15	User calibration offset	Offset-Wert für den Anwender-Abgleich [▶ 59] einstellen.	INT16	RW	0
80n0:16	User calibration gain	Gain-Wert für den <u>Anwender-Abgleich [▶ 59]</u> einstellen.	INT16	RW	16384 _{dez}

Index 803D, 804D AO Advanced Settings Ch.n

- Index 803D AO Advanced Settings Ch.1: Analoger Ausgang an Anschluss 1
- Index 804D AO Advanced Settings Ch.2: Analoger Ausgang an Anschluss 2

Index (hex)	Name	Beschreibung	Datentyp	Flags	Default
80nD:11	Output type	<u>Ausgangs-Signalbereich [▶ 53]</u> einstellen.	UINT16	RW	17 _{dez}

6.2.2 Standard-Objekte

Index 1000 Device type

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Datentyp	Flags	Wert
1000:0	Device type	Bit 0 15: Geräteprofil-Nummer Bit 16 31: Moduleprofil-Nummer	UINT32	RO	5001 _{dez}
		(Geräteprofil-Nummer 5001: Modular Device Profile MDP)			

Index 1008 Device name

Zugriffsrechte: nur Lesen

Subindex (hex)	Name	Beschreibung	Einheit	Datentyp	Wert
-	Device name	Name des EtherCAT-Geräts	-		EPP4304-1002 / EPP4314-1002

Index 1009 Hardware version

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Datentyp	Flags	Default
1008:0	Hardware version	Hardware-Version [▶ 7]	STRING	RO	-

Index 100A Software version

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Datentyp	Flags	Default
100A:0	Software version	Firmware-Version [▶ 7]	STRING	RO	-

Index 100B Bootloader version

Index	Name	Bedeutung	Datentyp	Flags	Default
100B:0	Bootloader version		STRING	RO	N/A

Index 1011 Restore default parameters

Index	Name	Bedeutung	Datentyp	Flags	Default
1011:0	Restore default parameters	Herstellen der Defaulteinstellungen	UINT8	RO	0x01 (1 _{dez})
1011:01		Wenn Sie dieses Objekt im Set Value Dialog auf "0x64616F6C" setzen, werden alle Backup Objekte wieder in den Auslieferungszustand gesetzt.	UINT32	RW	0x0000000 (0 _{dez})

Index 1018 Identity

Zugriffsrechte: nur Lesen

Index (hex)	Name	Beschreibung	Datentyp	Flags	Wert
1018:01	Vendor ID	Hersteller-Kennung (2: Beckhoff Automation)	UINT32	RO	2 _{dez}
1018:02	Product code	Produkt-Code	UINT32	RO	0x6476d309 (EPP4304-1002) 0x6476d3a9 (EPP4314-1002)
1018:03	Revision	Bit 0 15: Kennzahl der Produkt-Variante Bit 16 31: Revision der Gerätebeschreibung (ESI)	UINT32	RO	Bit 0 15: 1002 _{dez}
1018:04	Serial number	Reserviert	UINT32	RO	0

66 Version: 1.3 EPP43x4-1002

Index 10E2 Manufacturer-specific Identification Code

Index	Name	Bedeutung	Datentyp	Flags	Default
10E2:0	Manufacturer-specific Identification Code		UINT8	RO	0x01 (1dez)
10E2:01	SubIndex 001		STRING	RO	

Index 10F0 Backup parameter handling

Index	Name	Bedeutung	Datentyp	Flags	Default
10F0:0		Informationen zum standardisierten Laden und Speichern der Backup Entries	UINT8	RO	0x01 (1dez)
10F0:01	Checksum	Checksumme über alle Backup-Entries des EtherCAT- Slaves	UINT32	RO	0x00000000 (0dez)

Index 1600 AO RxPDO-Map Standard Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
1600:0	AO RxPDO-Map Standard Ch.1	PDO Mapping RxPDO 1	UINT8	RO	0x01 (1dez)
1600:01		1. PDO Mapping entry (object 0x7030 (AO Outputs Ch.1), entry 0x01 (Analog output))	UINT32	RO	0x7030:01, 16

Index 1601 AO RxPDO-Map Standard Ch.2

Index	Name	Bedeutung	Datentyp	Flags	Default
1601:0	AO RxPDO-Map Standard Ch.2	PDO Mapping RxPDO 2	UINT8	RO	0x01 (1dez)
1601:01	SubIndex 001	1. PDO Mapping entry (object 0x7040 (AO Outputs Ch.2), entry 0x01 (Analog output))	UINT32	RO	0x7040:01, 16

Index 1801 AI TxPDO-Par Standard Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
1801:0	Al TxPDO-Par Standard Ch.1	PDO Parameter TxPDO 2	UINT8	RO	0x06 (6dez)
1801:06		iner enia are the 200 (mask as the 20 mapping	OCTET- STRING[2]		02 1A

Index 1802 AI TxPDO-Par Compact Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
1	Al TxPDO-Par Compact Ch.1	PDO Parameter TxPDO 3	UINT8	RO	0x06 (6dez)
1802:06		iner enia are the 200 (mask as the 20 mapping	OCTET- STRING[2]	RO	01 1A

Index 1803 AI TxPDO-Par Standard Ch.2

Index	Name	Bedeutung	Datentyp	Flags	Default
1803:0	Al TxPDO-Par Standard Ch.2	PDO Parameter TxPDO 4	UINT8	RO	0x06 (6dez)
1803:06		iner ental are the period	OCTET- STRING[2]	RO	04 1A

Index 1804 AI TxPDO-Par Compact Ch.2

Index	Name	Bedeutung	Datentyp	Flags	Default
1804:0	Al TxPDO-Par Compact Ch.2	PDO Parameter TxPDO 5	UINT8	RO	0x06 (6dez)
1804:06			OCTET- STRING[2]		03 1A

