

Betriebsanleitung

EP2918

TwinSAFE-EtherCAT-Box mit 8 fehlersicheren Ausgängen

Version: 1.0.0

Datum: 06.03.2020

Inhaltsverzeichnis

1	Vorw	ort		5
	1.1	Hinweis	se zur Dokumentation	5
	1.2	Sicherh	neitshinweise	6
		1.2.1	Auslieferungszustand	6
		1.2.2	Sorgfaltspflicht des Betreibers	6
		1.2.3	Erklärung der Hinweise	7
	1.3	Ausgab	pestände der Dokumentation	7
	1.4	Version	nshistorie des TwinSAFE-Produktes	8
2	Syste	embesch	hreibung	9
	2.1	EtherC	AT-Box-Module	9
3	Prod	ukthesc	hreibung	10
	3.1		8-0032	
	3.2		mungsgemäße Verwendung	
	3.3		sche Daten	
	3.4		neitstechnische Kenngrößen	
	3.5		er Ausgang	
	3.6		sungen	
			99	
4	Betri 4.1		ungsbedingungen	
	4.1	_	tion	
	4.2	4.2.1		
		4.2.1	Befestigung	
			Anschluss	
		4.2.3	Temperaturmessung EP2918	
	4.0	4.2.4	Signalleitungen	
	4.3	O	uration der EP2918 in TwinCAT	
		4.3.1	Einfügen eines EtherCAT-Devices	
		4.3.2	Einfügen einer EP2918	
		4.3.3	Verwendung der integrierten TwinSAFE Logic Funktionen	
		4.3.4	Projektierungsgrenzen der EP2918	
		4.3.5	Adresseinstellungen auf der TwinSAFE-EtherCAT-Box	
		4.3.6	Alias Devices	
		4.3.7	Parameter der EP2918	
		4.3.8	Prozessabbild der EP2918	
	4.4		onszeiten TwinSAFE	
	4.5	O	se	
		4.5.1	EtherCAT - Feldbus-LEDs	35
		4.5.2	Status-LEDs	
		4.5.3	Diagnose-LEDs	37
		4.5.4	Darstellung der Blink-Codes	38
		4.5.5	Diagnose-Objekte	38
		4.5.6	Zykluszeit des Safety-Projektes	40
		4.5.7	Reiter Diag-Historie	40
		4.5.8	Diagnose-Historie	42

Version: 1.0.0

	4.6	Instandhaltung	. 44
	4.7	Lebensdauer	. 45
	4.8	Außerbetriebnahme	. 45
	4.9	Update der Firmware von TwinSAFE-Produkten	. 46
5	Anha	ang	. 49
	5.1	Schutzarten nach IP-Code	. 49
	5.2	Support und Service	. 50
	5.3	Zertifikate	51

1 Vorwort

1.1 Hinweise zur Dokumentation

Zielgruppe

Diese Beschreibung wendet sich ausschließlich an ausgebildetes Fachpersonal der Steuerungs- und Automatisierungstechnik, das mit den geltenden nationalen und internationalen Normen und Regeln vertraut ist

Zur Installation und Inbetriebnahme der Komponenten ist die Beachtung der nachfolgenden Hinweise und Erklärungen unbedingt notwendig.

Das Fachpersonal hat sicherzustellen, dass die Anwendung bzw. der Einsatz der beschriebenen Produkte alle Sicherheitsanforderungen, einschließlich sämtlicher anwendbaren Gesetze, Vorschriften, Bestimmungen und Normen erfüllt.

Dokumentenursprung

Diese Dokumentation ist die Originalbetriebsanleitung und ist in deutscher Sprache verfasst. Alle weiteren Sprachen werden von dem deutschen Original abgeleitet.

Aktualität

Bitte prüfen Sie, ob Sie die aktuelle und gültige Version des vorliegenden Dokumentes verwenden. Auf der Beckhoff Homepage finden Sie unter http://www.beckhoff.de/german/download/twinsafe.htm die jeweils aktuelle Version zum Download. Im Zweifelsfall wenden Sie sich bitte an den technischen Support [> 50].

Produkteigenschaften

Gültig sind immer nur die Produkteigenschaften, die in der jeweils aktuellen Anwenderdokumentation angegeben sind. Weitere Informationen, die auf den Produktseiten der Beckhoff Homepage, in E-Mails oder sonstigen Publikationen angegeben werden, sind nicht maßgeblich.

