BECKHOFF New Automation Technology

Documentation | EN

EP23xx

EtherCAT box modules with digital inputs and outputs

Table of contents

1	Fore	word		5
	1.1	Notes or	n the documentation	5
	1.2	Safety in	nstructions	6
	1.3	Docume	ntation issue status	7
2	Ethe	rCAT Box	c - Introduction	8
3	Prod	uct overv	/iew	10
	3.1	EP2308,	, EP2318, EP2328	11
		3.1.1	EP2308, EP2318, EP2328 - Introduction	11
		3.1.2	EP2308, EP2318 - Technical Data	13
		3.1.3	EP2328 – Technical data	15
		3.1.4	EP2308, EP2318, EP2328 - Scope of supply	17
		3.1.5	EP2308, EP2318, EP2328 - Process image	18
	3.2	EP2316-	-0003, EP2316-0008	19
		3.2.1	EP2316-0003 - Introduction	19
		3.2.2	EP2316-0008 - Introduction	20
		3.2.3	EP2316-000x - Technical Data	21
		3.2.4	EP2316-000x - Scope of supply	22
		3.2.5	EP2316-0008 - Status LEDs	23
		3.2.6	EP2316-000x - Process image	24
	3.3	EP2338-	-000x, EP2338-100x	27
		3.3.1	EP2338-x00x - Introduction	27
		3.3.2	EP2338-x00x - Technical data	29
		3.3.3	EP2338-x00x - Scope of supply	31
		3.3.4	EP2338-x00x - Process image	31
	3.4	EP2339-	-0003	33
		3.4.1	EP2339-0003 - Introduction	33
		3.4.2	EP2339-0003 - Technical data	34
		3.4.3	EP2339-0003 - Scope of supply	36
		3.4.4	EP2339-0003 - Process image	37
	3.5	EP2339-	-002x, EP2349-002x	39
		3.5.1	EP23x9-0021 - Introduction	
		3.5.2	EP23x9-0022 - Introduction	40
		3.5.3	EP23x9-002x - Technical data	41
		3.5.4	EP23x9-002x - Scope of supply	43
		3.5.5	EP23x9-002x - Process image	
	3.6	EP2339-	-0042	
		3.6.1	EP2339-0042 - Introduction	
		3.6.2	EP2339-0042 - Technical data	
		3.6.3	EP2339-0042 - Scope of supply	
		3.6.4	EP2339-0042 - Process image	
	3.7		-0121	
		3.7.1	EP2339-0121 - Introduction	
		3.7.2	EP2339-0121 - Technical data	
		3.7.3	EP2339-0121 - Scope of supply	53

		3.7.4	EP2339-0121 - Process image	54		
4	Mour	nting and	connection	55		
	4.1	1 Mounting				
		4.1.1	Dimensions EPxxxx-xx0x and EPxxxx-xx1x	55		
		4.1.2	Dimensions EPxxxx-xx2x	56		
		4.1.3	EPxxxx-xx42 dimensions	57		
		4.1.4	Fixing	58		
		4.1.5	Functional earth (FE)	59		
	4.2	Connect	ions	60		
		4.2.1	Tightening torques for plug connectors	60		
		4.2.2	EtherCAT	61		
		4.2.3	Supply voltages	63		
		4.2.4	Digital inputs and outputs	67		
	4.3	UL Requ	lirements	78		
	4.4	ATEX no	otes	79		
		4.4.1	ATEX - Special conditions	79		
		4.4.2	BG2000 - EtherCAT Box protection enclosures	80		
		4.4.3	ATEX Documentation	81		
	4.5	Disposal		82		
5	Com	missionir	ng and configuration	83		
	5.1		ng into a TwinCAT project			
	5.2	-	g inductive loads			
	5.3		r of the outputs in case of a fault (EP2316 only)			
		5.3.1	Behavior in case of network failure			
		5.3.2	Behavior in case of short circuit	87		
		5.3.3	Behavior in case of lack of supply voltage	88		
	5.4	Restore	the delivery state	89		
	5.5	Decomm	nissioning	90		
6	Anne	ndix	-	91		
Ŭ	6.1		operating conditions			
	6.2		ries			
	6.3		identification of EtherCAT devices			
	0.0	6.3.1	General notes on marking			
		6.3.2	Version identification of IP67 modules			
		6.3.3	Beckhoff Identification Code (BIC)			
		6.3.4	Electronic access to the BIC (eBIC)			
	6.4		and Service			

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff[®], TwinCAT[®], TwinCAT/BSD[®], TC/BSD[®], EtherCAT[®], EtherCAT G[®], EtherCAT G10[®], EtherCAT P[®], Safety over EtherCAT[®], TwinSAFE[®], XFC[®], XTS[®] and XPlanar[®] are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

EtherCAT[®] is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations! Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to persons and property, read and follow the safety and warning notices.

Personal injury warnings

Hazard with high risk of death or serious injury.		
Hazard with medium risk of death or serious injury.		
There is a low-risk hazard that could result in medium or minor injury.		

Warning of damage to property or environment

NOTICE

The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:

recommendations for action, assistance or further information on the product.

1.3 Documentation issue status

Version	Comment	
3.7	Signal interfaces updated	
3.6	Signal interfaces updated	
3.5	Signal interfaces updated	
3.4	Technical data updated	
3.3	• EP2339-0121 added	
	Technical data updated	
	Dimensions updated	
	UL requirements updated	
3.2	Front page updated	
	Scope of delivery added	
3.1	EP2339-0042: Technical data and connections updated	
3.0	Documentation separated from EP2xxx 2.9.2	
	• EP2339-0042 added	

Firmware and hardware versions

This documentation refers to the firmware and hardware version that was applicable at the time the documentation was written.

The module features are continuously improved and developed further. Modules having earlier production statuses cannot have the same properties as modules with the latest status. However, existing properties are retained and are not changed, so that older modules can always be replaced with new ones.

The firmware and hardware version (delivery state) can be found in the batch number (D-number) printed on the side of the EtherCAT Box.

Syntax of the batch number (D-number)

D: WW YY FF HH WW - week of production (calendar week) YY - year of production FF - firmware version HH - hardware version Example with D no. 29 10 02 01: 29 - week of production 29 10 - year of production 2010 02 - firmware version 02

01 - hardware version 01

Further information on this topic: <u>Version identification of EtherCAT devices</u> [) 93].

2 EtherCAT Box - Introduction

The EtherCAT system has been extended with EtherCAT Box modules with protection class IP67. Through the integrated EtherCAT interface the modules can be connected directly to an EtherCAT network without an additional Coupler Box. The high-performance of EtherCAT is thus maintained into each module.

The extremely low dimensions of only $126 \times 30 \times 26.5 \text{ mm}$ (h x w x d) are identical to those of the Fieldbus Box extension modules. They are thus particularly suitable for use where space is at a premium. The small mass of the EtherCAT modules facilitates applications with mobile I/O interface (e.g. on a robot arm). The EtherCAT connection is established via screened M8 connectors.

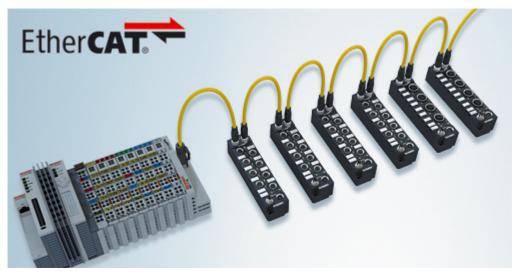


Fig. 1: EtherCAT Box Modules within an EtherCAT network

The robust design of the EtherCAT Box modules enables them to be used directly at the machine. Control cabinets and terminal boxes are now no longer required. The modules are fully sealed and therefore ideally prepared for wet, dirty or dusty conditions.

Pre-assembled cables significantly simplify EtherCAT and signal wiring. Very few wiring errors are made, so that commissioning is optimized. In addition to pre-assembled EtherCAT, power and sensor cables, field-configurable connectors and cables are available for maximum flexibility. Depending on the application, the sensors and actuators are connected through M8 or M12 connectors.

The EtherCAT modules cover the typical range of requirements for I/O signals with protection class IP67:

- digital inputs with different filters (3.0 ms or 10 μs)
- digital outputs with 0.5 or 2 A output current
- analog inputs and outputs with 16 bit resolution
- Thermocouple and RTD inputs
- Stepper motor modules

XFC (eXtreme Fast Control Technology) modules, including inputs with time stamp, are also available.

Fig. 2: EtherCAT Box with M8 connections for sensors/actuators

Fig. 3: EtherCAT Box with M12 connections for sensors/actuators

i

Basic EtherCAT documentation

You will find a detailed description of the EtherCAT system in the Basic System Documentation for EtherCAT, which is available for download from our website (www.beckhoff.com) under Downloads.

3 Product overview

The following table shows the products described in this documentation and the main distinguishing features.

Module	Signal	Number	Output current		Number	Input
	connection	of outputs	per output	Sum	of inputs	filter
EP2308-0001 [> 11]	8 x M8	4	0.5 A	4 A	4	3.0 ms
EP2308-0002 [> 11]	4 x M12	4	0.5 A	4 A	4	3.0 ms
EP2316-0003 [> 19]	2 x ZS2001	8	0.5 A	4 A	8	10 µs
EP2316-0008 [20]	1 x D-sub 25	8	0.5 A	4 A	8	10 µs
EP2318-0001 [▶ 11]	8 x M8	4	0.5 A	4 A	4	10 µs
EP2318-0002 [11]	4 x M12	4	0.5 A	4 A	4	10 µs
EP2328-0001 [> 11]	4 x M8	4	2.0 A	4 A	4	3.0 ms
EP2328-0002 [11]	4 x M12	4	2.0 A	4 A	4	3.0 ms
EP2338-0001 [27]	8 x M8	0 to 8	0.5 A	4 A	8 to 0	10 µs
EP2338-0002 [27]	4 x M12	0 to 8	0.5 A	4 A	8 to 0	10 µs
EP2338-1001 [▶ 27]	8 x M8	0 to 8	0.5 A	4 A	8 to 0	3.0 ms
EP2338-1002 [27]	4 x M12	0 to 8	0.5 A	4 A	8 to 0	3.0 ms
EP2339-0003 [33]	2 x ZS2001	0 to 16	0.5 A	4 A	16 to 0	3.0 ms
EP2339-0021 [39]	16 x M8	0 to 16	0.5 A	4 A	16 to 0	3.0 ms
EP2339-0022 [40]	8 x M12	0 to 16	0.5 A	4 A	16 to 0	3.0 ms
EP2339-0042 [45]	8 x M12	0 to 16	0.5 A	16 A	16 to 0	3.0 ms
EP2339-0121 [> 51]	16 x M8	0 to 16 ¹⁾	0.5 A	4 A	16 to 0 ¹⁾	3.0 ms
EP2349-0021 [> 39]	16 x M8	0 to 16	0.5 A	4 A	16 to 0	10 µs
EP2349-0022 [▶_40]	8 x M12	0 to 16	0.5 A	4 A	16 to 0	10 µs

¹⁾ The inputs and outputs of the EP2339-0121 are ground switching.

2

3 4 GND

5 n.c.

2 3

4 5

1

2

3 4

A

B þ,

Ŕ

þ

Input B

Input A

+24 V U Output B

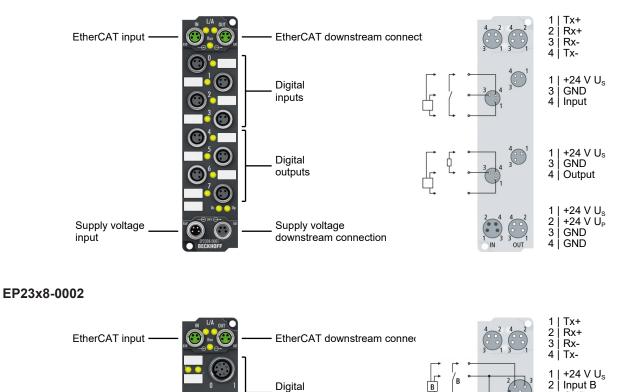
Output A

+24 V Us

+24 V U_P

GND GND

GND


nc

BECKHOFF

EP2308, EP2318, EP2328 3.1

3.1.1 EP2308, EP2318, EP2328 - Introduction

EP23x8-0001

The EP2308, EP2318 and EP2328 EtherCAT-Box modules combine four digital inputs and four digital outputs in one device.

Supply voltage

downstream connection

Digital

inputs

Digital

outputs

The state of each signal is indicated by means of light emitting diodes. The signals are optionally connected via M8 connectors (EP23x8-0001) or M12 connectors (EP23x8-0002).

Various filter constants are available for the inputs. The outputs process load currents up to 0.5 A (EP2308, EP2318) or 2 A (EP2328) and are short-circuit proof and protected against inverse polarity.

Quick links

Technical data EP2308 [13] Technical data EP2318 [13] Technical data EP2328 [15] Process image [18]

Supply voltage

input

<u>Dimensions</u> [▶ <u>55]</u> <u>Signal interface M8 [▶ 67]</u> (EP2308-0001, EP2318-0001, EP2328-0001) <u>Signal interface M12 [▶ 68]</u> (EP2308-0002, EP2318-0002, EP2328-0002)

3.1.2 EP2308, EP2318 - Technical Data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT		
Connection	2 x M8 socket, 4-pin, A-coded, shielded	
Electrical isolation	500 V	

Supply voltages				
Connection	Input: M8 connector, 4-pin, A-coded			
	Downstream connection: M8 socket, 4-pin, A-coded			
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)			
U _S sum current: I _{S,sum}	max. 4 A			
Current consumption from Us	120 mA			
	+ sensor supply			
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)			
U _P sum current: I _{P,sum}	max. 4 A			
Current consumption from U _P	20 mA			
	+ Loads at digital outputs			
Electrical isolation GND _S / GND _P	no			

Digital inputs	EP2308-0001	EP2308-0002	EP2318-0001	EP2318-0002
Number	4		·	
Connection	4 x M8 socket	2 x M12 socket	4 x M8 socket	2 x M12 socket
Cable length	max. 30 m			
Input filter	3.0 ms	3.0 ms	10 µs	10 µs
Characteristics	Type 3 accordi	ng to EN61131-	2, compatible wi	th type 1
Signal voltage "0"	-3+5 V			
Signal voltage "1"	+11+30 V			
Input current	6 mA			
Sensor power supply	24 V_{DC} from U_{S}	i.		
	max. 0.5 A in te	otal, short-circuit	proof.	

Digital outputs	EP2308-0001	EP2308-0002	EP2318-0001	EP2318-0002
Number	4			
Connection	4 x M8 socket	2 x M12 socket	4 x M8 socket	2 x M12 socket
Cable length	max. 30 m			
Load type	Ohmic, inductiv	ve, lamp load		
Nominal output voltage	$24 V_{DC}$			
Output current per channel	max. 0.5 A. Ea	ich output is inde	ependently short	-circuit proof.
Output sum current	max. 4 A			
Short circuit current	max. 1.5 A			
Output driver supply	From the perip	heral voltage U _P		
Changeover times	Τ _{ον} : 50 μs typ.	, Τ _{οϝ} : 100 μs typ	D.	