Index 1A00 DI TxPDO-Map Inputs

Index	Name	Bedeutung	Datentyp	Flags	Default
1A00:0	DI TxPDO-Map Inputs	PDO Mapping TxPDO 1	UINT8	RO	0x05 (5dez)
1A00:01	SubIndex 001	1. PDO Mapping entry (object 0x6000 (DI Inputs), entry 0x01 (Input 1))	UINT32	RO	0x6000:01, 1
1A00:02	SubIndex 002	2. PDO Mapping entry (object 0x6000 (DI Inputs), entry 0x02 (Input 2))	UINT32	RO	0x6000:02, 1
1A00:03	SubIndex 003	3. PDO Mapping entry (12 bits align)	UINT32	RO	0x0000:00, 12
1A00:04	SubIndex 004	4. PDO Mapping entry (object 0x6000 (DI Inputs), entry 0x0F (TxPDO State))	UINT32	RO	0x6000:0F, 1
1A00:05	SubIndex 005	5. PDO Mapping entry (object 0x6000 (DI Inputs), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6000:10, 1

Index 1A01 AI TxPDO-Map Standard Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
1A01:0	AI TxPDO-Map Standard Ch.1	PDO Mapping TxPDO 2	UINT8	RO	0x09 (9dez)
1A01:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x01 (Underrange))	UINT32	RO	0x6010:01, 1
1A01:02	SubIndex 002	2. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x02 (Overrange))	UINT32	RO	0x6010:02, 1
1A01:03	SubIndex 003	3. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x03 (Limit 1))	UINT32	RO	0x6010:03, 2
1A01:04	SubIndex 004	4. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x05 (Limit 2))	UINT32	RO	0x6010:05, 2
1A01:05	SubIndex 005	5. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x07 (Error))	UINT32	RO	0x6010:07, 1
1A01:06	SubIndex 006	6. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1A01:07	SubIndex 007	7. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x0F (TxPDO State))	UINT32	RO	0x6010:0F, 1
1A01:08	SubIndex 008	8. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6010:10, 1
1A01:09	SubIndex 009	9. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x11 (Value))	UINT32	RO	0x6010:11, 16

Index 1A02 AI TxPDO-Map Compact Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
1A02:0	Al TxPDO-Map Compact Ch.1	PDO Mapping TxPDO 3	UINT8	RO	0x01 (1dez)
1A02:01	SubIndex 001	1. PDO Mapping entry (object 0x6010 (Al Inputs Ch.1), entry 0x11 (Value))	UINT32	RO	0x6010:11, 16

Index 1A03 AI TxPDO-Map Standard Ch.2

Index	Name	Bedeutung	Datentyp	Flags	Default
1A03:0	AI TxPDO-Map Standard Ch.2	PDO Mapping TxPDO 4	UINT8	RO	0x09 (9dez)
1A03:01	SubIndex 001	1. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x01 (Underrange))	UINT32	RO	0x6020:01, 1
1A03:02	SubIndex 002	2. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x02 (Overrange))	UINT32	RO	0x6020:02, 1
1A03:03	SubIndex 003	3. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x03 (Limit 1))	UINT32	RO	0x6020:03, 2
1A03:04	SubIndex 004	4. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x05 (Limit 2))	UINT32	RO	0x6020:05, 2
1A03:05	SubIndex 005	5. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x07 (Error))	UINT32	RO	0x6020:07, 1
1A03:06	SubIndex 006	6. PDO Mapping entry (7 bits align)	UINT32	RO	0x0000:00, 7
1A03:07	SubIndex 007	7. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x0F (TxPDO State))	UINT32	RO	0x6020:0F, 1
1A03:08	SubIndex 008	8. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x10 (TxPDO Toggle))	UINT32	RO	0x6020:10, 1
1A03:09	SubIndex 009	9. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x11 (Value))	UINT32	RO	0x6020:11, 16

68 Version: 1.3 EPP43x4-1002

Index 1A04 AI TxPDO-Map Compact Ch.2

Index	Name	Bedeutung	Datentyp	Flags	Default
	AI TxPDO-Map Compact Ch.2	PDO Mapping TxPDO 5	UINT8	RO	0x01 (1dez)
1A04:01	I .	1. PDO Mapping entry (object 0x6020 (Al Inputs Ch.2), entry 0x11 (Value))	UINT32	RO	0x6020:11, 16

Index 1A05 AO TxPDO-Map Inputs Ch.1

Index	Name	Bedeutung	Datentyp	Flags	Default
1A05:0	AO TxPDO-Map Inputs Ch.1	PDO Mapping TxPDO 6	UINT8	RO	0x04 (4dez)
1A05:01	SubIndex 001	1. PDO Mapping entry (object 0x6030 (AO Inputs Ch.1), entry 0x01 (Load Impedance too High))	UINT32	RO	0x6030:01, 1
1A05:02	SubIndex 002	2. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A05:03	SubIndex 003	3. PDO Mapping entry (object 0x6030 (AO Inputs Ch.1), entry 0x07 (Error))	UINT32	RO	0x6030:07, 1
1A05:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9

Index 1A06 AO TxPDO-Map Inputs Ch.2

Index	Name	Bedeutung	Datentyp	Flags	Default
1A06:0	AO TxPDO-Map Inputs Ch.2	PDO Mapping TxPDO 7	UINT8	RO	0x04 (4dez)
1A06:01	SubIndex 001	1. PDO Mapping entry (object 0x6040 (AO Inputs Ch.2), entry 0x01 (Load Impedance too High))	UINT32	RO	0x6040:01, 1
1A06:02	SubIndex 002	2. PDO Mapping entry (5 bits align)	UINT32	RO	0x0000:00, 5
1A06:03	SubIndex 003	3. PDO Mapping entry (object 0x6040 (AO Inputs Ch.2), entry 0x07 (Error))	UINT32	RO	0x6040:07, 1
1A06:04	SubIndex 004	4. PDO Mapping entry (9 bits align)	UINT32	RO	0x0000:00, 9

Index 1C00 Sync manager type

Index	Name	Bedeutung	Datentyp	Flags	Default
1C00:0	Sync manager type	Benutzung der Sync Manager	UINT8	RO	0x04 (4dez)
1C00:01	SubIndex 001	Sync-Manager Type Channel 1: Mailbox Write	UINT8	RO	0x01 (1dez)
1C00:02	SubIndex 002	Sync-Manager Type Channel 2: Mailbox Read	UINT8	RO	0x02 (2dez)
1C00:03	SubIndex 003	Sync-Manager Type Channel 3: Process Data Write (Outputs)	UINT8	RO	0x03 (3dez)
1C00:04	SubIndex 004	Sync-Manager Type Channel 4: Process Data Read (Inputs)	UINT8	RO	0x04 (4dez)