Disclaimer

Diese Dokumentation wurde sorgfältig erstellt. Die beschriebenen Produkte unterliegen zyklisch einer Revision. Deshalb ist die Dokumentation nicht in jedem Fall vollständig auf die Übereinstimmung mit den beschriebenen Leistungsdaten, Normen oder sonstigen Merkmalen geprüft. Wir behalten uns das Recht vor, die Dokumentation jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus den Angaben, Abbildungen und Beschreibungen in dieser Dokumentation können keine Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Marken

Beckhoff®, TwinCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® und XPlanar® sind eingetragene und lizenzierte Marken der Beckhoff Automation GmbH. Die Verwendung anderer in dieser Dokumentation enthaltenen Marken oder Kennzeichen durch Dritte kann zu einer Verletzung von Rechten der Inhaber der entsprechenden Bezeichnungen führen.

Patente

Die EtherCAT-Technologie ist patentrechtlich geschützt, insbesondere durch folgende Anmeldungen und Patente: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 mit den entsprechenden Anmeldungen und Eintragungen in verschiedenen anderen Ländern.

EtherCAT® und Safety over EtherCAT® sind eingetragene Marken und patentierte Technologien, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Copyright

© Beckhoff Automation GmbH & Co. KG, Deutschland.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmusteroder Geschmacksmustereintragung vorbehalten.

Lieferbedingungen

Es gelten darüber hinaus die allgemeinen Lieferbedingungen der Fa. Beckhoff Automation GmbH & Co. KG.

1.2 Sicherheitshinweise

1.2.1 Auslieferungszustand

Die gesamten Komponenten werden je nach Anwendungsbestimmungen in bestimmten Hard- und Software-Konfigurationen ausgeliefert. Änderungen der Hard-, oder Software-Konfiguration, die über die dokumentierten Möglichkeiten hinausgehen sind unzulässig und bewirken den Haftungsausschluss der Beckhoff Automation GmbH & Co. KG.

1.2.2 Sorgfaltspflicht des Betreibers

Der Betreiber muss sicherstellen, dass

- die TwinSAFE-Produkte nur bestimmungsgemäß verwendet werden (siehe Kapitel Produktbeschreibung).
- · die TwinSAFE-Produkte nur in einwandfreiem, funktionstüchtigem Zustand betrieben werden.
- nur ausreichend qualifiziertes und autorisiertes Personal die TwinSAFE-Produkte betreibt.
- dieses Personal regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit und Umweltschutz unterwiesen wird, sowie die Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennt.
- die Betriebsanleitung stets in einem leserlichen Zustand und vollständig am Einsatzort der TwinSAFE-Produkte zur Verfügung steht.
- alle an den TwinSAFE-Produkten angebrachten Sicherheits- und Warnhinweise nicht entfernt werden und leserlich bleiben.

1.2.3 Erklärung der Hinweise

In der vorliegenden Betriebsanleitung werden die folgenden Hinweise verwendet. Diese Hinweise sind aufmerksam zu lesen und unbedingt zu befolgen!

▲ GEFAHR

Akute Verletzungsgefahr!

Wenn dieser Sicherheitshinweis **nicht** beachtet wird, besteht unmittelbare Gefahr für Leben und Gesundheit von Personen!

WARNUNG

Verletzungsgefahr!

Wenn dieser Sicherheitshinweis **nicht** beachtet wird, besteht Gefahr für Leben und Gesundheit von Personen!

⚠ VORSICHT

Schädigung von Personen!

Wenn dieser Sicherheitshinweis nicht beachtet wird, können Personen geschädigt werden!

HINWEIS

Schädigung von Umwelt/Geräten oder Datenverlust

Wenn dieser Hinweis **nicht** beachtet wird, können Umweltschäden, Gerätebeschädigungen oder Datenverlust entstehen.

Tipp oder Fingerzeig

Dieses Symbol kennzeichnet Informationen, die zum besseren Verständnis beitragen.

1.3 Ausgabestände der Dokumentation

Version	Kommentar
1.0.0	Erste Veröffentlichung
0.6	Sicherheitstechnische Daten aktualisiert
	EN81 Hinweise entfernt
	Maximaltemperatur eingetragen
0.5	Daten zur funktionalen Überstromabschaltung hinzugefügt
0.4	Technische Daten aktualisiert
0.3	Hinweis zum Inbetriebnahmetest hinzugefügt
	Hinweis zum sicheren Ausgang hinzugefügt
0.2	Überarbeitung nach Review
	EN81 Hinweise auf TwinSAFE-EtherCAT-Boxen angepasst
	Derating Informationen hinzugefügt
0.1	Erster Entwurf

1.4 Versionshistorie des TwinSAFE-Produktes

In dieser Versionshistorie werden die Ausgabestände der Software- und Hardware-Versionen aufgelistet. Eine Beschreibung der jeweils enthaltenen Änderungen zur vorangegangenen Version sind ebenfalls aufgeführt.