Housing data		
Dimensions W x H x D	30 mm x 126 mm x 26.5 mm (without connectors)	
Weight	approx. 165 g	
Installation position	variable	
Material	PA6 (polyamide)	

Environmental conditions				
Ambient temperature during operation	-25 … +60 °C -25 … +55 °C according to cURus 0 … +55 °C according to ATEX			
Ambient temperature during storage	-40 +85 °C			
Vibration resistance, shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27 Additional tests [▶ 14]			
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4			
Protection rating	IP65, IP66, IP67 (according to EN 60529)			

Approvals / markings

Approvals / markings *)	<u>ATEX [▶ 79]</u> , CE, <u>cURus [▶ 78]</u>

*) Real applicable approvals/markings see type plate on the side (product marking).

Additional tests

The devices have undergone the following additional tests:

Test	Explanation	
Vibration	10 frequency sweeps in 3 axes	
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude	
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude	
Shocks	1000 shocks in each direction, in 3 axes	
	35 g, 11 ms	

3.1.3 EP2328 – Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT		
Connection	2 x M8 socket, 4-pin, A-coded, shielded	
Electrical isolation	500 V	

Supply voltages		
Connection	Input: M8 connector, 4-pin, A-coded	
	Downstream connection: M8 socket, 4-pin, A-coded	
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)	
U _s sum current: I _{s,sum}	max. 4 A	
Current consumption from U _s	120 mA	
	+ sensor supply	
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)	
U _P sum current: I _{P,sum}	max. 4 A	
Current consumption from U _P	20 mA	
	+ Loads at digital outputs	
Electrical isolation GND _S / GND _P	no	

Digital inputs	EP2328-0001	EP2328-0002	
Number	4		
Connection	4 x M8 socket	2 x M12 socket	
Cable length	max. 30 m		
Input filter	3.0 ms	3.0 ms	
Characteristics Type 3 according to EN61131-2, compatible with ty		V61131-2, compatible with type 1	
Signal voltage "0"	-3+5 V		
Signal voltage "1"	+11+30 V		
Input current	6 mA		
Sensor power supply	24 V_{DC} from U _s .		
	max. 0.5 A in total, sho	rt-circuit proof.	

Digital outputs	EP2328-0001	EP2328-0002	
Number	4		
Connection	4 x M8 socket	2 x M12 socket	
Cable length	max. 30 m	max. 30 m	
Load type	Ohmic, inductive, lamp	Ohmic, inductive, lamp load	
Nominal output voltage	24 V _{DC}	24 V _{DC}	
Output current per channel	max. 2 A. Each output	is independently short-circuit proof.	
Output sum current	max. 4 A		
Short circuit current	15 A typ.	15 A typ.	
Changeover times	T _{oN} : 200 μs typ., T _{OFF} : 2	200 µs typ.	
Output driver supply	From the peripheral vo	From the peripheral voltage U _P .	

Housing data		
Dimensions W x H x D	30 mm x 126 mm x 26.5 mm (without connectors)	
Weight	approx. 165 g	
Installation position	variable	
Material	PA6 (polyamide)	

Environmental conditions

Ambient temperature during operation	-25 … +60 °C -25 … +55 °C according to cURus 0 … +55 °C according to ATEX	
Ambient temperature during storage	-40 +85 °C	
Vibration resistance, shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27 Additional tests [▶ 16]	
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4	
Protection rating	IP65, IP66, IP67 (according to EN 60529)	

Approvals / markings	
Approvals / markings *)	<u>ATEX [▶ 79]</u> , CE, <u>cURus [▶ 78]</u>

*) Real applicable approvals/markings see type plate on the side (product marking).

Additional tests

The devices have undergone the following additional tests:

Test	Explanation
Vibration	10 frequency sweeps in 3 axes
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude
Shocks	1000 shocks in each direction, in 3 axes
	35 g, 11 ms

3.1.4 EP2308, EP2318, EP2328 - Scope of supply

Make sure that the following components are included in the scope of delivery:

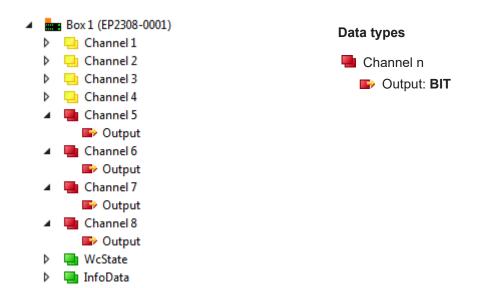
- 1x EtherCAT Box EP23x8-000x
- 2x protective cap for EtherCAT socket, M8, green (pre-assembled)
- 1x protective cap for supply voltage input, M8, transparent (pre-assembled)
- 1x protective cap for supply voltage output, M8, black (pre-assembled)
- 10x labels, blank (1 strip of 10)

Pre-assembled protective caps do not ensure IP67 protection

Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.

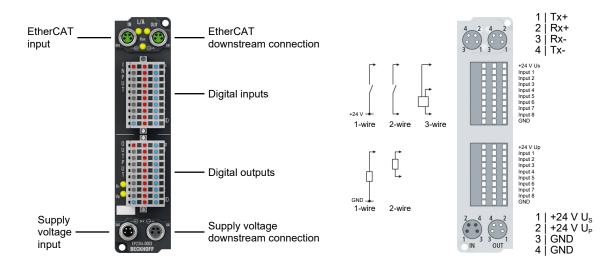
Ensure that the protective caps are correctly seated to ensure IP67 protection.

3.1.5 EP2308, EP2318, EP2328 - Process image


DI Inputs

Under **Channel 1** to **Channel 4** you will find the 4 digital inputs of the module (in the example the EP2308-0001).

4	.	Box 1 (EP2308-0001) 🛁 Channel 1	Data types
		🔁 Input	ᆜ Channel n
	4	🛄 Channel 2	🔁 Input: BIT
		🔁 Input	— 1
	4	🔄 Channel 3	
		🔁 Input	
	4	🛄 Channel 4	
		🔁 Input	
	⊳	📑 Channel 5	
	⊳	🖷 Channel 6	
	⊳	🖷 Channel 7	
	⊳	🖷 Channel 8	
	⊳	ucState 🔤	
	⊳	🛄 InfoData	


DO Outputs

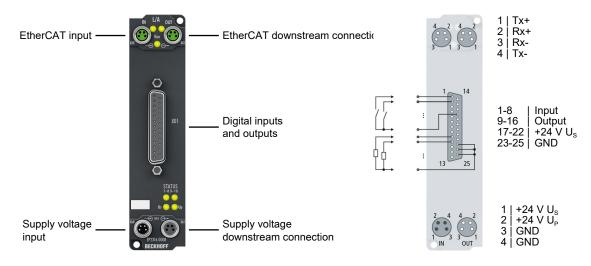
Under **Channel 5** to **Channel 8** you will find the 4 digital outputs of the module (in the example the EP2308-0001).

3.2 EP2316-0003, EP2316-0008

3.2.1 EP2316-0003 - Introduction

8 digital inputs 24 V_{DC} , 8 digital outputs 24 V_{DC} , I_{max} 0.5 A

The EP2316 EtherCAT Box combines eight digital inputs and eight digital outputs in one device . The inputs are available with a 10 μ s filter constant.


The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity. Signal state and status are indicated by LEDs.

The signal connection is made via two ZS2001 connectors with spring-loaded system, optionally available with 1 or 3 pins. The module is delivered without connectors.

Quick links

Technical data [▶ 21] Process image [▶ 24] Dimensions [▶ 55] Signal interface [▶ 69]

3.2.2 EP2316-0008 - Introduction

8 digital inputs, 24 $V_{\text{DC}},$ 8 digital outputs, 24 $V_{\text{DC}},$ I_{max} 0.5 A

The EP2316 EtherCAT Box combines eight digital inputs and eight digital outputs in one device . The inputs are available with a 10 μs filter constant.

The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity.

The signal connection is made through a 25-pin D-Sub socket.

The signal state and the status are displayed in groups by light emitting diodes.

Quick links

Technical data [▶ 21] Process image [▶ 24] Dimensions [▶ 55] Signal interface [▶ 70]

3.2.3 EP2316-000x - Technical Data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT		
Connection	2 x M8 socket, 4-pin, A-coded, shielded	
Electrical isolation	500 V	

Supply voltages		
Connection	Input: M8 connector, 4-pin, A-coded	
	Downstream connection: M8 socket, 4-pin, A-coded	
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)	
U _s sum current: I _{s,sum}	max. 4 A	
Current consumption from Us	120 mA	
	+ sensor supply	
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)	
U _P sum current: I _{P,sum}	max. 4 A	
Current consumption from U _P	20 mA	
	+ Loads at digital outputs	
Electrical isolation GND _S / GND _P	no	

Digital inputs	EP2316-0003	EP2316-0008
Number	8	
Connection	1 x ZS2001 connector	1 x D-sub socket, 25-pin, thread UNC4-40 Pin 18
Cable length	max. 30 m	
Input filter	10 µs	
Characteristics	Type 3 according to EN61	131-2, compatible with type 1
Signal voltage "0"	-3+5 V	
Signal voltage "1"	+11+30 V	
Input current	6 mA	
Sensor power supply	24 V _{DC} from U _S .	
	max. 0.5 A in total, short-c	ircuit proof.

Digital outputs	EP2316-0003	EP2316-0008	
Number	8		
Connection	1 x ZS2001 connector	1 x D-sub socket, 25-pin, thread UNC4-40 Pin 9…16	
Cable length	max. 30 m		
Load type	Ohmic, inductive, lamp loa	Ohmic, inductive, lamp load	
Nominal output voltage	24 V_{DC} from U_{P}	24 V _{DC} from U _P	
Output current per channel	max. 0.5 A. Each output is	max. 0.5 A. Each output is independently short-circuit proof.	
Output sum current	max. 4 A	max. 4 A	
Short circuit current	max. 1.5 A	max. 1.5 A	
Output driver supply	from U _P	from U _P	
Changeover times	T _{on} : 25 µs typ., T _{off} : 50 µs	typ. Τ _{ON} : 60 μs typ., Τ _{OFF} : 300 μs typ.	

Housing data	
Dimensions W x H x D	30 mm x 126 mm x 26.5 mm (without connectors)
Weight	approx. 165 g
Installation position	variable
Material	PA6 (polyamide)

Environmental conditions	
Ambient temperature during operation	-25 … +60 °C -25 … +55 °C according to cURus
Ambient temperature during storage	-40 +85 °C
Vibration resistance, shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
	Additional tests [14]
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP65, IP66, IP67 (conforms to EN 60529)

Approvals/markings	
Approvals/markings *)	CE, <u>cURus [▶ 78]</u>

*) Real applicable approvals/markings see type plate on the side (product marking).

3.2.4 EP2316-000x - Scope of supply

Make sure that the following components are included in the scope of delivery:

- 1x EtherCAT Box EP2316-000x
- 2x protective cap for EtherCAT socket, M8, green (pre-assembled)
- 1x protective cap for supply voltage input, M8, transparent (pre-assembled)
- 1x protective cap for supply voltage output, M8, black (pre-assembled)
- 10x labels, blank (1 strip of 10)

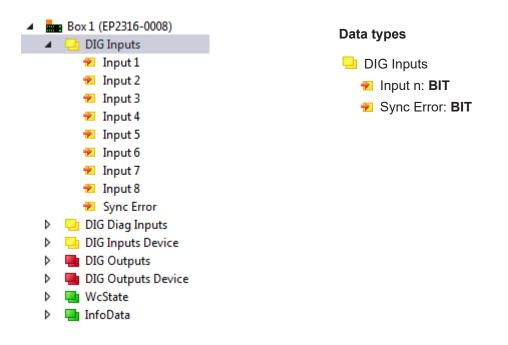
Pre-assembled protective caps do not ensure IP67 protection

Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.

Ensure that the protective caps are correctly seated to ensure IP67 protection.

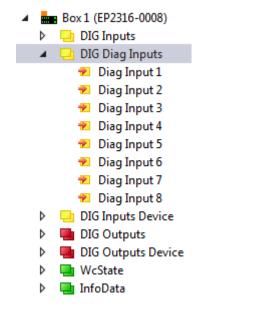
3.2.5 EP2316-0008 - Status LEDs

Fig. 4: EP2316-0008 - Status LEDs


LED displays

LED	Display	Meaning
STATUS 1-8	green illuminated	a signal (24 V) is present at a least one input of channels 1-8
STATUS 9-16	green illuminated	at least one of the outputs for channel 9-16 is set
	red illuminated	at least one output of channels 9-16 has an error
Us	off	Supply voltage Us is not present
	green illuminated	Supply voltage Us is present
Up	off	Supply voltage Up is not present
	green illuminated Supply voltage Up is present	

3.2.6 EP2316-000x - Process image

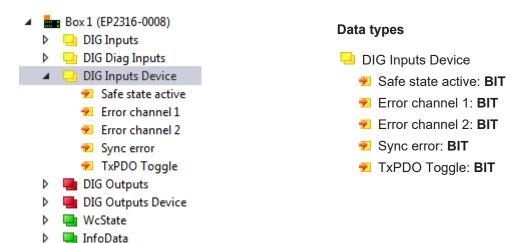

DIG Inputs

You will find the 8 digital inputs of the module under **DIG Inputs**.

DIG Diag Inputs

You will find the diagnostic inputs for the module's 8 digital outputs under DIG Diag Inputs.

Data types


DIG Diag Inputs
 Diag Input n: BIT

Diag Input n

Indicates an error on Output n.

DIG Inputs Device

You will find the module's status inputs under DIG Inputs Device.

Safe state active

Indicates whether the safe state has been assumed. The display only works if the network transmits process input data, i.e. in the network states Operational (OP) and Safe-Operational (Safe-OP), but not in the network state INIT.

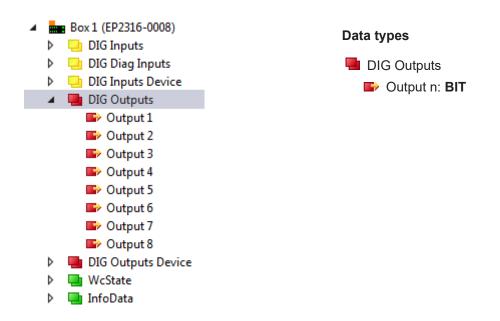
Error channel 1

This bit is always 0.

Error channel 2

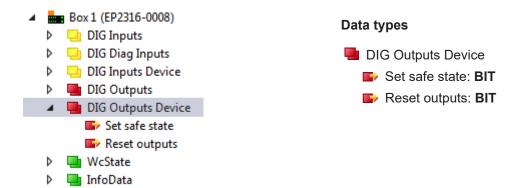
Group error for all eight channels.

Sync Error


See EtherCAT system documentation. The EtherCAT system documentation is available on <u>www.beckhoff.com</u>.

TxPDO Toggle

See EtherCAT system documentation.


DIG Outputs

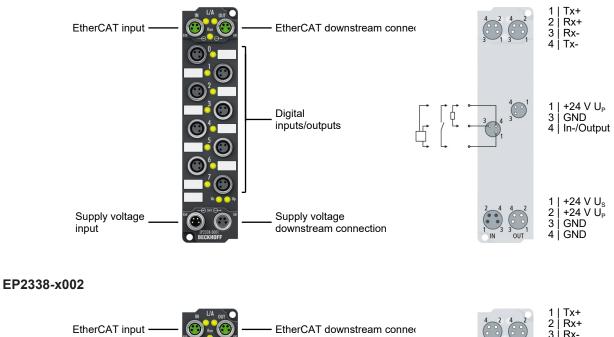
You will find the 8 digital outputs of the module under **DIG Outputs**.