Index 1C12 RxPDO assign

Index	Name	Bedeutung	Datentyp	Flags	Default
1C12:0	RxPDO assign	PDO Assign Outputs	UINT8	RW	0x02 (2dez)
1C12:01	SubIndex 001	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1600 (5632dez)
1C12:02	SubIndex 002	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x1601 (5633dez)
1C12:03	SubIndex 003	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0dez)
1C12:04	SubIndex 004	zugeordnete RxPDO (enthält den Index des zugehörigen RxPDO Mapping Objekts)	UINT16	RW	0x0000 (0dez)

Index 1C13 TxPDO assign

Index	Name	Bedeutung	Datentyp	Flags	Default
1C13:0	TxPDO assign	PDO Assign Inputs	UINT8	RW	0x03 (3dez)
1C13:01	SubIndex 001	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A00 (6656dez)
1C13:02	SubIndex 002	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A01 (6657dez)
1C13:03	SubIndex 003	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x1A03 (6659dez)
1C13:04	SubIndex 004	zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0dez)
1C13:05	SubIndex 005	5. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0dez)
1C13:06	SubIndex 006	6. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0dez)
1C13:07	SubIndex 007	7. zugeordnete TxPDO (enthält den Index des zugehörigen TxPDO Mapping Objekts)	UINT16	RW	0x0000 (0dez)

Index 1C32 SM output parameter

Index	Name	Bedeutung	Datentyp	Flags	Default
1C32:0	SM output parameter	Synchronisierungsparameter der Outputs	UINT8	RO	0x20 (32dez)
1C32:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0001 (1dez)
		0: Free Run			
		1: Synchron with SM 2 Event			
		2: DC-Mode - Synchron with SYNC0 Event			
		3: DC-Mode - Synchron with SYNC1 Event			
1C32:02	Cycle time	Zykluszeit (in ns):	UINT32	RW	0x000F4240
		Free Run: Zykluszeit des lokalen Timers			(1000000dez)
		Synchron with SM 2 Event: Zykluszeit des Masters			
		DC-Mode: SYNC0/SYNC1 Cycle Time			
1C32:03	Shift time	Zeit zwischen SYNC0 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000384 (900dez)
1C32:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x4003
		Bit 0 = 1: Free Run wird unterstützt			(16387dez)
		Bit 1 = 1: Synchron with SM 2 Event wird unterstützt			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 10: Output Shift mit SYNC1 Event (nur DC-Mode)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 1C32:08)			
1C32:05	Minimum cycle time	Minimale Zykluszeit (in ns)	UINT32	RO	0x0003D090 (250000dez)
1C32:06	Calc and copy time	Minimale Zeit zwischen SYNC0 und SYNC1 Event (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0dez)
1C32:07	Minimum delay time		UINT32	RO	0x00000384 (900dez)
C32:08	Get Cycle Time	0: Messung der lokalen Zykluszeit wird gestoppt	UINT16	RW	0x0000 (0dez)
		1: Messung der lokalen Zykluszeit wird gestartet			
		Die Entries 1C32:03, 1C32:05, 1C32:06, 1C32:09, 1C33:03, 1C33:06, 1C33:09 werden mit den maximal gemessenen Werten aktualisiert. Wenn erneut gemessen wird, werden die Messwerte zurückgesetzt			
1C32:09	Maximum delay time	Zeit zwischen SYNC1 Event und Ausgabe der Outputs (in ns, nur DC-Mode)	UINT32	RO	0x00000384 (900dez)
1C32:0B	SM event missed counter	Anzahl der ausgefallenen SM-Events im OPERATIONAL (nur im DC Mode)	UINT16	RO	0x0000 (0dez)

Index	Name	Bedeutung	Datentyp	Flags	Default
1C32:0C	Cycle exceeded counter	Anzahl der Zykluszeitverletzungen im OPERATIONAL (Zyklus wurde nicht rechtzeitig fertig bzw. der nächste Zyklus kam zu früh)	UINT16	RO	0x0000 (0dez)
1C32:0D	Shift too short counter	Anzahl der zu kurzen Abstände zwischen SYNC0 und SYNC1 Event (nur im DC Mode)	UINT16	RO	0x0000 (0dez)
1C32:14	Frame repeat time		UINT32	RW	0x00000000 (0dez)
1C32:20	Sync error	Im letzten Zyklus war die Synchronisierung nicht korrekt (Ausgänge wurden zu spät ausgegeben, nur im DC Mode)	BOOLEAN	RO	0x00 (0dez)

Index 1C33 SM input parameter

Index	Name	Bedeutung	Datentyp	Flags	Default
1C33:0	SM input parameter	Synchronisierungsparameter der Inputs	UINT8	RO	0x20 (32dez)
1C33:01	Sync mode	Aktuelle Synchronisierungsbetriebsart:	UINT16	RW	0x0022 (34dez)
		0: Free Run			
		1: Synchron with SM 3 Event (keine Outputs vorhanden)			
		2: DC - Synchron with SYNC0 Event			
		3: DC - Synchron with SYNC1 Event			
		34: Synchron with SM 2 Event (Outputs vorhanden)			
1C33:02	Cycle time	wie 1C32:02	UINT32	RW	0x000F4240 (1000000dez)
1C33:03	Shift time	Zeit zwischen SYNC0-Event und Einlesen der Inputs (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0dez)
1C33:04	Sync modes supported	Unterstützte Synchronisierungsbetriebsarten:	UINT16	RO	0x4003
		Bit 0: Free Run wird unterstützt			(16387dez)
		Bit 1: Synchron with SM 2 Event wird unterstützt (Outputs vorhanden)			
		Bit 1: Synchron with SM 3 Event wird unterstützt (keine Outputs vorhanden)			
		Bit 2-3 = 01: DC-Mode wird unterstützt			
		Bit 4-5 = 01: Input Shift durch lokales Ereignis (Outputs vorhanden)			
		Bit 4-5 = 10: Input Shift mit SYNC1 Event (keine Outputs vorhanden)			
		Bit 14 = 1: dynamische Zeiten (Messen durch Beschreiben von 1C32:08 oder 1C33:08)			
1C33:05	Minimum cycle time	wie 1C32:05	UINT32	RO	0x0003D090 (250000dez)
1C33:06	Calc and copy time	Zeit zwischen Einlesen der Eingänge und Verfügbarkeit der Eingänge für den Master (in ns, nur DC-Mode)	UINT32	RO	0x00000000 (0dez)
1C33:07	Minimum delay time		UINT32	RO	0x00000384 (900dez)
1C33:08	Get Cycle Time	wie 1C32:08	UINT16	RW	0x0000 (0dez)
1C33:09	Maximum delay time	Zeit zwischen SYNC1-Event und Einlesen der Eingänge (in ns, nur DC-Mode)	UINT32	RO	0x00000384 (900dez)
1C33:0B	SM event missed counter	wie 1C32:11	UINT16	RO	0x0000 (0dez)
1C33:0C	Cycle exceeded counter	wie 1C32:12	UINT16	RO	0x0000 (0dez)
1C33:0D	Shift too short counter	wie 1C32:13	UINT16	RO	0x0000 (0dez)
1C33:14	Frame repeat time		UINT32	RW	0x00000000 (0dez)
1C33:20	Sync error	wie 1C32:32	BOOLEAN	RO	0x00 (0dez)