Aktualisierte Hardware und Software

Die TwinSAFE Produkte unterliegen zyklisch einer Revision. Wir behalten uns das Recht vor, die TwinSAFE Produkte jederzeit und ohne Ankündigung zu überarbeiten und zu ändern. Aus diesen Hardware- und/oder Software-Änderungen können **keine** Ansprüche auf Änderung bereits gelieferter Produkte geltend gemacht werden.

Eine Beschreibung, wie ein Firmware-Update (Software) durchgeführt werden kann, finden Sie in dem Kapitel Update der Firmware von TwinSAFE-Produkten [▶ 46].

Datum	SW-Version	HW-Version	Änderungen
14.11.2019	01	00	Erstes Release der EP2918-0032

8 Version: 1.0.0 EP2918

2 Systembeschreibung

2.1 EtherCAT-Box-Module

Das EtherCAT-System wird durch die EtherCAT-Box-Module in Schutzart IP67 erweitert. Durch das integrierte EtherCAT-Interface sind die Module ohne eine zusätzliche Kopplerbox direkt an ein EtherCAT-Netzwerk anschließbar. Die hohe EtherCAT-Performance bleibt also bis in jedes Modul erhalten.

Die außerordentlich geringen Abmessungen von nur z.B. 126 x 30 x 26,5 mm sind identisch zu denen der Feldbus-Box-Erweiterungsmodule. Sie eignen sich somit besonders für Anwendungsfälle mit beengten Platzverhältnissen. Die geringe Masse der EtherCAT-Module begünstigt u. a. auch Applikationen, bei denen die I/O-Schnittstelle bewegt wird (z. B. an einem Roboterarm). Der EtherCAT-Anschluss erfolgt über geschirmte M8-Stecker.

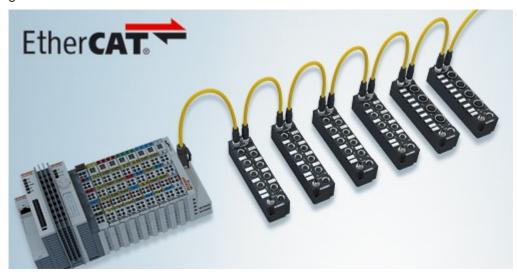


Abb. 1: EtherCAT-Box-Module erweitern das EtherCAT-System in Schutzart IP67

Die robuste Bauweise der EtherCAT-Box-Module erlaubt den Einsatz direkt an der Maschine. Schaltschrank und Klemmenkasten werden hier nicht mehr benötigt. Die Module sind voll vergossen und daher ideal vorbereitet für nasse, schmutzige oder staubige Umgebungsbedingungen.

Durch vorkonfektionierte Kabel vereinfacht sich die EtherCAT- und Signalverdrahtung erheblich. Verdrahtungsfehler werden weitestgehend vermieden und somit die Inbetriebnahmezeiten optimiert. Neben den vorkonfektionierten EtherCAT-, Power- und Sensorleitungen stehen auch feldkonfektionierbare Stecker und Kabel für maximale Flexibilität zur Verfügung. Der Anschluss der Sensorik und Aktorik erfolgt je nach Einsatzfall über M8- oder M12-Steckverbinder.

Basis-Dokumentation zu EtherCAT

Eine detaillierte Beschreibung des EtherCAT-Systems finden Sie in der System Basis-Dokumentation zu EtherCAT, die auf unserer Homepage (www.beckhoff.de) unter *Downloads* zur Verfügung steht.

3 Produktbeschreibung

3.1 EP2918-0032

Die EP2918-0032 ist eine EtherCAT-Box mit digitalen Ausgängen für 24 V_{DC} -Aktoren. Die EtherCAT-Box besitzt 8 fehlersichere Ausgänge mit jeweils maximal 2 A (bei 24 V_{DC}) Ausgangsstrom.

Die EP2918-0032 erfüllt die Anforderungen folgender Normen:

- EN 61508:2010 (SIL 3)
- EN 62061:2005/A2:2015 (SIL CL 3)
- EN ISO 13849-1:2015 (Kat. 4, PL e)

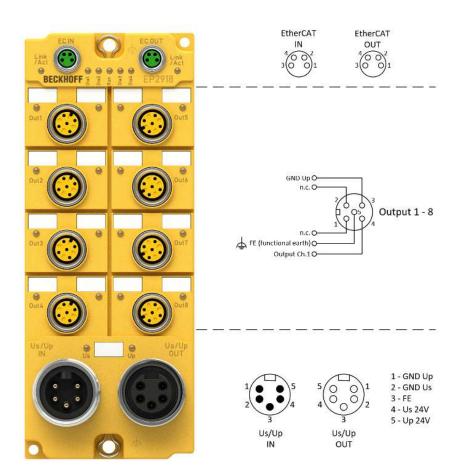


Abb. 2: EP2918-0032 - TwinSAFE-EtherCAT-Box mit 8 fehlersicheren Ausgängen

Die TwinSAFE-EtherCAT-Box hat die übliche Bauform einer EtherCAT-Box mit 60 mm Breite und 150 mm Höhe.