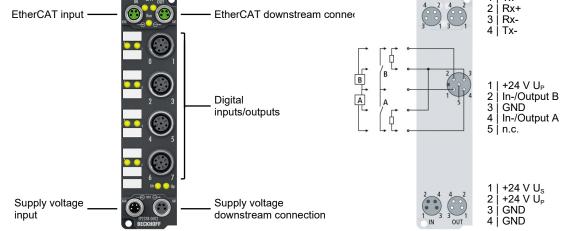
DIG Outputs Device

You will find the module's control outputs under **DIG Outputs Device**.

Set safe state

Sets the module to the safe state.


Reset outputs


Resets the error bits "Error channel X" of the module. The outputs are reactivated.

3.3 EP2338-000x, EP2338-100x

3.3.1 EP2338-x00x - Introduction

EP2338-x001

8 digital inputs or outputs, 24 $V_{\mbox{\tiny DC}}$

The EP2338 EtherCAT Box has eight digital channels, each of which can optionally be operated as an input or as an output. A configuration whether a channel is to be used as input or output is not required; the input circuit is internally fixed to the output driver so that a set output is automatically displayed in the input process image.

The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity. The inputs have a filter constant of 10 μ s (EP2338-0001, EP2338-0002) or a filter constant of 3 ms (EP2338-1001, EP2338-1002). The state of each signal is indicated by means of light emitting diodes. The signals are optionally connected via M8 (EP2338-x001) or M12 connectors (EP2338-x002).

Supply of the connected sensors from U_P, not from U_s

In contrast to many other modules, the EP2338 EtherCAT Box supplies digital sensors from the U_p peripheral voltage and not from the U_s control voltage! Nevertheless, an overload of the sensor supply (current > 0.5 A) is also indicated here by the illuminated red U_s LED.

NOTICE

For switch-off in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_P is switched off in the event of a fault, you must not power the connected sensors externally, but only through EP2338! Otherwise, when the U_P energy is switched off, EP2338 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

<u>Technical data [▶ 29]</u> <u>Process image [▶ 31]</u> <u>Dimensions [▶ 55]</u> <u>Signal interface M8 [▶ 71]</u> (EP2338-0001, EP2338-1001) <u>Signal interface M12 [▶ 72]</u> (EP2338-0002, EP2338-1002)

3.3.2 EP2338-x00x - Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT	
Connection	2 x M8 socket, 4-pin, A-coded, shielded
Electrical isolation	500 V

Supply voltages	
Connection	Input: M8 connector, 4-pin, A-coded
	Downstream connection: M8 socket, 4-pin, A-coded
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)
Current consumption from Us	120 mA
U _s sum current: I _{s,sum}	max. 4 A
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)
Current consumption from U _P	20 mA
	+ Loads at digital outputs
	+ sensor supply
U _P sum current: I _{P,sum}	max. 4 A
Electrical isolation GND _S / GND _P	no

Digital inputs	EP2338-0001	EP2338-1001	EP2338-0002	EP2338-1002
Number	0 to 8			
	Each digital inp	out can alternativ	vely be used as a	a digital output.
Connection	8 x M8 socket		4 x M12 socket	t
Cable length	max. 30 m			
Input filter	10 µs	3.0 ms	10 µs	3.0 ms
Characteristics	Type 3 accordi	ng to EN61131-	2, compatible wi	th type 1
Signal voltage "0"	-3+5 V			
Signal voltage "1"	+11+30 V			
Input current	6 mA			
Sensor power supply	24 V_{DC} from U_{P}			
	max. 0.5 A in te	otal, short-circuit	proof.	

Digital outputs	EP2338-0001	EP2338-1001	EP2338-0002	EP2318-1002
Number	0 to 8			
	Each digital out	put can alternat	ively be used as	a digital input.
Connection	8 x M8 socket		4 x M12 socket	
Cable length	max. 30 m			
Load type	Ohmic, inductiv	e, lamp load		
Nominal output voltage	$24 V_{DC}$			
Output current per channel	max. 0.5 A. Ea	ch output is inde	pendently short-	circuit proof.
Output sum current	max. 4 A			
Short circuit current	max. 1.5 A			
Changeover times	Τ _{οΝ} : 50 μs typ.,	T _{OFF} : 100 µs typ).	
Output driver supply	From the peripl	neral voltage U _P		

Housing data	
Dimensions W x H x D	30 mm x 126 mm x 26.5 mm (without connectors)
Weight	approx. 165 g
Installation position	variable
Material	PA6 (polyamide)

Environmental conditions	
Ambient temperature during operation	-25 +60 °C -25 +55 °C according to cURus 0 +55 °C according to ATEX
Ambient temperature during storage	-40 +85 °C
Vibration resistance, shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27 Additional tests [> 30]
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection rating	IP65, IP66, IP67 (according to EN 60529)

Approvals / markings

Approvals / markings *)	<u>ATEX [▶ 79]</u> , CE, <u>cURus [▶ 78]</u>

*) Real applicable approvals/markings see type plate on the side (product marking).

Additional tests

The devices have undergone the following additional tests:

Test	Explanation	
Vibration	10 frequency sweeps in 3 axes	
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude	
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude	
Shocks	1000 shocks in each direction, in 3 axes	
	35 g, 11 ms	

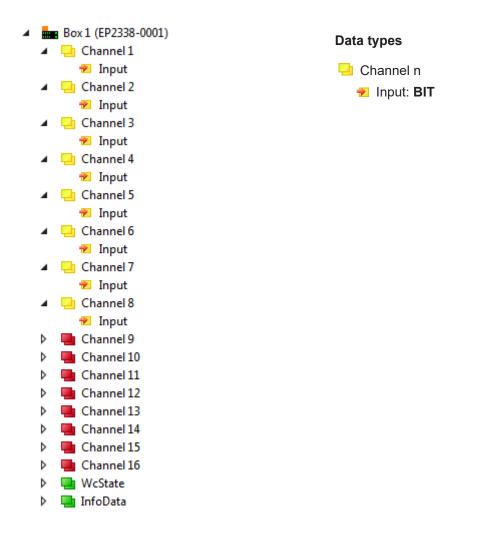
EP23xx

3.3.3 EP2338-x00x - Scope of supply

Make sure that the following components are included in the scope of delivery:

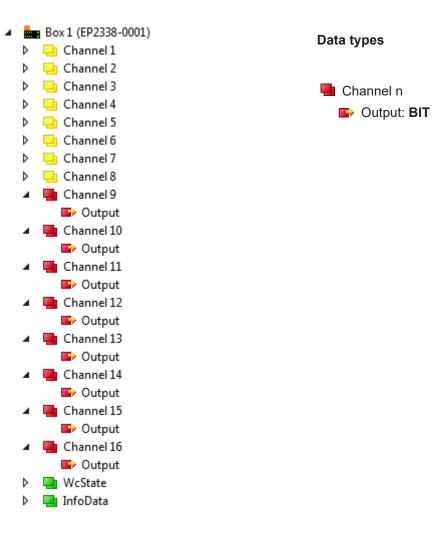
- 1x EtherCAT Box EP2338-x00x
- 2x protective cap for EtherCAT socket, M8, green (pre-assembled)
- 1x protective cap for supply voltage input, M8, transparent (pre-assembled)
- 1x protective cap for supply voltage output, M8, black (pre-assembled)
- 10x labels, blank (1 strip of 10)

Pre-assembled protective caps do not ensure IP67 protection

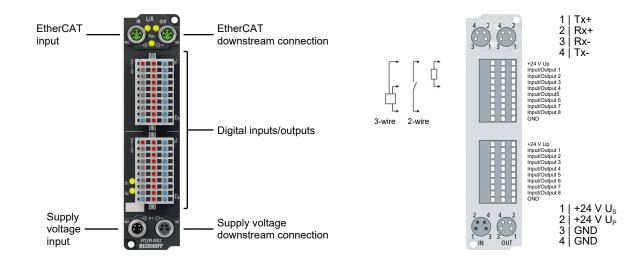

Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.

Ensure that the protective caps are correctly seated to ensure IP67 protection.

3.3.4 EP2338-x00x - Process image


DI Inputs

Under **Channel 1** to **Channel 8** you will find the 8 digital inputs of the module (in the example the EP2338-0001).


DO Outputs

Under **Channel 1** to **Channel 8** you will find the 8 digital outputs of the module (in the example the EP2338-0001).

3.4 EP2339-0003

3.4.1 EP2339-0003 - Introduction

16-channel digital input or output 24 $V_{\mbox{\tiny DC}}$

The EP2339-0003 EtherCAT Box has 16 digital channels, each of which can optionally be operated as an input or as an output. A configuration for using a channel as input or output is not necessary; the input circuit is internally connected to the output driver, so that a set output is displayed automatically in the input process image.

A filter constant of 3.0 ms is available for the inputs. The outputs are short-circuit proof and protected against inverse polarity. They handle load currents of up to 0.5 A each, although the total current is limited to 4 A. The state of each signal is indicated by means of light emitting diodes on the connectors. For the signal connection connectors with a spring-loaded system are used, optionally available with 1 or 3 pins. The module is supplied without connectors. The sensors are powered by the load voltage U_p .

Quick links

Technical data [> 34] Process image [> 37] Dimensions [> 55] Signal interface [> 73]

3.4.2 EP2339-0003 - Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT	
Connection	2 x M8 socket, 4-pin, A-coded, shielded
Electrical isolation	500 V
Distributed Clocks	yes

Supply voltages	
Connection	Input: M8 connector, 4-pin, A-coded
	Downstream connection: M8 socket, 4-pin, A-coded
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)
Current consumption from Us	120 mA
U _s sum current: I _{s,sum}	max. 4 A
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)
Current consumption from U_P	20 mA
	+ Loads at digital outputs
	+ sensor supply
U _P sum current: I _{P,sum}	max. 4 A
Electrical isolation GND_{S} / GND_{P}	no

Digital inputs	
Number	0 to 16
	Each digital input can alternatively be used as a digital output.
Connection	2 x ZS2001 connector.
	Not included in the scope of delivery.
Cable length	max. 30 m
Input filter	3 ms
Characteristics	Type 3 according to EN61131-2, compatible with type 1
Signal voltage "0"	-3+5 V
Signal voltage "1"	+11+30 V
Input current	6 mA
Sensor power supply	24 V_{DC} from U_{P} .
	max. 0.5 A in total, short-circuit proof.

Digital outputs	
Number	0 to 16
	Each digital input can alternatively be used as a digital output.
Connection	2 x ZS2001 connector.
	Not included in the scope of delivery.
Cable length	max. 30 m
Load type	Ohmic, inductive, lamp load
Nominal output voltage	24 V_{DC} from U_{P}
Output current per channel	max. 0.5 A. Each output is independently short-circuit proof.
Output sum current	max. 4 A
Short circuit current	max. 1.5 A
Changeover times	T _{ON} : 25 μs typ., T _{OFF} : 75 μs typ.
Output driver supply	from U _P

Housing data	
Dimensions W x H x D	30 mm x 126 mm x 26.5 mm (without connectors)
Weight	approx. 165 g
Installation position	variable
Material	PA6 (polyamide)

Environmental conditions	
Ambient temperature during operation	-25+60 °C -25+55 °C according to cURus
Ambient temperature during storage	-40+85 °C
Vibration resistance, shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27 Additional checks [▶_35]
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP20

Additional tests

The devices have undergone the following additional tests:

Test	Explanation	
Vibration	10 frequency sweeps in 3 axes	
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude	
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude	
Shocks	1000 shocks in each direction, in 3 axes	
	35 g, 11 ms	

3.4.3 EP2339-0003 - Scope of supply

Make sure that the following components are included in the scope of delivery:

- 1x EtherCAT Box EP2339-0003
- 2x protective cap for EtherCAT socket, M8, green (pre-assembled)
- 1x protective cap for supply voltage input, M8, transparent (pre-assembled)
- 1x protective cap for supply voltage output, M8, black (pre-assembled)
- 10x labels, blank (1 strip of 10)

Pre-assembled protective caps do not ensure IP67 protection

Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.

Ensure that the protective caps are correctly seated to ensure IP67 protection.

3.4.4 EP2339-0003 - Process image

- Box 1 (EP2339-0003)
 - DI Inputs Channel 1
 - DI Inputs Channel 2
 - DO Outputs Channel 1
 - DO Outputs Channel 2
 - 👂 🛄 WcState
 - InfoData

DI Inputs Channel n

- 🔺 🛄 DI Inputs Channel 1
 - 👻 Input 1
 - 🐮 Input 2
 - 🐮 Input 3
 - 🔁 Input 4
 - 🔁 Input 5
 - 🔁 Input 6
 - 🔁 Input 7
 - 🐮 Input 8
 - 🔁 Sync error
 - 🔁 TxPDO State
 - 🐮 TxPDO Toggle
- DI Inputs Channel 2
 - 🔁 Input 1
 - 🔁 Input 2
 - 🔁 Input 3
 - 🔁 Input 4
 - 🔁 Input 5
 - 🔁 Input 6
 - 🔁 Input 7
 - 🔁 Input 8
 - 👻 Sync error
 - 👻 TxPDO State
 - 🔁 TxPDO Toggle

🔁 Input x

Digital inputs. Data type: BIT.

🔁 Sync error

This bit is only relevant in Distributed Clocks mode.

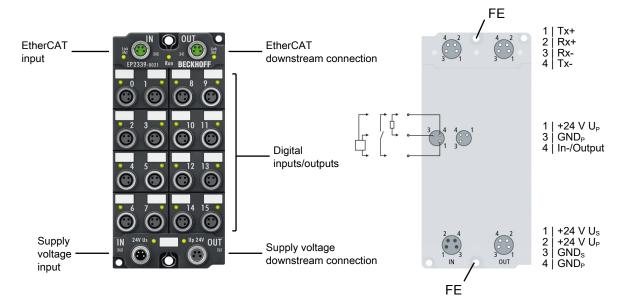
It is TRUE if a synchronization error occurred during the elapsed EtherCAT cycle.

TxPDO State

Validity of the input data. This bit is TRUE if the input data could not be read correctly due to an error.

🔁 TxPDO Toggle

This bit is inverted each time an input data update occurs.


DO Outputs Channel n

4	📑 DO Outputs Channel 1
	Output 1
	Output 2
	Output 3
	Output 4
	Output 5
	🖙 Output 6
	Output 7
	Output 8
4	🖶 DO Outputs Channel 2
4	
4	DO Outputs Channel 2
4	DO Outputs Channel 2 Output 1
1	 DO Outputs Channel 2 Output 1 Output 2
4	DO Outputs Channel 2 Output 1 Output 2 Output 3
4	 DO Outputs Channel 2 Output 1 Output 2 Output 3 Output 4
4	DO Outputs Channel 2 Output 1 Output 2 Output 3 Output 4 Output 5

Output *x* Digital outputs. Data type: BIT.

3.5 EP2339-002x, EP2349-002x

3.5.1 EP23x9-0021 - Introduction

16 digital inputs or outputs, 24 $V_{\mbox{\tiny DC}}$

The EP23x9-0021 EtherCAT Box has 16 digital channels that can each be operated as inputs or outputs. It is not necessary to configure whether a channel (pin 2 and 4 of the M12) is to be used as input or output; the input circuit is permanently connected internally to the output driver, so that a set output is automatically displayed in the input process image.