6.2.3 Profilspezifische Objekte

Index 6000 DI Inputs

Index	Name	Bedeutung	Data type	Flags	Default
6000:0	DI Inputs		UINT8	RO	0x10 (16 _{dez})
6000:01	Input 1		BOOLEAN	RO	0x00 (0 _{dez})
6000:02	Input 2		BOOLEAN	RO	0x00 (0 _{dez})
6000:0F	TxPDO State		BOOLEAN	RO	0x00 (0 _{dez})
6000:10	TxPDO Toggle		BOOLEAN	RO	0x00 (0 _{dez})

Index 6010 Al Inputs Ch.1

Index	Name	Bedeutung	Data type	Flags	Default
6010:0	Al Inputs Ch.1		UINT8	RO	0x11 (17 _{dez})
6010:01	Underrange	Underrange event active	BOOLEAN	RO	0x00 (0 _{dez})
6010:02	Overrange	Overrange event active	BOOLEAN	RO	0x00 (0 _{dez})
6010:03	Limit 1	Bit0: Value greater than Limit1 Bit1: Value smaller than Limit1	BIT2	RO	0x00 (0 _{dez})
6010:05	Limit 2	Bit0: Value greater than Limit2 Bit1: Value smaller than Limit2	BIT2	RO	0x00 (0 _{dez})
6010:07	Error	Bit set when Over- or Underrange	BOOLEAN	RO	0x00 (0 _{dez})
6010:0F	TxPDO State		BOOLEAN	RO	0x00 (0 _{dez})
6010:10	TxPDO Toggle		BOOLEAN	RO	0x00 (0 _{dez})
6010:11	Value		INT16	RO	0x0000 (0 _{dez})

Index 6020 Al Inputs Ch.2

Index	Name	Bedeutung	Data type	Flags	Default
6020:0	Al Inputs Ch.2		UINT8	RO	0x11 (17 _{dez})
6020:01	Underrange	Underrange event active	BOOLEAN	RO	0x00 (0 _{dez})
6020:02	Overrange	Overrange event active	BOOLEAN	RO	0x00 (0 _{dez})
6020:03	Limit 1	Bit0: Value greater than Limit1 Bit1: Value smaller than Limit1	BIT2	RO	0x00 (0 _{dez})
6020:05	Limit 2	Bit0: Value greater than Limit2 Bit1: Value smaller than Limit2	BIT2	RO	0x00 (0 _{dez})
6020:07	Error	Bit set when Over- or Underrange	BOOLEAN	RO	0x00 (0 _{dez})
6020:0F	TxPDO State		BOOLEAN	RO	0x00 (0 _{dez})
6020:10	TxPDO Toggle		BOOLEAN	RO	0x00 (0 _{dez})
6020:11	Value		INT16	RO	0x0000 (0 _{dez})

Index 6030 AO Inputs Ch.1

Index	Name	Bedeutung	Data type	Flags	Default
6030:0	AO Inputs Ch.1		UINT8	RO	0x07 (7 _{dez})
6030:01	Load Impedance too Low		BOOLEAN	RO	0x00 (0 _{dez})
	(EPP4304-1002)				
	Load Impedance too High				
	(EPP4314-1002)				
6030:07	Error		BOOLEAN	RO	0x00 (0 _{dez})

72 Version: 1.3 EPP43x4-1002

Index 6040 AO Inputs Ch.2

Index	Name	Bedeutung	Data type	Flags	Default
6040:0	AO Inputs Ch.2		UINT8	RO	0x07 (7 _{dez})
6040:01	Load Impedance too Low (EPP4304-1002)		BOOLEAN	RO	0x00 (0 _{dez})
	Load Impedance too High (EPP4314-1002)				
6040:07	Error		BOOLEAN	RO	0x00 (0 _{dez})

Index 7030 AO Outputs Ch.1

Index	Name	Bedeutung	Data type	Flags	Default
7030:0	AO Outputs Ch.1		UINT8	RO	0x01 (1 _{dez})
7030:01	Analog output		INT16	RO	0x0000 (0 _{dez})

Index 7040 AO Outputs Ch.2

Index	Name	Bedeutung	Data type	Flags	Default
7040:0	AO Outputs Ch.2		UINT8	RO	0x01 (1 _{dez})
7040:01	Analog output		INT16	RO	0x0000 (0 _{dez})

Index 801F AI Vendor data Ch.1

Index	Name	Bedeutung	Data type	Flags	Default
801F:0	Al Vendor data Ch.1		UINT8	RO	0x04 (4 _{dez})
801F:03	Calibration offset voltage		INT16	RW	0x0000 (0 _{dez})
	(EPP4304-1002)				
	Calibration offset current				
	(EPP4314-1002)				
801F:04	Calibration gain voltage		INT16	RW	0x0000 (0 _{dez})
	(EPP4304-1002)				
	Calibration gain current				
	(EPP4314-1002)				

Index 802F AI Vendor data Ch.2

Index	Name	Bedeutung	Data type	Flags	Default
802F:0	Al Vendor data Ch.2		UINT8	RO	0x04 (4 _{dez})
802F:03	Calibration offset voltage		INT16	RW	0x0000 (0 _{dez})
	(EPP4304-1002)				
	Calibration offset current				
	(EPP4314-1002)				
802F:04	Calibration gain voltage		INT16	RW	0x0000 (0 _{dez})
	(EPP4304-1002)				
	Calibration gain current				
	(EPP4314-1002)				