The inputs of the EP2339-0021 have a filter of 3.0 ms. The inputs of the EP2349-0021 have a filter of 10 μ s.

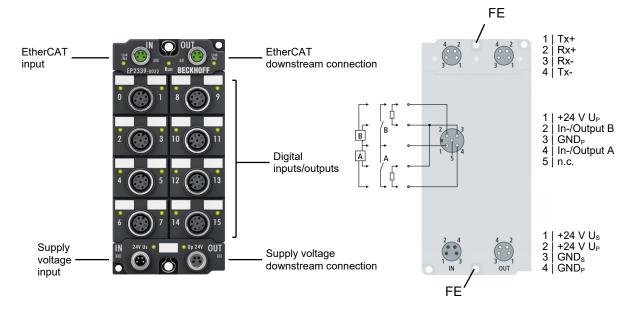
The outputs handle load currents up to 0.5 A and are short-circuit-proof and protected against reverse polarity. The total current of all outputs is limited to 4 A.

The connected sensors are supplied by an internal, short-circuit-proof driver module with a total of 0.5 A for all sensors. The inputs and outputs are supplied via U_P . The signal status is indicated by LEDs. The signals are connected via M12 connectors.

Supply of the connected sensors from $U_{\mbox{\tiny P}},$ not from $U_{\mbox{\tiny S}}$

In contrast to many other modules, the EP23x9-0021 EtherCAT Box supplies digital sensors from the U_P peripheral voltage and not from the U_S control voltage! Nevertheless, an overload of the sensor supply (current > 0.5 A) is also indicated here by the illuminated red U_S LED.

NOTICE


For shutdown in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_P is switched off in the event of a fault, you must not power the connected sensors externally, but only through EP23x9-0021! Otherwise, when the U_P energy is switched off, EP23x9-0021 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

Technical data [> 41] Process image [> 44] Dimensions [> 56] Signal interface [> 74]

3.5.2 EP23x9-0022 - Introduction

16 digital inputs or outputs, 24 $V_{\mbox{\tiny DC}}$

The EP23x9-0022 EtherCAT Box has 16 digital channels that can each be operated as inputs or outputs. It is not necessary to configure whether a channel (pin 2 and 4 of the M12) is to be used as input or output; the input circuit is permanently connected internally to the output driver, so that a set output is automatically displayed in the input process image. The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity.

The inputs of the EP2339-0022 have a filter of 3.0 ms. The inputs of the EP2349-0022 have a filter of 10 $\mu s.$

The outputs handle load currents up to 0.5 A and are short-circuit-proof and protected against reverse polarity. The total current of all outputs is limited to 4 A.

The connected sensors are supplied by an internal, short-circuit-proof driver module with a total of 0.5 A for all sensors. The inputs and outputs are supplied via U_{p} . The signal status is indicated by LEDs. The signals are connected via M12 connectors.

Supply of the connected sensors from U_P , not from U_S

In contrast to many other modules, the EP23x9-0022 EtherCAT Box supplies digital sensors from the U_P peripheral voltage and not from the U_S control voltage! Nevertheless, an overload of the sensor supply (current > 0.5 A) is also indicated here by the illuminated red U_S LED.

NOTICE

For switch-off in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_P is switched off in the event of a fault, you must not power the connected sensors externally, but only through EP23x9-0022! Otherwise, when the U_P energy is switched off, EP23x9-0022 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

Technical data [▶ 41] Process image [▶ 44] Dimensions [▶ 56] Signal interface [▶ 75]

3.5.3 EP23x9-002x - Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT	
Connection	2 x M8 socket, 4-pin, A-coded, shielded
Electrical isolation	500 V

Supply voltages		
Connection	Input: M8 connector, 4-pin, A-coded	
	Downstream connection: M8 socket, 4-pin, A-coded	
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)	
Current consumption from Us	120 mA	
U _s sum current: I _{s,sum}	max. 4 A	
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)	
Current consumption from U_P	20 mA	
	+ Loads at digital outputs	
	+ sensor supply	
U _P sum current: I _{P,sum}	max. 4 A	
Electrical isolation GND _S / GND _P	yes	

Digital inputs	EP2339-0021	EP2339-0022	EP2349-0021	EP2349-0022	
Number	0 to 16	·		·	
	Each digital in	put can alternat	vely be used as	a digital output.	
Connection	16 x M8 socket	8 x M12 socket	16 x M8 socket	8 x M12 socket	
Cable length	max. 30 m	max. 30 m			
Input filter	3.0 ms	3.0 ms	10 µs	10 µs	
Characteristics	Type 3 accord	Type 3 according to EN61131-2, compatible with type 1			
Signal voltage "0"	-3+5 V				
Signal voltage "1"	+11+30 V				
Input current	6 mA	6 mA			
Sensor power supply	24 V _{DC} from U	p.			
	max. 0.5 A in t	total, short-circu	it proof.		

Digital outputs	EP2339-0021	EP2339-0022	EP2349-0021	EP2349-0022	
Number	0 to 16	0 to 16			
	Each digital o	utput can alterna	tively be used as	a digital input.	
Connection	16 x M8 socket	8 x M12 socket	16 x M8 socket	8 x M12 socket	
Cable length	max. 30 m	max. 30 m			
Load type	Ohmic, induct	Ohmic, inductive, lamp load			
Nominal output voltage	$24 V_{DC}$	24 V _{DC}			
Output current per channel	max. 0.5 A. E	max. 0.5 A. Each output is independently short-circuit proof.			
Output sum current	max. 4 A	max. 4 A			
Short circuit current	max. 1.5 A	max. 1.5 A			
Output driver supply	From the peri	From the peripheral voltage U _P .			
Changeover times	T _{on} : 60 μs typ	., T _{off} : 300 µs tyj	Э.		

Housing data	
Dimensions W x H x D	60 mm x 126 mm x 26.5 mm (without plug connectors)
Weight	approx. 250 g
Installation position	variable
Material	PA6 (polyamide)

Environmental conditions		
Ambient temperature during operation	-25 +60 °C -25 +55 °C according to cURus	
Ambient temperature during storage	-40 +85 °C	
Vibration resistance, shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27	
	Additional tests [42]	
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4	
Protection class	IP65, IP66, IP67 (conforms to EN 60529)	

Approvals/markings	
Approvals/markings *)	CE, <u>cURus [▶ 78]</u>

*) Real applicable approvals/markings see type plate on the side (product marking).

Additional tests

The devices have undergone the following additional tests:

Test	Explanation
Vibration	10 frequency sweeps in 3 axes
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude
Shocks	1000 shocks in each direction, in 3 axes
	35 g, 11 ms

3.5.4 EP23x9-002x - Scope of supply

Make sure that the following components are included in the scope of delivery:

- 1x EtherCAT Box EP23x9-002x
- 2x protective cap for EtherCAT socket, M8, green (pre-assembled)
- 1x protective cap for supply voltage input, M8, transparent (pre-assembled)
- 1x protective cap for supply voltage output, M8, black (pre-assembled)
- 10x labels, blank (1 strip of 10)

1

Pre-assembled protective caps do not ensure IP67 protection

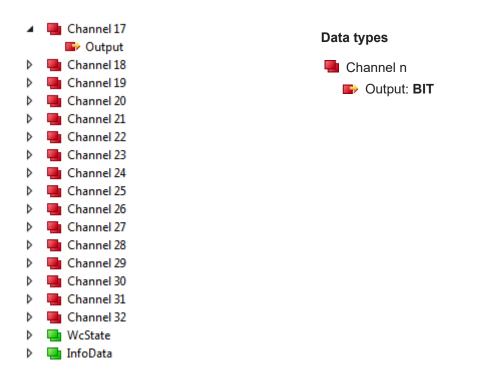
Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.

Ensure that the protective caps are correctly seated to ensure IP67 protection.

3.5.5 EP23x9-002x - Process image

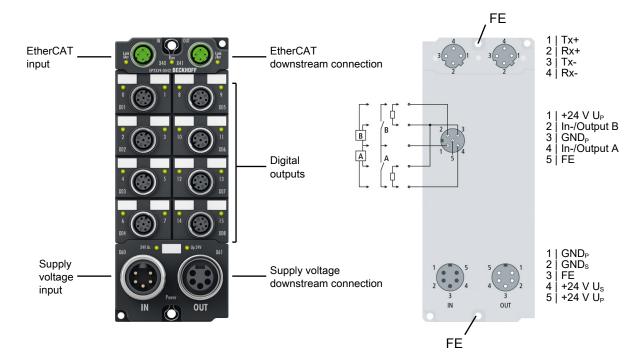
Inputs

Under **Channel 1** to **Channel 16** you will find the 16 digital inputs of the module (here as an example the EP2339-0021).


4		Box 1 (EP2339-0021)	Data types
		😕 Input	ᆜ Channel n
	Þ	🛄 Channel 2	🔁 Input: BIT
	⊳	🕒 Channel 3	p
	⊳	🛄 Channel 4	
	⊳	🛄 Channel 5	
	⊳	🛄 Channel 6	
	⊳	🔁 Channel 7	
	⊳	🔁 Channel 8	
	⊳	🔁 Channel 9	
	⊳	🕒 Channel 10	
	⊳	🔁 Channel 11	
	⊳	🔁 Channel 12	
	Þ	🛄 Channel 13	
	⊳	🖵 Channel 14	

Outputs

⊳


🕒 Channel 15

Under **Channel 17** to **Channel 32** you will find the 16 digital outputs of the module (here as an example the EP2339-0021).

3.6 EP2339-0042

3.6.1 EP2339-0042 - Introduction

16-channel digital input or output 24 V DC

The EP2339-0042 EtherCAT Box has 16 digital channels, each of which can optionally be operated as an input or as an output. A configuration for using a channel as input or output is not necessary; the input circuit is internally connected to the output driver, so that a set output is displayed automatically in the input process image.

A filter constant of 3.0 ms is available for the inputs. The outputs are short-circuit proof. They handle load currents of up to 0.5 A each. The state of each signal is indicated by means of light emitting diodes. The signals are connected via M12 screw type connectors.

The EP2339-0042 is interference-free. You can use the EP2339-0042 instead of an interference-free standard terminal in accordance with the following chapters of the <u>TwinSAFE Application Guide</u>:

- "All-pole disconnection of a potential group with downstream interference-free standard terminals (Category 4, PL e)"
- "Single-pole disconnection of a potential group with downstream interference-free standard terminals with fault exclusion (Category 4, PL e)"
- "EL2911 potential group with interference-free standard terminals (Category 4, PL e)"

Supply of the connected sensors from U_P, not from U_S

In contrast to many other modules, the EP2339-0042 EtherCAT Box supplies digital sensors from the U_p peripheral voltage and not from the U_s control voltage.

NOTICE

For shutdown in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_P is switched off in the event of a fault, you must not power the connected sensors externally, but only through the EP2339-0042! Otherwise, when the U_P energy is switched off, the EP2339-0042 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

Technical data [▶ 47] Process image [▶ 50] Dimensions [▶ 57] Signal interface [▶ 76]

3.6.2 EP2339-0042 - Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT		
Connection 2 x M8 socket, 4-pin, A-coded, shielded		
Electrical isolation	500 V	

Supply voltages			
Connection	Input: 7/8" plug, 5-pin, 16-UN thread		
	Downstream connection: 7/8" socket, 5-pin, 16-UN thread		
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)		
U _s sum current	max. 16 A at 40 °C		
Current consumption from U _s	120 mA		
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)		
U _P sum current	max. 16 A at 40 °C		
Current consumption from U _P	20 mA		
	+ Loads at digital outputs		
	+ sensor supply		
Electrical isolation GND _S / GND _P	yes		

Digital inputs	
Number	0 to 16
	Each digital input can alternatively be used as a digital output.
Connection	8 x M12 socket
Cable length	max. 30 m
Input filter	3 ms
Characteristics	Type 3 according to EN61131-2, compatible with type 1
Signal voltage "0"	-3+5 V
Signal voltage "1"	+11+30 V
Input current	6 mA
Sensor power supply	24 V _{DC} from U _P .
	max. 0.5 A in total, short-circuit proof.

Digital outputs	
Number	0 to 16
	Each digital output can alternatively be used as a digital input.
Connection	8 x M12
Cable length	max. 30 m
Load type	Ohmic, inductive, lamp load
Nominal output voltage	24 V_{DC} from U_{P}
Output current per channel	max. 0.5 A. Each output is independently short-circuit proof.
Short circuit current	1.9 A typ.
Output driver supply	from U _P
Changeover times	T _{ON} : 60 μs typ., T _{OFF} : 300 μs typ.

Housing data	
Dimensions W x H x D	60 mm x 150 mm x 26,5 mm (without connectors)
Weight	approx. 440 g
Installation position	variable
Material	PA6 (polyamide)

Environmental conditions	
Ambient temperature during operation	-25 +60 °C
Ambient temperature during storage	-40 +85 °C
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP65, IP66, IP67 conforms to EN 60529

Approvals / markings	
Approvals / markings *)	CE, UL under preparation

*) Real applicable approvals/markings see type plate on the side (product marking).

Additional tests

The devices have undergone the following additional tests:

Test	Explanation
Vibration 10 frequency sweeps in 3 axes	
	5 Hz < f < 60 Hz displacement 0.35 mm, constant amplitude
	60.1 Hz < f < 500 Hz acceleration 5 g, constant amplitude
Shocks	1000 shocks in each direction, in 3 axes
	35 g, 11 ms

3.6.3 EP2339-0042 - Scope of supply

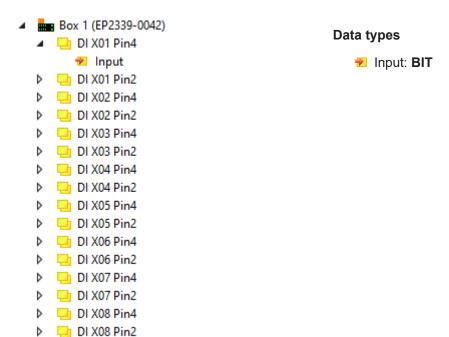
Make sure that the following components are included in the scope of delivery:

- 1x EtherCAT Box EP2339-0042
- 2x protective cap for EtherCAT socket, M12 (pre-assembled)
- 1x Protective cap for supply voltage output, 7/8", black (pre-fitted)
- 10x labels, blank (1 strip of 10)

i

Pre-assembled protective caps do not ensure IP67 protection

Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.


Ensure that the protective caps are correctly seated to ensure IP67 protection.

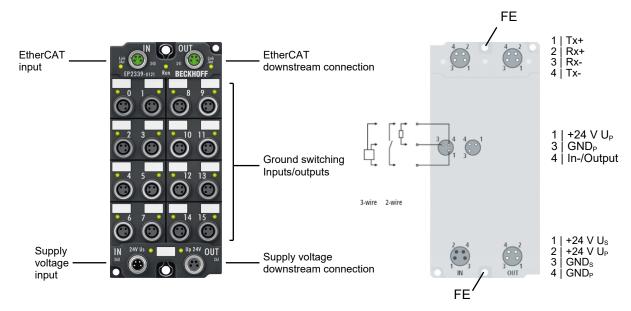
3.6.4 EP2339-0042 - Process image

Inputs

The process image contains a process data object for each digital input.

The name of each process data object contains the name of the socket and the pin number of the corresponding digital input.

Outputs


The process image contains a process data object for each digital output.

The name of each process data object contains the name of the socket and the pin number of the corresponding digital output.