Index 803F AO Vendor data Ch.1 (EPP4304-1002)

Index	Name	Bedeutung	Data type	Flags	Default
803F:0	AO Vendor data Ch.1		UINT8	RO	0x0A (10 _{dez})
803F:01	Calibration offset voltage		INT16	RW	0x0000 (0 _{dez})
803F:02	Calibration gain voltage		INT16	RW	0x4000 (16384 _{dez})
803F:03	Calibration offset diag		INT16	RW	0x0000 (0 _{dez})
803F:04	Calibration gain diag		INT16	RW	0x0000 (0 _{dez})
803F:07	Error detection threshold		INT16	RW	0x0000 (0 _{dez})

Index 803F AO Vendor data Ch.1 (EPP4314-1002)

Index	Name	Bedeutung	Data type	Flags	Default
803F:0	AO Vendor data Ch.1		UINT8	RO	0x0A (10 _{dez})
803F:03	Calibration offset current		INT16	RW	0x0000 (0 _{dez})
803F:04	Calibration gain current		INT16	RW	0x0000 (0 _{dez})
803F:07	Calibration offset current negative		INT16	RW	0x0000 (0 _{dez})
803F:08	Calibration gain current negative		INT16	RW	0x0000 (0 _{dez})
803F:09	Amplifier Saturation High Value		INT16	RW	0x0000 (0 _{dez})
803F:0A	Amplifier Saturation Low Value		INT16	RW	0x0000 (0 _{dez})

Index 804F AO Vendor data Ch.2 (EPP4304-1002)

Index	Name	Bedeutung	Data type	Flags	Default
804F:0	AO Vendor data Ch.2		UINT8	RO	0x0A (10 _{dez})
804F:01	Calibration offset voltage		INT16	RW	0x0000 (0 _{dez})
804F:02	Calibration gain voltage		INT16	RW	0x4000 (16384 _{dez})
804F:03	Calibration offset diag		INT16	RW	0x0000 (0 _{dez})
804F:04	Calibration gain diag		INT16	RW	0x0000 (0 _{dez})
804F:07	Error detection threshold		INT16	RW	0x0000 (0 _{dez})

Index 804F AO Vendor data Ch.2 (EPP4314-1002)

Index	Name	Bedeutung	Data type	Flags	Default
804F:0	AO Vendor data Ch.2		UINT8	RO	0x0A (10 _{dez})
804F:03	Calibration offset current		INT16	RW	0x0000 (0 _{dez})
804F:04	Calibration gain current		INT16	RW	0x0000 (0 _{dez})
804F:07	Calibration offset current negative		INT16	RW	0x0000 (0 _{dez})
804F:08	Calibration gain current negative		INT16	RW	0x0000 (0 _{dez})
804F:09	Amplifier Saturation High Value		INT16	RW	0x0000 (0 _{dez})
804F:0A	Amplifier Saturation Low Value		INT16	RW	0x0000 (0 _{dez})

Index A010 Al Diag data Ch.1

Index	Name	Bedeutung	Data type	Flags	Default
A010:0	Al Diag data Ch.1		UINT8	RO	0x01 (1 _{dez})
A010:01	ADC raw value		INT16	RO	0x0000 (0 _{dez})

Index A020 Al Diag data Ch.2

Index	Name	Bedeutung	Data type	Flags	Default
A020:0	Al Diag data Ch.2		UINT8	RO	0x01 (1 _{dez})
A020:01	ADC raw value		INT16	RO	0x0000 (0 _{dez})

Index A030 AO Diag data Ch.1

Index	Name	Bedeutung	Data type	Flags	Default
A030:0	AO Diag data Ch.1		UINT8	RO	0x01 (1 _{dez})
A030:01	DAC raw value		UINT16	RO	0x0000 (0 _{dez})

Index A040 AO Diag data Ch.2

Index	Name	Bedeutung	Data type	Flags	Default
A040:0	AO Diag data Ch.2		UINT8	RO	0x01 (1 _{dez})
A040:01	DAC raw value		UINT16	RO	0x0000 (0 _{dez})

Index F000 Modular Device Profile

Index	Name	Bedeutung	Datentyp	Flags	Default
F000:0	Modular Device Profile	Allgemeine Informationen des Modular Device Profiles	UINT8	RO	0x02 (2 _{dez})
F000:01	Index distance	Indexabstand der Objekte der einzelnen Kanäle	UINT16	RO	0x0010 (16 _{dez})
	Maximum number of modules	Anzahl der Kanäle	UINT16	RO	0x0005 (5 _{dez})

Index F008 Code word

Index	Name	Bedeutung	Data type	Flags	Default
F008:0	Code word		UINT32	RW	0x00000000 (0 _{dez})

Index F010 Module Profile List

Index	Name	Bedeutung	Data type	Flags	Default
F010:0	Module Profile List		UINT8	RO	0x05 (5 _{dez})
F010:01	SubIndex 001		UINT32	RO	0x0000064 (100 _{dez})
F010:02	SubIndex 002		UINT32	RO	0x0000012C (300 _{dez})
F010:03	SubIndex 003		UINT32	RO	0x0000012C (300 _{dez})
F010:04	SubIndex 004		UINT32	RO	0x00000190 (400 _{dez})
F010:05	SubIndex 005		UINT32	RO	0x00000190 (400 _{dez})

Index FB00 Command

Index	Name	Bedeutung	Data type	Flags	Default
FB00:0	Command		UINT8	RO	0x03 (3 _{dez})
FB00:01	Request		OCTET- STRING[2]		{0}
FB00:02	Status		UINT8	RO	0x00 (0 _{dez})
FB00:03	Response		OCTET- STRING[6]		{0}

7 Anhang

7.1 Allgemeine Betriebsbedingungen

Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Schutzarten werden mit den Buchstaben "IP" und zwei Kennziffern bezeichnet: **IPxy**

- Kennziffer x: Staubschutz und Berührungsschutz
- · Kennziffer y: Wasserschutz

x	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø 50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø 12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø 2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø 1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

у	Bedeutung
0	Nicht geschützt
1	Geschützt gegen Tropfwasser
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben
5	Geschützt gegen Strahlwasser.
6	Geschützt gegen starkes Strahlwasser.
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist

Chemische Beständigkeit

Die Beständigkeit bezieht sich auf das Gehäuse der IP67-Module und die verwendeten Metallteile. In der nachfolgenden Tabelle finden Sie einige typische Beständigkeiten.

Art	Beständigkeit
Wasserdampf	bei Temperaturen >100°C nicht beständig
Natriumlauge (ph-Wert > 12)	bei Raumtemperatur beständig > 40°C unbeständig
Essigsäure	unbeständig
Argon (technisch rein)	beständig

Legende

- · beständig: Lebensdauer mehrere Monate
- bedingt beständig: Lebensdauer mehrere Wochen
- · unbeständig: Lebensdauer mehrere Stunden bzw. baldige Zersetzung

7.2 Zubehör

Befestigung

Bestellangabe	Beschreibung	Link
ZS5300-0011	Montageschiene	<u>Website</u>

Leitungen

Eine vollständige Übersicht von vorkonfektionierten Leitungen für IO-Komponenten finden sie hier.

Bestellangabe	Beschreibung	Link
ZB8513-0002	EMV-Schirmklammer für M12-Steckverbinder	<u>Datenblatt</u>
ZK2000-5152-1xxx	Sensorleitung M12, 5-polig, geschirmt	Website
ZK700x-xxxx-xxxx	EtherCAT P-Leitung M8	<u>Website</u>

Beschriftungsmaterial, Schutzkappen

Bestellangabe	Beschreibung
ZS5000-0010	Schutzkappe für M8-Buchsen, IP67 (50 Stück)
ZS5000-0020	Schutzkappe für M12-Buchsen, IP67 (50 Stück)
ZS5100-0000	Beschriftungsschilder nicht bedruckt, 4 Streifen à 10 Stück
ZS5000-xxxx	Beschriftungsschilder bedruckt, auf Anfrage

Werkzeug

Bestellangabe	Beschreibung
ZB8801-0000	Drehmoment-Schraubwerkzeug für Stecker, 0,41,0 Nm
ZB8801-0001	Wechselklinge für M8 / SW9 für ZB8801-0000
ZB8801-0002	Wechselklinge für M12 / SW13 für ZB8801-0000
ZB8801-0003	Wechselklinge für M12 feldkonfektionierbar / SW18 für ZB8801-0000

Weiteres Zubehör

Weiteres Zubehör finden Sie in der Preisliste für Feldbuskomponenten von Beckhoff und im Internet auf https://www.beckhoff.de.

7.3 Weiterführende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen

HINWEIS

Weiterführende Dokumentation zu I/O-Komponenten mit analogen Ein- und Ausgängen

Beachten Sie auch die weiterführende Dokumentation

I/O-Analog-Handbuch

Hinweise zu I/O-Komponenten mit analogen Ein- und Ausgängen,

die Ihnen im Beckhoff <u>Information-System</u> und auf der Beckhoff-Homepage www.beckhoff.com auf den jeweiligen Produktseiten zum <u>Download</u> zur Verfügung steht. Sie erläutert Grundlagen der Sensortechnik und enthält Hinweise zu analogen Messwerten.

7.4 Versionsidentifikation von EtherCAT-Geräten

7.4.1 Allgemeine Hinweise zur Kennzeichnung

Bezeichnung

Ein Beckhoff EtherCAT-Gerät hat eine 14-stellige technische Bezeichnung, die sich zusammen setzt aus

- Familienschlüssel
- Typ
- Version
- Revision

Beispiel	Familie	Тур	Version	Revision
EL3314-0000-0016		3314	0000	0016
	12 mm, nicht steckbare Anschlussebene	4-kanalige Thermoelementklemme	Grundtyp	
ES3602-0010-0017	ES-Klemme	3602	0010	0017
	12 mm, steckbare Anschlussebene	2-kanalige Spannungsmessung	hochpräzise Version	
CU2008-0000-0000	CU-Gerät	2008	0000	0000
		8 Port FastEthernet Switch	Grundtyp	

Hinweise

- die oben genannten Elemente ergeben die **technische Bezeichnung**, im Folgenden wird das Beispiel EL3314-0000-0016 verwendet.
- Davon ist EL3314-0000 die Bestellbezeichnung, umgangssprachlich bei "-0000" dann oft nur EL3314 genannt. "-0016" ist die EtherCAT-Revision.
- Die Bestellbezeichnung setzt sich zusammen aus
 - Familienschlüssel (EL, EP, CU, ES, KL, CX, ...)
 - Typ (3314)
 - Version (-0000)
- Die Revision -0016 gibt den technischen Fortschritt wie z. B. Feature-Erweiterung in Bezug auf die EtherCAT Kommunikation wieder und wird von Beckhoff verwaltet.
 Prinzipiell kann ein Gerät mit höherer Revision ein Gerät mit niedrigerer Revision ersetzen, wenn nicht anders z. B. in der Dokumentation angegeben.
 Jeder Revision zugehörig und gleichbedeutend ist üblicherweise eine Beschreibung (ESI, EtherCAT Slave Information) in Form einer XML-Datei, die zum Download auf der Beckhoff Webseite bereitsteht.
 Die Revision wird seit 2014/01 außen auf den IP20-Klemmen aufgebracht, siehe Abb. "EL5021 EL-
- Typ, Version und Revision werden als dezimale Zahlen gelesen, auch wenn sie technisch hexadezimal gespeichert werden.

Klemme, Standard IP20-IO-Gerät mit Chargennummer und Revisionskennzeichnung (seit 2014/01)".

7.4.2 Versionsidentifikation von IP67-Modulen

Als Seriennummer/Date Code bezeichnet Beckhoff im IO-Bereich im Allgemeinen die 8-stellige Nummer, die auf dem Gerät aufgedruckt oder auf einem Aufkleber angebracht ist. Diese Seriennummer gibt den Bauzustand im Auslieferungszustand an und kennzeichnet somit eine ganze Produktions-Charge, unterscheidet aber nicht die Module einer Charge.