4	DO X01 Pin 4	Data types
⊳	DO X01 Pin 2	Dutput: BIT
Þ	DO X02 Pin 4	
Þ	DO X02 Pin 2	
⊳	DO X03 Pin 4	
⊳	DO X03 Pin 2	
⊳	DO X04 Pin 4	
⊳	DO X04 Pin 2	
⊳	DO X05 Pin 4	
⊳	📕 DO X05 Pin 2	
⊳	DO X06 Pin	
⊳	📕 DO X06 Pin	
⊳	📕 DO X07 Pin	
⊳	📕 DO X07 Pin	
⊳	📕 DO X08 Pin	
⊳	📕 DO X08 Pin	
Þ	🛄 WcState	
⊳	📑 InfoData	

3.7 EP2339-0121

3.7.1 EP2339-0121 - Introduction

16-channel digital input or output 24 V_{DC} , ground switching

The EP2339-0121 EtherCAT Box has 16 digital channels that can each be operated as inputs or outputs. It is not necessary to configure whether a channel (pin 4 of the M8) is to be used as input or output; the input circuit is permanently connected internally to the output driver, so that a set output is automatically displayed in the input process image. Inputs and outputs are ground switching.

The inputs have a filter of 3.0 ms. The outputs handle load currents up to 0.5 A and are short-circuit-proof and protected against reverse polarity. The total current of all outputs is limited to 4 A.

The connected sensors are supplied by an internal, short-circuit-proof driver module with a total of 0.5 A for all sensors. The inputs and outputs are supplied via U_P . The signal status is indicated by LEDs. The signals are connected via M8 connectors.

Quick links

Technical data [▶ 52] Process image [▶ 54] Dimensions [▶ 56] Signal interface [▶ 77]

3.7.2 EP2339-0121 - Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

EtherCAT	
Connection	2 x M8 socket, 4-pin, A-coded, shielded
Electrical isolation	500 V

Supply voltages	
Connection	Input: M8 connector, 4-pin, A-coded
	Downstream connection: M8 socket, 4-pin, A-coded
U _s nominal voltage	24 V _{DC} (-15 % / +20 %)
U _s sum current: I _{s,sum}	max. 4 A
Current consumption from U _s	60 mA
Rated voltage U _P	24 V _{DC} (-15 % / +20 %)
U _P sum current: I _{P,sum}	max. 4 A
Current consumption from U _P	50 mA
	+ sensor supply

Digital inputs	
Number	0 to 16
	Each digital input can alternatively be used as a digital output.
Connection	16 x M8 socket
Cable length	max. 30 m
Input filter	3.0 ms
Characteristics	Ground switching
Signal voltage "0"	1830 V
Signal voltage "1"	07 V
Sensor power supply	24 V _{DC} from U _P .
	max. 0.5 A in total, short-circuit proof.

Digital outputs	
Number	0 to 16
	Each digital output can alternatively be used as a digital input.
Connection	16 x M8 socket
Cable length	max. 30 m
Characteristics	Ground switching
Load current	max. 0.5 A
Changeover times	T _{ON} : 60 μs typ., T _{OFF} : 300 μs typ.

Housing data	
Dimensions W x H x D	60 mm x 126 mm x 26.5 mm (without plug connectors)
Weight	approx. 260 g
Installation position	variable
Material	PA6 (polyamide)

Environmental conditions

-25 +60 °C
-25 … +55 °C according to cURus
-40 +85 °C
conforms to EN 60068-2-6 / EN 60068-2-27
Additional tests [48]
conforms to EN 61000-6-2 / EN 61000-6-4
IP65, IP66, IP67 (conforms to EN 60529)

Approvals/markings	
Approvals/markings *)	CE, <u>cURus [▶ 78]</u>

*) Real applicable approvals/markings see type plate on the side (product marking).

3.7.3 EP2339-0121 - Scope of supply

Make sure that the following components are included in the scope of delivery:

- 1x EP2339-0121
- 2x protective cap for EtherCAT socket, M8, green (pre-assembled)
- 1x protective cap for supply voltage input, M8, transparent (pre-assembled)
- 1x protective cap for supply voltage output, M8, black (pre-assembled)
- 10x labels, blank (1 strip of 10)
- 1

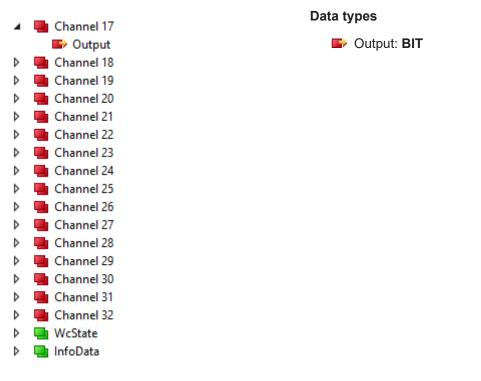
Pre-assembled protective caps do not ensure IP67 protection

Protective caps are pre-assembled at the factory to protect connectors during transport. They may not be tight enough to ensure IP67 protection.

Ensure that the protective caps are correctly seated to ensure IP67 protection.

3.7.4 EP2339-0121 - Process image

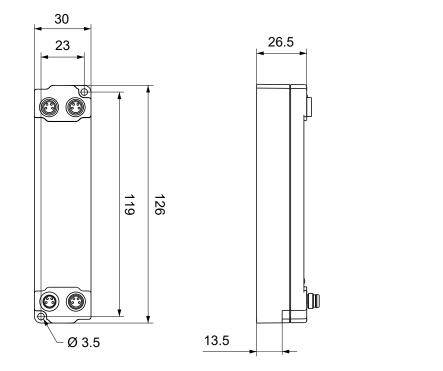
Inputs

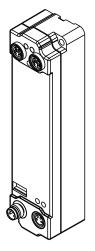

Under "Channel 1" to "Channel 16" you will find the input variables for the digital inputs/outputs.

	Data types
Box 1 (EP2339-0121)	
🔺 🛄 Channel 1	🔁 Input: BIT
🔁 Input	
👂 🛄 Channel 2	
👂 🛄 Channel 3	
👂 🛄 Channel 4	
👂 🛄 Channel 5	
👂 🛄 Channel 6	
👂 🛄 Channel 7	
👂 🛄 Channel 8	
👂 🛄 Channel 9	
👂 🛄 Channel 10	
👂 🛄 Channel 11	
👂 🛄 Channel 12	
👂 🛄 Channel 13	
👂 🛄 Channel 14	
👂 🛄 Channel 15	

Channel 16

Outputs

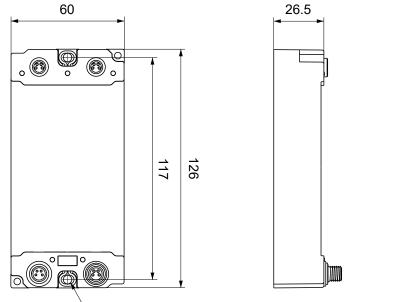

Under "Channel 17" to "Channel 32" you will find the output variables for the digital inputs/outputs.



4 Mounting and connection

4.1 Mounting

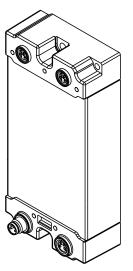
4.1.1 Dimensions EPxxxx-xx0x and EPxxxx-xx1x

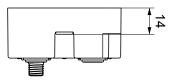


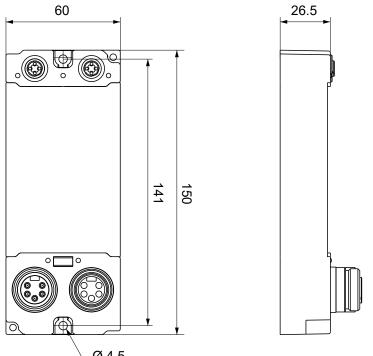
All dimensions are given in millimeters. The drawing is not true to scale.

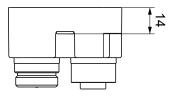
Housing features

Housing material	PA6 (polyamide)		
Sealing compound	polyurethane		
Mounting	two mounting holes Ø 3.5 mm for M3		
Metal parts	brass, nickel-plated		
Contacts	CuZn, gold-plated		
Power feed through	max. 4 A		
Installation position	variable		
Protection class	IP65, IP66, IP67 (conforms to EN 60529) when screwed together		
Dimensions (H x W x D)	approx. 126 x 30 x 26.5 mm (without connectors)		


Dimensions EPxxxx-xx2x 4.1.2






All dimensions are given in millimeters. The drawing is not true to scale.

Housing features

Housing material	PA6 (polyamide)		
Sealing compound	polyurethane		
Mounting	two mounting holes Ø 4.5 mm for M4		
Metal parts	brass, nickel-plated		
Contacts	CuZn, gold-plated		
Installation position	variable		
Protection class	IP65, IP66, IP67 (conforms to EN 60529) when screwed together		
Dimensions (H x W x D)	approx. 126 x 60 x 26.5 mm (without connectors)		

4.1.3 EPxxxx-xx42 dimensions

All dimensions are given in millimeters. The drawing is not true to scale.

Housing features

Housing material	PA6 (polyamide)		
Sealing compound	polyurethane		
Mounting	two mounting holes Ø 4.5 mm for M4		
Metal parts	brass, nickel-plated		
Contacts	CuZn, gold-plated		
Power feed through	max. 16 A at 40°C (according to IEC 60512-3)		
Installation position	variable		
Protection class	IP65, IP66, IP67 (conforms to EN 60529) when screwed together		
Dimensions (H x W x D)	approx. 150 x 60 x 26.5 mm (without connectors)		

4.1.4 Fixing

•

Protection of connectors against contamination!

While mounting the modules, protect all connectors, against contamination! Only with connected cables or plugs the protection class IP67 is guaranteed! Unused connectors have to be protected with the right plugs! See for plug sets in the catalogue.

Modules with narrow housing are mounted with two M3 bolts. Modules with wide housing are mounted with two M3 bolts to the mounting holes located at the corners or mounted with two M4 bolts to the mounting holes located centrally.

The bolts must be longer than 15 mm. The mounting holes of the modules are not threaded.

When assembling, remember that the fieldbus connectors increases the overall height. See chapter accessories.

Mounting Rail ZS5300-0001

The mounting rail ZS5300-0001 (500 mm x 129 mm) allows the time saving assembly of modules.

The rail is made of stainless steel, 1.5 mm thick, with already pre-made M3 threads for the modules. The rail has got 5.3 mm slots to mount it via M5 screws to the machine.

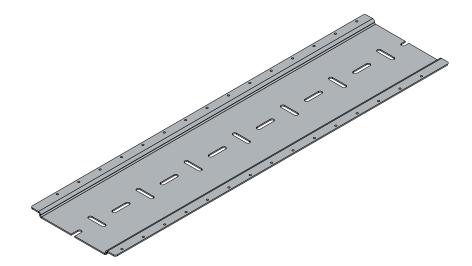


Fig. 5: Mounting Rail ZS5300-000

The mounting rail is 500 mm long, that way 15 narrow modules can be mounted with a distance of 2 mm between two modules. The rail can be cut to length for the application.

Mounting Rail ZS5300-0011

The mounting rail ZS5300-0011 (500 mm x 129 mm) has in addition to the M3 treads also pre-made M4 treads to fix 60 mm wide modules via their middle holes.

Up to 14 narrow or 7 wide modules may be mixed mounted.

4.1.5 Functional earth (FE)

EtherCAT Box modules of types EPxxxx-002x and EPxxxx-0042 must be grounded:

The Fixing also serve as connections for the functional earth (FE).

Make sure that the box is earthed with low impedance via both fastening screws. You can achieve this, for example, by mounting the box on a grounded machine bed.

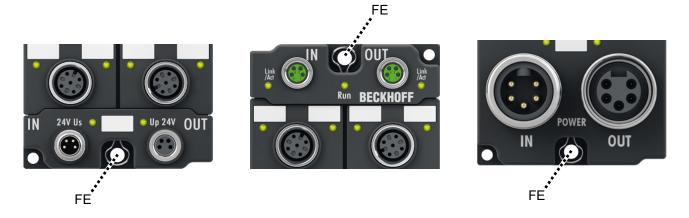


Fig. 6: Functional earth via the fastening holes

4.2 Connections

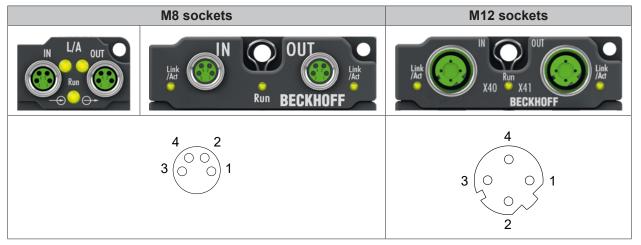
4.2.1 Tightening torques for plug connectors

Screw connectors tight with a torque wrench. (e.g. ZB8801 from Beckhoff)

Connector diameter	Tightening torque
M8	0.4 Nm
M12	0.6 Nm
7/8"	1.5 Nm

4.2.2 EtherCAT

4.2.2.1 Connectors


NOTICE

Risk of confusion: supply voltages and EtherCAT

Defect possible through incorrect insertion.

 Observe the color coding of the connectors: black: Supply voltages green: EtherCAT

EtherCAT Box modules have two green M8 or M12 sockets for the incoming and outgoing EtherCAT connections.

Assignment

There are various different standards for the assignment and colors of connectors and cables for EtherCAT.

EtherCAT	Plug co	nnector		Cable		Standard
Signal	M8	M12	RJ451	ZB9010, ZB9020, ZB9030, ZB9032, ZK1090-6292, ZK1090-3xxx-xxxx	ZB9031 and old ver- sions of ZB9030, ZB9032, ZK1090-3xxx-xxxx	TIA-568B
Tx +	Pin 1	Pin 1	Pin 1	yellow ²	orange/white ³	white/orange
Tx -	Pin 4	Pin 3	Pin 2	orange ²	orange ³	orange
Rx +	Pin 2	Pin 2	Pin 3	white ²	blue/white ³	white/green
Rx -	Pin 3	Pin 4	Pin 6	blue ²	blue ³	green
Shield	Housing		Shroud	Shield	Shield	Shield

¹) colored markings according to EN 61918 in the four-pin RJ45 connector ZS1090-0003

²) wire colors according to EN 61918

 3° wire colors

Assimilation of color coding for cable ZB9030, ZB9032 and ZK1090-3xxxx-xxxx (with M8 connectors)

For unification, the prevalent cables ZB9030, ZB9032 and ZK1090-3xxx-xxxx were changed to the colors of EN61918 (yellow, orange, white, blue). So different color coding exists. But the electrical properties are absolutely identical.

4.2.2.2 Status LEDs

L/A (Link/Act)

A green LED labelled "L/A" is located next to each EtherCAT socket. The LED indicates the communication state of the respective socket:

LED	Meaning		
off	no connection to the connected EtherCAT device		
lit	LINK: connection to the connected EtherCAT device		
flashes	ACT: communication with the connected EtherCAT device		

Run

Each EtherCAT slave has a green LED labelled "Run". The LED signals the status of the slave in the EtherCAT network:

LED	Meaning		
off	Slave is in "Init" state		
flashes uniformly	Slave is in "Pre-Operational" state		
flashes sporadically	Slave is in "Safe-Operational" state		
lit	Slave is in "Operational" state		

Description of the EtherCAT slave states

4.2.2.3 Cables

For connecting EtherCAT devices only shielded Ethernet cables that meet the requirements of at least category 5 (CAT5) according to EN 50173 or ISO/IEC 11801 should be used.