Aufbau der Seriennummer: KK YY FF HH

KK - Produktionswoche (Kalenderwoche)

YY - Produktionsjahr FF - Firmware-Stand HH - Hardware-Stand Beispiel mit Seriennummer 12 06 3A 02:

12 - Produktionswoche 12 06 - Produktionsjahr 2006 3A - Firmware-Stand 3A 02 - Hardware-Stand 02

Ausnahmen können im **IP67-Bereich** auftreten, dort kann folgende Syntax verwendet werden (siehe jeweilige Gerätedokumentation):

Syntax: D ww yy x y z u

D - Vorsatzbezeichnung ww - Kalenderwoche

yy - Jahr

x - Firmware-Stand der Busplatine

y - Hardware-Stand der Busplatine

z - Firmware-Stand der E/A-Platine

u - Hardware-Stand der E/A-Platine

Beispiel: D.22081501 Kalenderwoche 22 des Jahres 2008 Firmware-Stand Busplatine: 1 Hardware Stand Busplatine: 5 Firmware-Stand E/A-Platine: 0 (keine Firmware für diese Platine notwendig) Hardware-Stand E/A-Platine: 1

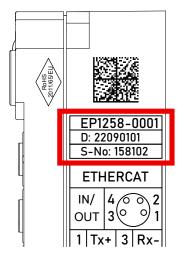


Abb. 5: EP1258-0001 IP67 EtherCAT Box mit Chargennummer/ DateCode 22090101 und eindeutiger Seriennummer 158102

7.4.3 Beckhoff Identification Code (BIC)

Der Beckhoff Identification Code (BIC) wird vermehrt auf Beckhoff-Produkten zur eindeutigen Identitätsbestimmung des Produkts aufgebracht. Der BIC ist als Data Matrix Code (DMC, Code-Schema ECC200) dargestellt, der Inhalt orientiert sich am ANSI-Standard MH10.8.2-2016.

Abb. 6: BIC als Data Matrix Code (DMC, Code-Schema ECC200)

Die Einführung des BIC erfolgt schrittweise über alle Produktgruppen hinweg. Er ist je nach Produkt an folgenden Stellen zu finden:

- · auf der Verpackungseinheit
- · direkt auf dem Produkt (bei ausreichendem Platz)
- · auf Verpackungseinheit und Produkt

Der BIC ist maschinenlesbar und enthält Informationen, die auch kundenseitig für Handling und Produktverwaltung genutzt werden können.

Jede Information ist anhand des so genannten Datenidentifikators (ANSI MH10.8.2-2016) eindeutig identifizierbar. Dem Datenidentifikator folgt eine Zeichenkette. Beide zusammen haben eine maximale Länge gemäß nachstehender Tabelle. Sind die Informationen kürzer, werden sie um Leerzeichen ergänzt.

Folgende Informationen sind möglich, die Positionen 1 bis 4 sind immer vorhanden, die weiteren je nach Produktfamilienbedarf:

Pos- Nr.	Art der Information	Erklärung	Dateniden- tifikator	Anzahl Stellen inkl. Datenidentifikator	Beispiel
1	Beckhoff- Artikelnummer	Beckhoff - Artikelnummer	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Eindeutige Seriennummer, Hinweis s. u.	SBTN	12	SBTNk4p562d7
3	Artikelbezeichnung	Beckhoff Artikelbezeichnung, z. B. EL1008	1K	32	1KEL1809
4	Menge	Menge in Verpackungseinheit, z. B. 1, 10	Q	6	Q1
5	Chargennummer	Optional: Produktionsjahr und -woche	2P	14	2P401503180016
6	ID-/Seriennummer	Optional: vorheriges Seriennummer-System, z.B. bei Safety-Produkten oder kalibrierten Klemmen	51S	12	51S678294
7	Variante	Optional: Produktvarianten-Nummer auf Basis von Standardprodukten	30P	32	30PF971, 2*K183

Weitere Informationsarten und Datenidentifikatoren werden von Beckhoff verwendet und dienen internen Prozessen.

Aufbau des BIC

Beispiel einer zusammengesetzten Information aus den Positionen 1 bis 4 und dem o.a. Beispielwert in Position 6. Die Datenidentifikatoren sind in Fettschrift hervorgehoben:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Entsprechend als DMC:

Abb. 7: Beispiel-DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

Ein wichtiger Bestandteil des BICs ist die Beckhoff Traceability Number (BTN, Pos.-Nr. 2). Die BTN ist eine eindeutige, aus acht Zeichen bestehende Seriennummer, die langfristig alle anderen Seriennummern-Systeme bei Beckhoff ersetzen wird (z. B. Chargenbezeichungen auf IO-Komponenten, bisheriger Seriennummernkreis für Safety-Produkte, etc.). Die BTN wird ebenfalls schrittweise eingeführt, somit kann es vorkommen, dass die BTN noch nicht im BIC codiert ist.

HINWEIS

Diese Information wurde sorgfältig erstellt. Das beschriebene Verfahren wird jedoch ständig weiterentwickelt. Wir behalten uns das Recht vor, Verfahren und Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Information können keine Ansprüche auf Änderung geltend gemacht werden.

7.4.4 Elektronischer Zugriff auf den BIC (eBIC)

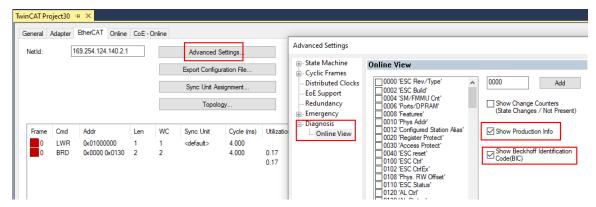
Elektronischer BIC (eBIC)

Der Beckhoff Identification Code (BIC) wird auf Beckhoff Produkten außen sichtbar aufgebracht. Er soll, wo möglich, auch elektronisch auslesbar sein.

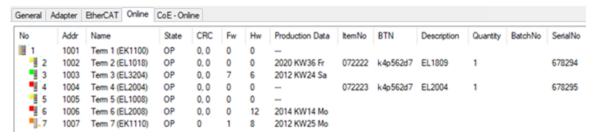
Für die elektronische Auslesung ist die Schnittstelle entscheidend, über die das Produkt elektronisch angesprochen werden kann.

K-Bus Geräte (IP20, IP67)

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.


EtherCAT-Geräte (IP20, IP67)

Alle Beckhoff EtherCAT-Geräte haben ein sogenanntes ESI-EEPROM, dass die EtherCAT-Identität mit der Revision beinhaltet. Darin wird die EtherCAT-Slave-Information gespeichert, umgangssprachlich auch als ESI/XML-Konfigurationsdatei für den EtherCAT-Master bekannt. Zu den Zusammenhängen siehe die entsprechenden Kapitel im EtherCAT-Systemhandbuch (Link).


In das ESI-EEPROM wird durch Beckhoff auch die eBIC gespeichert. Die Einführung des eBIC in die Beckhoff IO Produktion (Klemmen, Box-Module) erfolgt ab 2020; Stand 2023 ist die Umsetzung weitgehend abgeschlossen.

Anwenderseitig ist die eBIC (wenn vorhanden) wie folgt elektronisch zugänglich:

- Bei allen EtherCAT-Geräten kann der EtherCAT Master (TwinCAT) den eBIC aus dem ESI-EEPROM auslesen
 - Ab TwinCAT 3.1 build 4024.11 kann der eBIC im Online-View angezeigt werden.
 - Dazu unter EtherCAT → Erweiterte Einstellungen → Diagnose das Kontrollkästchen "Show Beckhoff Identification Code (BIC)" aktivieren:

Die BTN und Inhalte daraus werden dann angezeigt:

- Hinweis: ebenso können wie in der Abbildung zu sehen die seit 2012 programmierten Produktionsdaten HW-Stand, FW-Stand und Produktionsdatum per "Show Production Info" angezeigt werden.
- Zugriff aus der PLC: Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcReadBIC und FB_EcReadBTN zum Einlesen in die PLC.

- Bei EtherCAT-Geräten mit CoE-Verzeichnis kann zusätzlich das Objekt 0x10E2:01 zur Anzeige der eigenen eBIC vorhanden sein, auch hierauf kann die PLC einfach zugreifen:
 - Das Gerät muss zum Zugriff in PREOP/SAFEOP/OP sein:

Inc	dex	Name	Rags	Value			
	1000 Device type		RO	0x015E1389 (22942601)			
	1008 Device name 1009 Hardware version		RO	ELM3704-0000			
			RO	00			
	100A	Software version	RO	01			
	100B	Bootloader version	RO	J0.1.27.0			
•	1011:0	Restore default parameters	RO	>1<			
	1018:0	Identity	RO	>4<			
8	10E2:0	Manufacturer-specific Identification C	RO	>1<			
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016	
	10F0:0	Backup parameter handling	RO	>1<			
+	10F3:0	Diagnosis History	RO	>21 <			
	10F8	Actual Time Stamp	RO	0x170bfb277e			

- Das Objekt 0x10E2 wird in Bestandsprodukten vorrangig im Zuge einer notwendigen Firmware-Überarbeitung eingeführt.
- Ab TwinCAT 3.1. build 4024.24 stehen in der Tc2_EtherCAT Library ab v3.3.19.0 die Funktionen FB_EcCoEReadBIC und FB_EcCoEReadBTN zum Einlesen in die PLC zur Verfügung
- Zur Verarbeitung der BIC/BTN Daten in der PLC stehen noch als Hilfsfunktionen ab TwinCAT 3.1 build 4024.24 in der *Tc2 Utilities* zur Verfügung
 - F_SplitBIC: Die Funktion zerlegt den Beckhoff Identification Code (BIC) sBICValue anhand von bekannten Kennungen in seine Bestandteile und liefert die erkannten Teil-Strings in einer Struktur ST SplittedBIC als Rückgabewert
 - BIC TO BTN: Die Funktion extrahiert vom BIC die BTN und liefert diese als Rückgabewert
- Hinweis: bei elektronischer Weiterverarbeitung ist die BTN als String(8) zu behandeln, der Identifier "SBTN" ist nicht Teil der BTN.
- Technischer Hintergrund
 Die neue BIC Information wird als Category zusätzlich bei der Geräteproduktion ins ESI-EEPROM
 geschrieben. Die Struktur des ESI-Inhalts ist durch ETG Spezifikationen weitgehend vorgegeben,
 demzufolge wird der zusätzliche herstellerspezifische Inhalt mithilfe einer Category nach ETG.2010
 abgelegt. Durch die ID 03 ist für alle EtherCAT Master vorgegeben, dass sie im Updatefall diese Daten
 nicht überschreiben bzw. nach einem ESI-Update die Daten wiederherstellen sollen.
 Die Struktur folgt dem Inhalt des BIC, siehe dort. Damit ergibt sich ein Speicherbedarf von ca.
 50..200 Byte im EEPROM.
- Sonderfälle
 - Sind mehrere ESC in einem Gerät verbaut die hierarchisch angeordnet sind, trägt nur der TopLevel ESC die eBIC Information.
 - Sind mehrere ESC in einem Gerät verbaut die nicht hierarchisch angeordnet sind, tragen alle ESC die eBIC Information gleich.
 - Besteht das Gerät aus mehreren Sub-Geräten mit eigener Identität, aber nur das TopLevel-Gerät ist über EtherCAT zugänglich, steht im CoE-Objekt-Verzeichnis 0x10E2:01 die eBIC des TopLevel-Geräts, in 0x10E2:nn folgen die eBIC der Sub-Geräte.

PROFIBUS-, PROFINET-, DeviceNet-Geräte usw.

Für diese Geräte ist derzeit keine elektronische Speicherung und Auslesung geplant.

7.5 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Niederlassungen und Vertretungen

Wenden Sie sich bitte an Ihre Beckhoff Niederlassung oder Ihre Vertretung für den lokalen Support und Service zu Beckhoff Produkten!

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten: www.beckhoff.com

Dort finden Sie auch weitere Dokumentationen zu Beckhoff Komponenten.

Support

Der Beckhoff Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49 5246 963 157

E-Mail: support@beckhoff.com
Internet: www.beckhoff.com/support

Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- · Vor-Ort-Service
- Reparaturservice
- · Ersatzteilservice
- Hotline-Service

Hotline: +49 5246 963 460

E-Mail: service@beckhoff.com

Internet: www.beckhoff.com/service

Unternehmenszentrale Deutschland

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49 5246 963 0

E-Mail: info@beckhoff.com
Internet: www.beckhoff.com

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Deutschland Telefon: +49 5246 9630 info@beckhoff.com www.beckhoff.com