EtherCAT uses four wires for signal transmission.

Thanks to automatic line detection ("Auto MDI-X"), both symmetrical (1:1) or cross-over cables can be used between Beckhoff EtherCAT.

Detailed recommendations for the cabling of EtherCAT devices

4.2.3 Supply voltages

Power supply from SELV/PELV power supply unit!

SELV/PELV circuits (Safety Extra Low Voltage, Protective Extra Low Voltage) according to IEC 61010-2-201 must be used to supply this device.

Notes:

- SELV/PELV circuits may give rise to further requirements from standards such as IEC 60204-1 et al, for example with regard to cable spacing and insulation.
- A SELV (Safety Extra Low Voltage) supply provides safe electrical isolation and limitation of the voltage without a connection to the protective conductor, a PELV (Protective Extra Low Voltage) supply also requires a safe connection to the protective conductor.

Observe the UL requirements

• When operating under UL conditions, observe the warnings in the chapter UL Requirements [78].

The EtherCAT Box has one input for two supply voltages:

Control voltage U_s

The following sub-functions are supplied from the control voltage U_s:

- \circ the fieldbus
- the processor logic
- typically the inputs and the sensors if the EtherCAT Box has inputs.
- Peripheral voltage U_P

For EtherCAT Box modules with digital outputs the digital outputs are typically supplied from the peripheral voltage U_p . U_p can be supplied separately. If U_p is switched off, the fieldbus function, the function of the inputs and the supply of the sensors are maintained.

The exact assignment of U_s and U_P can be found in the pin assignment of the I/O connections.

Redirection of the supply voltages

The power IN and OUT connections are bridged in the module. Hence, the supply voltages U_s and U_p can be passed from EtherCAT Box to EtherCAT Box in a simple manner.

NOTICE

Note the maximum current!

Ensure that the permitted current for the connectors is not exceeded when routing the supply voltages U_s and U_P :

M8 connector: max. 4 A 7/8" connector: max 16 A

NOTICE

Unintentional cancellation of the electrical isolation possible

In some types of EtherCAT Box modules the ground potentials GND_s and GND_P are connected.

• If several EtherCAT Box modules are supplied with the same electrically isolated voltages, check whether there is an EtherCAT Box among them in which the ground potentials are connected.

4.2.3.1 Connectors

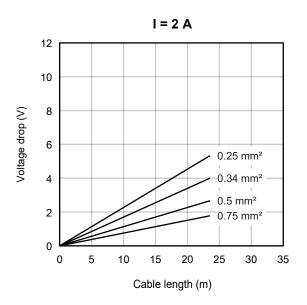
	M8 connector	7/8" connector		
BECKHOFF	IN 24V Us Up 24V OUT	24Y Us • Power IN	• Up 24V	
2 1 • Plu Inp		1 2 5 4 3 Plug Feed-in	5 4 3 Socket Forwarding	

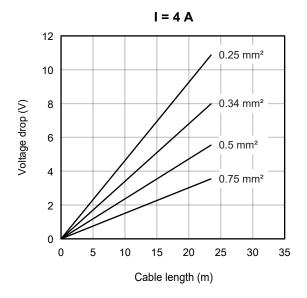
Function	M8	7/8"	Description	Core color ¹⁾
Us	1	4	Control voltage	Brown
U _P	2	5	Peripheral voltage	White
GNDs	3	2	GND to U _s	Blue
GND _P	4	1	GND to U _P	Black
FE	-	3	Functional earth	Grey

 $^{\mbox{\tiny 1)}}$ The core colors apply to cables of the type: Beckhoff ZK2020-xxxx-xxxx

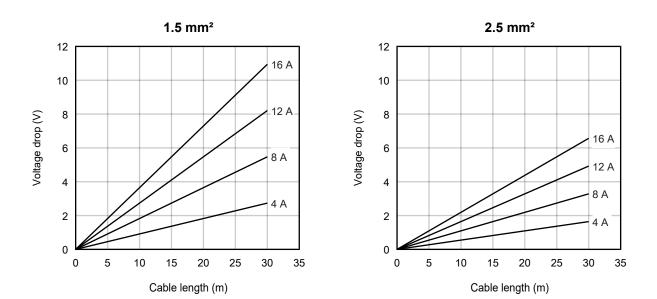
4.2.3.2 **Status LEDs**

Fig. 7: Status LEDs for the supply voltages


LED	Display	Meaning
Us	off	U _s not present.
(control voltage)	green illuminated	U _s present.
	red illuminated	Error. ¹⁾
U _P	off	U _P not present.
(peripheral voltage)	green illuminated	U _P present.
	red illuminated	Error. ¹⁾

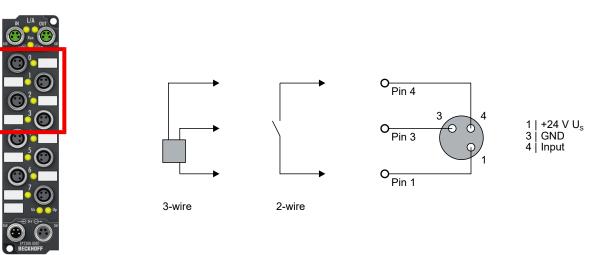

 $^{1)}$ Overload of the sensor supply/auxiliary voltage output at the signal interfaces. You can find out whether the sensor supply/auxiliary voltage is derived from U_s or from U_P from the assignment of the signal interfaces.

4.2.3.3 Conductor losses


Take into account the voltage drop on the supply line when planning a system. Avoid the voltage drop being so high that the supply voltage at the box lies below the minimum nominal voltage. Variations in the voltage of the power supply unit must also be taken into account.

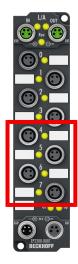
Voltage drop on cables with M8 connectors

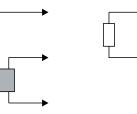
Voltage drop on cables with 7/8" connectors



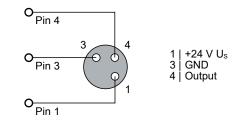
4.2.4 Digital inputs and outputs

4.2.4.1 EP2308-0001, EP2318-0001, EP2328-0001

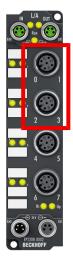

Digital inputs

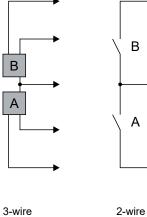

M8 sockets 0...3

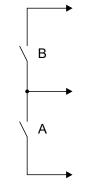
Digital outputs

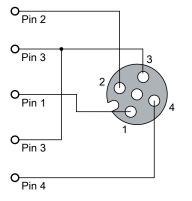

M8 sockets 4...7

2-wire

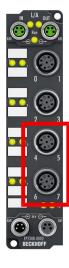

3-wire

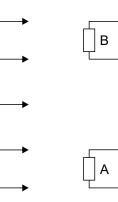


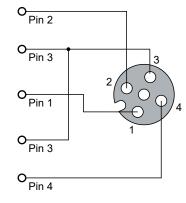

EP2308-0002, EP2318-0002, EP2328-0002 4.2.4.2


Digital inputs

M12 sockets 0...3







Digital outputs

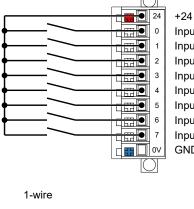
M12 sockets 4...7

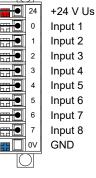
1 | +24 V U_s 2 | Output B 3 | GND 4 | Output A 5 | n.c.

3-wire

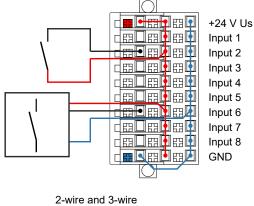
В

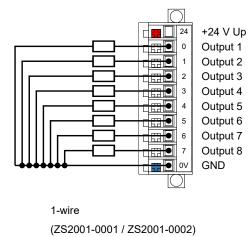
A


2-wire


Version: 3.7

4.2.4.3 EP2316-0003


Digital inputs


(ZS2001-0001 / ZS2001-0002)

(ZS2001-0004)

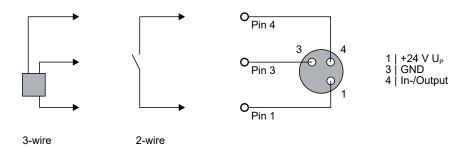
Digital outputs

+24 V Up Output 1 <u> | 63 |</u>63 | 口田 Output 2 ┛ᇚᆘᇚ╟ Output 3 d<u>a∏a</u>¶a¢ Output 4 <u>d E⊒ E⊒ E</u> E E Output 5 Output 6 \otimes 🔁 हन्न 🚺 हन 🚺 Output 7 Output 8 GND **ER** 🖸 ER 💆 ER

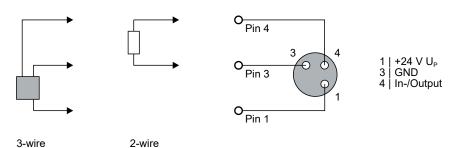
> 2-wire and 3-wire (ZS2001-0004)

4.2.4.4 EP2316-0008

D-sub socket, 25-pin



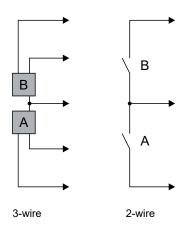
1-8 | Input 9-16 | Output 17-22 | +24 V U_s 23-25 | GND

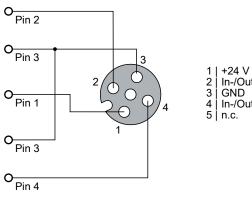

4.2.4.5 EP2338-0001, EP2338-1001

Each channel can be operated either as a digital input or as a digital output.

Operation as digital input

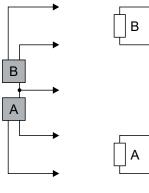
Operation as digital output

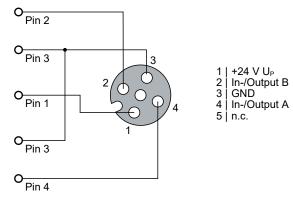



EP23xx

EP2338-0002, EP2338-1002 4.2.4.6

Each channel can be operated either as a digital input or as a digital output.

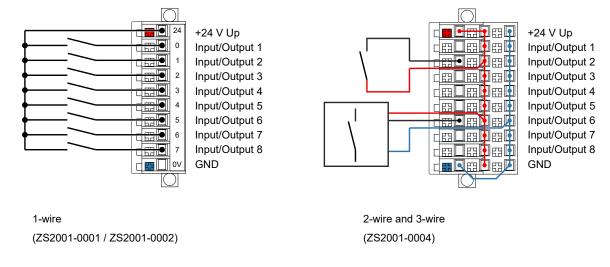

Operation as digital input



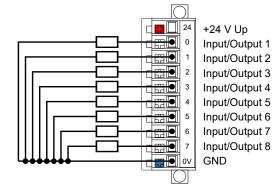
+24 V U_P In-/Output B GND In-/Output A

Operation as digital output

3-wire


2-wire

BECKHOFF

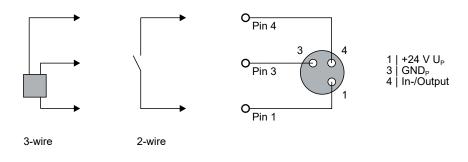

4.2.4.7 EP2339-0003

Each channel can be operated either as a digital input or as a digital output.

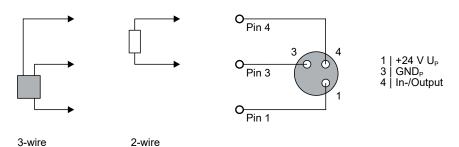
Operation as digital input

Operation as digital output

1-wire (ZS2001-0001 / ZS2001-0002)

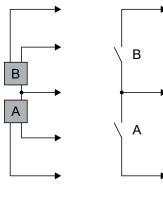

+24 V Up Input/Output 1 Input/Output 2 Input/Output 3 Input/Output 4 Input/Output 5 Input/Output 6 Input/Output 7 Input/Output 8 GND

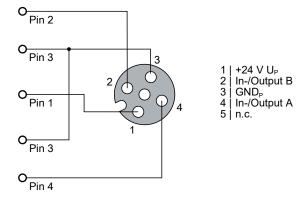
2-wire and 3-wire (ZS2001-0004)


4.2.4.8 EP2339-0021, EP2349-0021

Each channel can be operated either as a digital input or as a digital output.

Operation as digital input

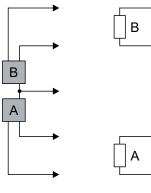

Operation as digital output

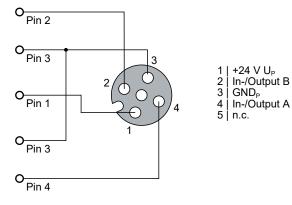


4.2.4.9 EP2339-0022, EP2349-0022

Each channel can be operated either as a digital input or as a digital output.

Operation as digital input

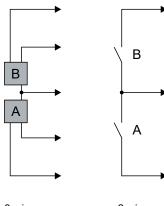


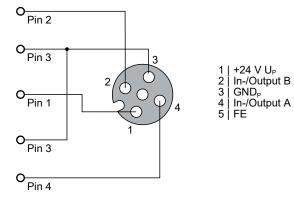


3-wire

2-wire

Operation as digital output

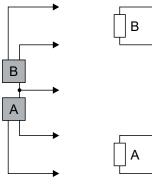

3-wire

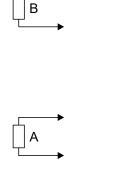

2-wire

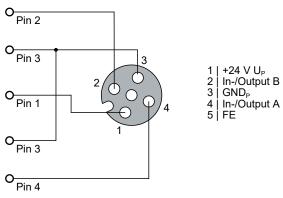
4.2.4.10 EP2339-0042

Each channel can be operated either as a digital input or as a digital output.

Operation as digital input

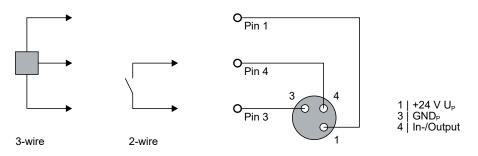




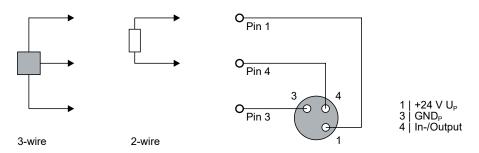

3-wire

2-wire

Operation as digital output


3-wire

2-wire


4.2.4.11 EP2339-0121

Each channel can be operated either as a digital input or as a digital output.

Operation as digital input, ground switching

Operation as digital output, ground switching

4.3 UL Requirements

The installation of the EtherCAT Box Modules certified by UL has to meet the following requirements.

Supply voltage

CAUTION!

This UL requirements are valid for all supply voltages of all marked EtherCAT Box Modules! For the compliance of the UL requirements the EtherCAT Box Modules should only be supplied

- by a 24 V_{DC} supply voltage, supplied by an isolating source and protected by means of a fuse (in accordance with UL248), rated maximum 4 Amp, or
- by a 24 V_{DC} power source, that has to satisfy NEC class 2.
 A NEC class 2 power supply shall not be connected in series or parallel with another (class 2) power source!

CAUTION!

To meet the UL requirements, the EtherCAT Box Modules must not be connected to unlimited power sources!

Networks

CAUTION!

To meet the UL requirements, EtherCAT Box Modules must not be connected to telecommunication networks!

Ambient temperature range

▲ CAUTION

CAUTION!

To meet the UL requirements, EtherCAT Box Modules has to be operated only at an ambient temperature range of -25 °C to +55 °C!

Marking for UL

All EtherCAT Box Modules certified by UL (Underwriters Laboratories) are marked with the following label.

Fig. 8: UL label

4.4 ATEX notes

4.4.1 ATEX - Special conditions

A WARNING

Observe the special conditions for the intended use of EtherCAT Box modules in potentially explosive areas – directive 94/9/EU.

- The certified components are to be installed with a <u>BG2000-0000 or BG2000-0010 protection enclosure</u>
 [▶ 80] that guarantees a protection against mechanical hazards!
- If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or pipes, or higher than 80°C at the wire branching points, then cables must be selected whose temperature data correspond to the actual measured temperature values!
- Observe the permissible ambient temperature range of 0 to 55°C for the use of EtherCAT Box modules in potentially explosive areas!
- Measures must be taken to protect against the rated operating voltage being exceeded by more than 40% due to short-term interference voltages!
- The connections of the certified components may only be connected or disconnected if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!

Standards

The fundamental health and safety requirements are fulfilled by compliance with the following standards:

- EN 60079-0: 2006
- EN 60079-15: 2005

Marking

The EtherCAT Box modules certified for potentially explosive areas bear the following marking:

or

Batch number (D number)

The EtherCAT Box modules bear a batch number (D number) that is structured as follows:

D: WW YY FF HH

WW - week of production (calendar week) YY - year of production FF - firmware version HH - hardware version

Example with batch number 29 10 02 01:

- 29 week of production 29
- 10 year of production 2010
- 02 firmware version 02
- 01 hardware version 01

4.4.2 BG2000 - EtherCAT Box protection enclosures

Risk of electric shock and damage of device!

Bring the EtherCAT system into a safe, powered down state before starting installation, disassembly or wiring of the modules!

ATEX

WARNING

Mount a protection enclosure!

To fulfill the <u>special conditions according to ATEX [▶ 79]</u>, a BG2000-0000 or BG2000-0010 protection enclosure has to be mounted over the EtherCAT Box.

Installation

Put the cables for EtherCAT, power supply and sensors/actuators through the hole of the protection enclosure.

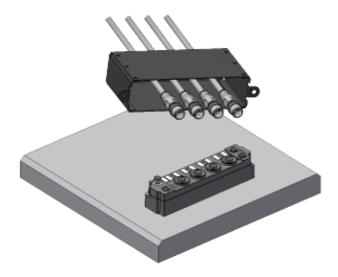


Fig. 9: BG2000 - putting the cables

Fix the wires for EtherCAT, power supply and sensors/actuators to the EtherCAT Box.

RECKHOFE

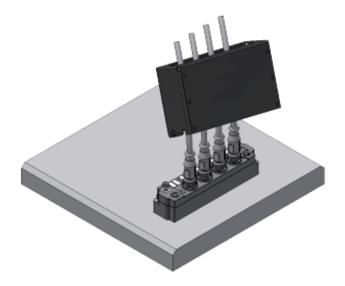


Fig. 10: BG2000 - fixing the cables

Mount the protection enclosure over the EtherCAT Box.

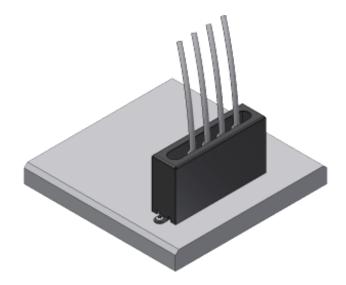


Fig. 11: BG2000 - mounting the protection enclosure

4.4.3 ATEX Documentation

Notes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX)

Pay also attention to the continuative documentationNotes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX) that is available in the download area of the Beckhoff homepage http://www.beckhoff.com!

4.5 Disposal

Products marked with a crossed-out wheeled bin shall not be discarded with the normal waste stream. The device is considered as waste electrical and electronic equipment. The national regulations for the disposal of waste electrical and electronic equipment must be observed.

5 Commissioning and configuration

5.1 Integrating into a TwinCAT project

The procedure for integration in a TwinCAT project is described in this Quick start guide.

5.2 Switching inductive loads

When switching off inductive loads, high induction voltages result from interrupting the current too quickly. These are limited by an integrated free-wheeling diode. Since the current reduces only slowly, a delayed switch-off can occur in many control applications. For example, a valve remains open for many milliseconds. Switch-off times are realized that correspond, for instance, to the switch-on time of the coil.

Protection against high induction voltages

To protect against voltage peaks such as can occur when switching inductive loads, we recommend to provide suitable protective circuits (e.g. with the free-wheeling diode, RC combination or varistor) directly at the actuator.

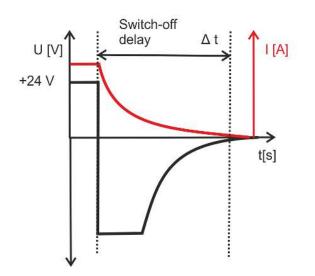


Fig. 12: Switch-off of inductive loads

5.3 Behavior of the outputs in case of a fault (EP2316 only)

EtherCAT Box Modules of the type EP2316 have diagnostic functions. They can detect faults and automatically react to them. The following chapters describe the configuration of the behavior in case of various types of fault.

5.3.1 Behavior in case of network failure

You can use bit 8000:0n (Safe State Active) to specify whether channel n should assume a certain value (Safe State Value) when data transmission is interrupted.

With bit 8001:0n (Safe State Value) you define this value for channel n.

Safe State Value during network start-up

The network transmits output process data only in the network states Save-Operational (SAFE-OP) and Operational (OP). Also at the network states INIT, Pre-Operational (PRE-OP) and BOOT passed through during network start-up no output process data is transmitted. If Safe State is activated for an output, this output also adopts the specified value during network start-up.

8000:0 - DIG Safe state active Ch.1

Observe the maximum short-circuit current!

When dimensioning the power supply unit and choosing the fuses, observe that the short-circuit current is approximately 1.7 A.

Solution Explorer 🔹 👎 🗙	TwinCAT Project4	÷X				
© © ☆ 🛱 - Ĭo - ē 🗡 🗕	General EtherCA	T DC Process Data Plc	Startup CoE - O	nline Online		
Search Solution Explorer (Ctrl+ü)	Update L	ist Auto Update	Single Update	Show Offling Data		
Solution 'TwinCAT Project1' (1 project)						
TwinCAT Project1	Advance	1				
SYSTEM	Add to Star	tup Online Data	Module OD (A	oE Port): 0		
MOTION						
PLC	Index	Name	Flags	Value	Unit	^
SAFETY	. 7000:0	DIG Outputs Ch.1	RO	>8<		
96+ C++	⊟ <mark>8000:0</mark>	DIG Safe state active Ch.1	RW	> 8 <		
ANALYTICS	8000:01	Output 1	RW	TRUE		
▲ 🔽 I/O	8000:02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RW	TRUE		
Devices	8000:03		RW	TRUE		
🔺 🗮 Device 1 (EtherCAT)	8000:04	Output 4	RW	TRUE		
🚔 Image	8000:05	Output 5	RW	TRUE		
🛟 Image-Info	8000:06		RW	TRUE		
SyncUnits	8000:07		RW	TRUE		
Inputs	80:008		RW	TRUE		_
Outputs	i⊟ 8001:0	DIG Safe state value Ch.1	RW	> 8 <		
InfoData	8001:01		RW	FALSE		_
A Box 1	8001:02		RW	FALSE		
DIG Inputs	8001:03		RW	FALSE		_
DIG Diag Inputs	8001:04		RW	FALSE		
DIG Inputs Device	8001:05	Output 5	RW	FALSE		_
DIG Outputs	8001:06		RW	FALSE		
DIG Outputs Device	8001:07		RW	FALSE		_
	8001:08		RW	FALSE		
WcState	€ F000:0	Modular device profile	RO	>2<		
🕨 🛄 InfoData	F008	Code word	RW	0x0000000 (0)		~
Mappings						
Solution Explorer Team Explorer						

8000:01 to 8000:08 - DIG Safe state active Ch.1, Output 1 to Output 8 (default: TRUE)

Specifies whether or not the outputs should adopt a safe state in the case of a network failure.

Value	Meaning
FALSE	Safe state disabled
TRUE	Safe state enabled

8001:01 to 8001:08 - DIG Safe state value Ch.1, Output 1 to Output 8 (default: FALSE)

Specifies what the safe state is.

Value	Meaning
FALSE	Output switched off
TRUE	Output switched on

5.3.2 Behavior in case of short circuit

You can set the behavior of the outputs in case of short circuit in the CoE object F800 "DO Settings".

F800:0 - DO Settings	(Safe State Value)
----------------------	--------------------

Solution Explorer 🛛 🝷 🕂 🗙	TwinCAT Project4	<mark>⊨ X</mark>				
G O 🟠 🛱 - 🐻 - 🗗 🏓 💻	General EtherCAT	DC Process Data Plc	Startup CoE - Or	line Online		
Search Solution Explorer (Ctrl+ü)			_			
Solution 'TwinCAT Project4' (1 project)	Update Lis	st 🗌 Auto Update 🗹	Single Update	Show Offline Data		
TwinCAT Project4	Advanced					
SYSTEM	A111. O. 1	ID Online Data	Module OD (Ad	E Port): 0		
MOTION	Add to Startu	Unline Data		U U		
PLC	Index	Name	Flags	Value	Unit	^
AFETY				1	Onic	
% C++		DIG TxPDO-Map Inputs	RO	> 11 <		
		DIG TxPDO-Map Diag Inputs	RO	> 9 <		
	. ± 1A02:0	DIG TxPDO-Map Inputs Device	RO	>7<		
	it: 1C00:0	Sync manager type	RO	>4<		
	. ±	RxPDO assign	RW	>2<		
 Device 1 (EtherCAT) 	. <u>∓</u> 1C13:0	TxPDO assign	RW	> 3 <		- 10
🛟 Image	. 1 C32:0	SM output parameter	RO	> 32 <		
🛟 Image-Info		SM input parameter	RO	> 32 <		
SyncUnits	÷ 6000:0	DIG Inputs Ch.1	RO	> 14 <		
Inputs	· €001:0	DIG Diag Inputs Ch.1	RO	> 8 <		
Outputs	· 7000:0	DIG Outputs Ch.1	RO	> 8 <		
InfoData	.	DIG Safe state active Ch.1	RW	> 8 <		
A Box 1	· € 8001:0	DIG Safe state value Ch.1	RW	> 8 <		
DIG Inputs		Modular device profile	RO	>2<		
DIG Diag Inputs	F008	Code word	RW	0x0000000 (0)		
DIG Inputs Device	😟 🖓 F010:0	Module list	RW	>1<		
	. € F600:0	DIG Inputs	RO	> 16 <		
DIG Outputs	🕂 🕂 F700:0	DIG Outputs	RO	>2<		
DIG Outputs Device	Ė~ F800:0	DIG Settings	RW	> 17 <		
WcState	F800:01	Disable shut off	RW	FALSE		
InfoData	F800:11	Switch off time	RW	0x03E8 (1000)		\checkmark
Mappings						
olution Explorer Team Explorer						

Table 1: F800:01 - Disable shut off (default: FALSE)

Value	Meaning
FALSE	In the event of a short circuit at one output, all outputs of the module are switched off. This disabling can be removed through the process data value <i>Reset Outputs</i> .
TRUE	In the event of a short circuit at an output, only this output of the module is switched off. After rectifying the short circuit, this output is automatically enabled again.

F800:11 - Switch off time (default: 0x03E8, 1000_{dec})

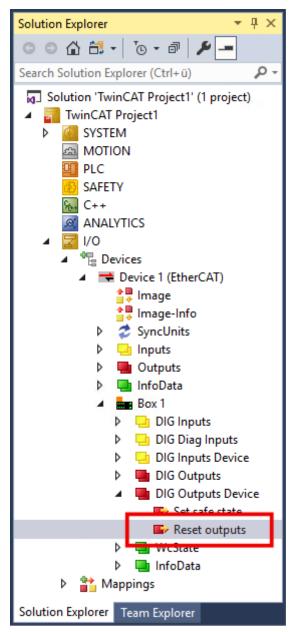
Here you can enter a time in milliseconds. During this time, the module checks whether the short circuit has been eliminated by switching itself on again.

Default = 1000 ms (depending on module type and internal cycle time). Errors are only displayed after this time.

5.3.3 Behavior in case of lack of supply voltage

The digital outputs are supplied from the supply voltage U_{P} . If the supply voltage U_{P} is not present, the digital outputs cannot output a high level.

If an output is set and does not output a high level, this is detected as a fault. On expiry of the fault reaction time, the fault is reported in the process data:


- The "Diag Input *x*" bit of the output is set to "1".
- The "Error Channel y" bit of the channel to which the output belongs is set to "1".

In the factory setting, all outputs of a channel in which a fault has occurred are disabled. The outputs also remain disabled when U_P is switched on again.

Re-enabling outputs

There are two ways to re-enable disabled outputs:

• Manual: Apply a positive edge to the variable "Reset outputs".

- Automatic: Set the parameter F800:01 to TRUE. All outputs will then be re-enabled as soon as $U_{\mbox{\tiny P}}$ is switched on.

Note: F800:01 also influences the <u>behavior in case of short circuit [> 87]</u>.

5.4 Restore the delivery state

You can restore the delivery state of the backup objects as follows:

- 1. Ensure that TwinCAT is running in Config mode.
- 2. In CoE object 1011:0 "Restore default parameters" select parameter 1011:01 "Subindex 001".

eneral EtherCA	T DC Process Data Plc Sta	rtup CoE - C	Online Diag History Online		
Update L Advanced		le Update 🗌	Show Offline Data		
Advanced					
Add to Start	tup Online Data	Module OD (/	AoE Port): 0		
Index	Name	Flags	Value	Unit	1
1000	Device type	RO	0x00001389 (5001)		
1008	Device name	RO	EL5101		
1009	Hardware version	RO			
100A	Software version	RO			
<u>⊟_ 1011:0</u>	Restore default parameters	RO	>1<		
1011:01	SubIndex 001	RW	0x0000000 (0)		
	Identity	RO	> 4 <		
± 10F0:0	Backup parameter handling	RO	>1<		
± 1400:0	RxPDO-Par Outputs	RO	> 6 <		
⊕ 1401:0	RxPDO-Par Outputs Word-Aligned	RO	> 6 <		
± 1402:0	ENC RxPDO-Par Control compact	RO	> 6 <		
⊞ 1403:0	ENC RxPDO-Par Control	RO	> 6 <		
± 1600:0	RxPDO-Map Outputs	RO	> 2 <		
÷ 1601:0	RxPDO-Map Outputs Word-Aligned	RO	> 3 <		
± 1602:0	ENC RxPDO-Map Control compact	RO	>7<		~

- 3. Double-click on "Subindex 001".
 - ⇒ The "Set Value Dialog" dialog box opens.
- 4. Enter the value 1684107116 in the "Dec" field. Alternatively: enter the value 0x64616F6C in the "Hex" field.

Set Value Dia	ilog X
Dec:	1684107116 OK
Hex:	0x64616F6C Cancel
Float:	1.6634185e+22
Bool:	<u>0</u> <u>1</u> Hex Edit
Binary:	6C 6F 61 64 4
Bit Size:	○1 ○8 ○16 ●32 ○64 ○?

- 5. Confirm with "OK".
- \Rightarrow All backup objects are reset to the delivery state.

Alternative restore value

With some older modules the backup objects can be changed with an alternative restore value: Decimal value: 1819238756 Hexadecimal value: 0x6C6F6164

An incorrect entry for the restore value has no effect.

5.5 Decommissioning

A WARNING

Risk of electric shock!

Bring the bus system into a safe, de-energized state before starting disassembly of the devices!

6 Appendix

6.1 General operating conditions

Protection rating according to IP code

The degrees of protection are defined and divided into different classes in the IEC 60529 standard (EN 60529). Degrees of protection are designated by the letters "IP" and two numerals: **IPxy**

- Numeral x: Dust protection and contact protection
- Numeral y: Protection against water

x	Meaning
0	Not protected
1	Protected against access to dangerous parts with the back of the hand. Protected against solid foreign objects of 50 mm \emptyset
2	Protected against access to dangerous parts with a finger. Protected against solid foreign objects of 12.5 mm \emptyset
3	Protected against access to dangerous parts with a tool. Protected against solid foreign objects of 2.5 mm Ø
4	Protected against access to dangerous parts with a wire. Protected against solid foreign objects of 1 mm \emptyset
5	Protection against access to dangerous parts with a wire. Dust-protected. Ingress of dust is not prevented completely, although the quantity of dust able to penetrate is limited to such an extent that the proper function of the device and safety are not impaired
6	Protection against access to dangerous parts with a wire. Dust-tight. No ingress of dust

У	Meaning
0	Not protected
1	Protection against vertically falling water drops
2	Protection against vertically falling water drops when enclosure tilted up to 15°
3	Protection against spraying water. Water sprayed at an angle of up to 60° on either side of the vertical shall have no harmful effects
4	Protection against splashing water. Water splashed against the enclosure from any direction shall have no harmful effects
5	Protection against water jets.
6	Protection against powerful water jets.
7	Protected against the effects of temporary immersion in water. Ingress of water in quantities causing harmful effects shall not be possible when the enclosure is immersed in water at a depth of 1 m for 30 minutes

Chemical resistance

The resistance refers to the housing of the IP67 modules and the metal parts used. In the table below you will find some typical resistances.

Туре	Resistance
Water vapor	unstable at temperatures > 100 °C
Sodium hydroxide solution (ph value > 12)	stable at room temperature unstable > 40 °C
Acetic acid	unstable
Argon (technically pure)	stable

Key

- resistant: Lifetime several months
- non inherently resistant: Lifetime several weeks
- · not resistant: Lifetime several hours resp. early decomposition

6.2 Accessories

Mounting

Ordering information	Description	Link
ZS5300-0011	Mounting rail	<u>Website</u>

Cables

A complete overview of pre-assembled cables for fieldbus components can be found here.

Ordering information	Description	Link
ZK1090-3xxx-xxxx	EtherCAT cable M8, green	<u>Website</u>
ZK1093-3xxx-xxxx	EtherCAT cable M8, yellow	<u>Website</u>
ZK1090-6xxx-xxxx	EtherCAT cable M12, green	<u>Website</u>
ZK2000-2xxx-xxxx	Sensor cable M8, 3-pin	<u>Website</u>
ZK2000-6xxx-xxxx	Sensor cable M12, 4-pin	<u>Website</u>
ZK2000-7xxx-0xxx	Sensor cable M12, 4-pin + shield	<u>Website</u>
ZK2020-3xxx-xxxx	Power cable M8, 4-pin	<u>Website</u>
ZK203x-xxxx-xxxx	Power cable 7/8", 5-pin	<u>Website</u>

Connector

Ordering information	Description	Link
ZS2001-000x	Female header with spring connection, IP20	<u>Website</u>
ZS2002-0111	D-sub connector, 25-pin	<u>Website</u>

Labeling material, protective caps

Ordering information	Description
ZS5000-0010	Protective cap for M8 sockets, IP67 (50 pieces)
ZS5000-0020	Protective cap for M12 sockets, IP67 (50 pcs.)
ZS5100-0000	Inscription labels, unprinted, 4 strips of 10
ZS5000-xxxx	Printed inscription labels on enquiry

Tools

Ordering information	Description
ZB8801-0000	Torque wrench for plugs, 0.4…1.0 Nm
ZB8801-0001	Torque cable key for M8 / wrench size 9 for ZB8801-0000
ZB8801-0002	Torque cable key for M12 / wrench size 13 for ZB8801-0000
ZB8801-0003	Torque cable key for M12 field assembly / wrench size 18 for ZB8801-0000

1

Further accessories

Further accessories can be found in the price list for fieldbus components from Beckhoff and online at <u>https://www.beckhoff.com</u>.

6.3 Version identification of EtherCAT devices

6.3.1 General notes on marking

Designation

A Beckhoff EtherCAT device has a 14-digit designation, made up of

- · family key
- type
- version
- revision

Example	Family	Туре	Version	Revision
EL3314-0000-0016	EL terminal 12 mm, non-pluggable connection level	3314 4-channel thermocouple terminal	0000 basic type	0016
ES3602-0010-0017	ES terminal 12 mm, pluggable connection level	3602 2-channel voltage measurement	0010 high-precision version	0017
CU2008-0000-0000	CU device	2008 8-port fast ethernet switch	0000 basic type	0000

Notes

- The elements mentioned above result in the **technical designation**. EL3314-0000-0016 is used in the example below.
- EL3314-0000 is the order identifier, in the case of "-0000" usually abbreviated to EL3314. "-0016" is the EtherCAT revision.
- The order identifier is made up of
 - family key (EL, EP, CU, ES, KL, CX, etc.)
 - type (3314)
 - version (-0000)
- The **revision** -0016 shows the technical progress, such as the extension of features with regard to the EtherCAT communication, and is managed by Beckhoff.

In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation.

Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave Information) in the form of an XML file, which is available for download from the Beckhoff web site. From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. *"EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)"*.

• The type, version and revision are read as decimal numbers, even if they are technically saved in hexadecimal.

6.3.2 Version identification of IP67 modules

The serial number/ data code for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH

KK - week of production (CW, calendar week)

- YY year of production FF - firmware version
- Here ware version
- HH hardware version

Example with serial number 12 06 3A 02:

- 12 production week 12
- 06 production year 2006
- 3A firmware version 3A
- 02 hardware version 02

Exceptions can occur in the **IP67 area**, where the following syntax can be used (see respective device documentation):

Syntax: D ww yy x y z u

D - prefix designation ww - calendar week

yy - year

- x firmware version of the bus PCB
- y hardware version of the bus PCB
- z firmware version of the I/O PCB
- u hardware version of the I/O PCB

Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O PCB: 1

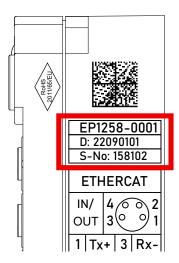


Fig. 13: EP1258-00001 IP67 EtherCAT Box with batch number/DateCode 22090101 and unique serial number 158102

BECKHOFF

6.3.3 Beckhoff Identification Code (BIC)

The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016.

Fig. 14: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

- on the packaging unit
- directly on the product (if space suffices)
- on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling and product management.

Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it.

Following information is possible, positions 1 to 4 are always present, the other according to need of production:

BECKHOFF

	Type of information	Explanation	Data identifier	Number of digits incl. data identifier	Example
1	Beckhoff order number	Beckhoff order number	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Unique serial number, see note below	SBTN	12	SBTNk4p562d7
3	Article description	Beckhoff article description, e.g. EL1008	1K	32	1KEL1809
4	Quantity	Quantity in packaging unit, e.g. 1, 10, etc.	Q	6	Q1
5	Batch number	Optional: Year and week of production	2P	14	2P401503180016
6	ID/serial number	Optional: Present-day serial number system, e.g. with safety products	51S	12	<mark>51S</mark> 678294
7	Variant number	Optional: Product variant number on the basis of standard products	30P	32	<mark>30P</mark> F971, 2*K183

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

Structure of the BIC

Example of composite information from positions 1 to 4 and with the above given example value on position 6. The data identifiers are highlighted in bold font:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Accordingly as DMC:

Fig. 15: Example DMC 1P072222SBTNk4p562d71KEL1809 Q1 51S678294

BTN

An important component of the BIC is the Beckhoff Traceability Number (BTN, position 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC.

NOTICE

This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information.

6.3.4 Electronic access to the BIC (eBIC)

Electronic BIC (eBIC)

The Beckhoff Identification Code (BIC) is applied to the outside of Beckhoff products in a visible place. If possible, it should also be electronically readable.

The interface that the product can be electronically addressed by is crucial for the electronic readout.

EtherCAT devices (IP20, IP67)

All Beckhoff EtherCAT devices have an ESI-EEPROM which contains the EtherCAT identity with the revision number. The EtherCAT slave information, also colloquially known as the ESI/XML configuration file for the EtherCAT master, is stored in it. See the corresponding chapter in the EtherCAT system manual (Link) for the relationships.

Beckhoff also stores the eBIC in the ESI-EEPROM. The eBIC was introduced into Beckhoff IO production (terminals, box modules) in 2020; as of 2023, implementation is largely complete.

The user can electronically access the eBIC (if present) as follows:

- With all EtherCAT devices, the EtherCAT master (TwinCAT) can read the eBIC from the ESI-EEPROM
 - From TwinCAT 3.1 build 4024.11, the eBIC can be displayed in the online view.
 - To do this, check the "Show Beckhoff Identification Code (BIC)" checkbox under EtherCAT → Advanced Settings → Diagnostics:

TwinCAT P	roject30	₽ X								
General Netid:		EtherCAT Online 69.254.124.140.2.1		Inline	Advanced S Export Configu Sync Unit As Topolo	uration File		Advanced Settings - State Machine - Cyclic Frames - Distributed Clocks - EoE Support - Redundancy - Emergency	0002 'ESC Build' 0004 'SM/FMMU Cnt' 0006 'Ports/DPRAM' 0008 'Features'	O000 Add Show Change Counters (State Changes / Not Present)
Frame 0 0	Cmd LWR BRD	Addr 0x01000000 0x0000 0x0130	Len 1 2	WC 1 2	Sync Unit <default></default>	Cycle (ms) 4.000 4.000	Utilizatio 0.17 0.17	Diagnosis Online View	0010 Phys Add' 0012 Configured Station Alias' 0020 Register Protect' 0030 'Access Protect' 0040 'ESC reset' 0100 'ESC Crif' 0102 'ESC Crif' 0108 Phys. RW Offset' 0108 Phys. RW Offset' 0109 CSC Status' 0110 'ESC Status'	Show Production Info

• The BTN and its contents are then displayed:

General	Adapter	EtherCAT Online	CoE - Onli	ne									
No	Addr	Name	State	CRC	Fw	Hw	Production Data	ltemNo.	BTN	Description	Quantity	BatchNo	SerialNo
1	1001	Term 1 (EK1100)	OP	0,0	0	0	-						
2	1002	? Term 2 (EL1018)	OP	0,0	0	0	2020 KW36 Fr	072222	k4p562d7	EL1809	1		678294
1 3	1003	3 Term 3 (EL3204)	OP	0,0	7	6	2012 KW24 Sa						
- 4	1004	Term 4 (EL2004)	OP	0,0	0	0		072223	k4p562d7	EL2004	1		678295
- 5	1005	5 Term 5 (EL1008)	OP	0,0	0	0							
- 6		Term 6 (EL2008)	OP	0,0	0	12	2014 KW14 Mo						
-7	1007	7 Term 7 (EK1110)	OP	0	1	8	2012 KW25 Mo						

- Note: As shown in the figure, the production data HW version, FW version, and production date, which have been programmed since 2012, can also be displayed with "Show production info".
- Access from the PLC: From TwinCAT 3.1. build 4024.24, the functions *FB_EcReadBIC* and *FB_EcReadBTN* for reading into the PLC are available in the Tc2_EtherCAT library from v3.3.19.0.
- EtherCAT devices with a CoE directory may also have the object 0x10E2:01 to display their own eBIC, which can also be easily accessed by the PLC:

• The device must be in PREOP/SAFEOP/OP for access:

Index		Name		Value		
	1000	Device type	RO	0x015E1389 (22942601)		
	1008	Device name	RO	ELM3704-0000		
	1009	Hardware version	RO	00		
	100A	Software version	RO	01		
	100B	Bootloader version	RO	J0.1.27.0		
۲	1011:0	Restore default parameters	RO	>1<		
•	1018:0	Identity	RO	>4<		
8	10E2:0	Manufacturer-specific Identification C	RO	>1<		
	10E2:01	SubIndex 001	RO	1P158442SBTN0008jekp1KELM3704	Q1	2P482001000016
•	10F0:0	Backup parameter handling	RO	>1<		
+	10F3:0	Diagnosis History	RO	>21 <		
	10F8	Actual Time Stamp	RO	0x170bfb277e		

- The object 0x10E2 will be preferentially introduced into stock products in the course of necessary firmware revision.
- From TwinCAT 3.1. build 4024.24, the functions *FB_EcCoEReadBIC* and *FB_EcCoEReadBTN* for reading into the PLC are available in the Tc2_EtherCAT library from v3.3.19.0
- The following auxiliary functions are available for processing the BIC/BTN data in the PLC in *Tc2_Utilities* as of TwinCAT 3.1 build 4024.24
 - F_SplitBIC: The function splits the Beckhoff Identification Code (BIC) sBICValue into its components using known identifiers and returns the recognized substrings in the ST_SplittedBIC structure as a return value
 - BIC_TO_BTN: The function extracts the BTN from the BIC and returns it as a return value
- Note: If there is further electronic processing, the BTN is to be handled as a string(8); the identifier "SBTN" is not part of the BTN.
- · Technical background

The new BIC information is written as an additional category in the ESI-EEPROM during device production. The structure of the ESI content is largely dictated by the ETG specifications, therefore the additional vendor-specific content is stored using a category in accordance with the ETG.2010. ID 03 tells all EtherCAT masters that they may not overwrite these data in the event of an update or restore the data after an ESI update.

The structure follows the content of the BIC, see here. The EEPROM therefore requires approx. 50..200 bytes of memory.

- Special cases
 - If multiple hierarchically arranged ESCs are installed in a device, only the top-level ESC carries the eBIC information.
 - If multiple non-hierarchically arranged ESCs are installed in a device, all ESCs carry the eBIC information.
 - If the device consists of several sub-devices which each have their own identity, but only the toplevel device is accessible via EtherCAT, the eBIC of the top-level device is located in the CoE object directory 0x10E2:01 and the eBICs of the sub-devices follow in 0x10E2:nn.

6.4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: <u>www.beckhoff.com</u>

You will also find further documentation for Beckhoff components there.

Support

The Beckhoff Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- · design, programming and commissioning of complex automation systems
- and extensive training program for Beckhoff system components

Hotline:	+49 5246 963 157
e-mail:	support@beckhoff.com
web:	www.beckhoff.com/support

Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- repair service
- · spare parts service
- · hotline service

Hotline:	+49 5246 963 460
e-mail:	service@beckhoff.com
web:	www.beckhoff.com/service

Headquarters Germany

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Germany

Phone:	+49 5246 963 0
e-mail:	info@beckhoff.com
web:	www.beckhoff.com

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com