3.2 Bestimmungsgemäße Verwendung

A WARNUNG

Vorsicht Verletzungsgefahr!

Eine Verwendung der TwinSAFE-Komponenten, die über die im Folgenden beschriebene bestimmungsgemäße Verwendung hinausgeht, ist nicht zulässig!

Die TwinSAFE-EtherCAT-Box erweitert das Einsatzfeld des Beckhoff-Systems um Funktionen, die es erlauben, diese auch im Bereich der Maschinensicherheit einzusetzen. Das angestrebte Einsatzgebiet der TwinSAFE-EtherCAT-Boxen sind Sicherheitsfunktionen an Maschinen und die damit unmittelbar zusammenhängenden Aufgaben in der industriellen Automatisierung. Sie sind daher nur für Anwendungen mit einem definierten Fail-Safe-Zustand zugelassen. Dieser sichere Zustand ist der energielose Zustand. Dafür ist eine Fehlersicherheit entsprechend der zugrunde gelegten Normen erforderlich.

Die TwinSAFE-EtherCAT-Box erlaubt den Anschluss von:

24 V_{DC}-Aktoren wie

· Schütze, Schutztürschalter mit Zuhaltung, Ventile, usw

M WARNUNG

Das Fail-Safe-Prinzip!

Der Grundsatz bei einem sicherheitstechnischen System wie TwinSAFE ist, dass ein Ausfall eines Bauteils, einer System-Komponente, oder des Gesamtsystems nie zu einem gefährlichen Zustand führen darf. Der sichere Zustand ist immer der abgeschaltete und energielose Zustand.

MARNUNG

Spannungsversorgung aus SELV/PELV-Netzteil!

Zur Versorgung der TwinSAFE-Komponenten mit 24 V_{DC} muss ein SELV/PELV-Netzteil mit einer ausgangsseitigen Spannungsbegrenzung von U_{max} = 36 V_{DC} verwendet werden. Bei Nichtbeachtung kann dies zum Verlust der Sicherheit führen.

MARNUNG

Systemgrenzen

Das Zertifikat des TÜV SÜD gilt für diese TwinSAFE-Komponente, die darin verfügbaren Funktionsblöcke, die Dokumentation und das Engineering-Tool. Als Engineering-Tool sind *TwinCAT 3.1* und der *TwinSAFE Loader* zulässig. Davon abweichende Vorgehensweisen oder Tools, insbesondere extern generierte xml-Dateien für den TwinSAFE-Import oder extern erstellte Automatismen zur Projekterstellung, sind nicht vom Zertifikat abgedeckt.

MARNUNG

Inbetriebnahme-Test

Bevor die EP2918-0032 für die sicherheitstechnische Aufgabe genutzt werden kann, muss ein Inbetriebnahme-Test durch den Anwender erfolgen, damit Verdrahtungsfehler zur Sensorik und Aktorik ausgeschlossen werden können.

⚠ VORSICHT

Maschinenrichtlinie beachten!

Die TwinSAFE-Komponenten dürfen nur in Maschinen im Sinne der Maschinenrichtlinie eingesetzt werden.

⚠ VORSICHT

Rückverfolgbarkeit sicherstellen!

Der Besteller hat die Rückverfolgbarkeit der Geräte über die Seriennummer sicherzustellen.

3.3 Technische Daten

Produktbezeichnung	EP2918-0032
Feldbus	EtherCAT
Anzahl der Ausgänge	8
Anschluss der Ausgänge	M12
Statusanzeige	8 (eine grüne LED pro Ausgang), 5 Diagnose LEDs, 2 LEDs für Us/Up, 2 LEDs für EtherCAT Link/Act
Reaktionszeit (Eingang lesen/auf E-Bus schreiben)	typisch: 4 ms (in Default Einstellung ohne lokale TwinSAFE Logik), maximal: siehe Fehlerreaktionszeit
Watchdog-Zeit	einstellbar 2 ms bis 60 s
Fehlerreaktionszeit	≤ Watchdog-Zeit
Leitungslänge zwischen Aktor und EtherCAT-Box	Ungeschirmt: max. 100 m (bei 0,75 oder 1 mm²)
	Geschirmt: max. 100 m (bei 0,75 oder 1 mm²)
Sichere Ausgänge	max. 2,0 A (bei 24 V _{DC}) pro Kanal
	Diagnose-Schwellen: > 4,7 V -> High-Signal wird erkannt < 1,0 V -> Low-Signal wird erkannt
Ausgänge (funktional)	Funktionale Überstromabschaltung der Ausgangstreiber: typischerweise zwischen 2,9 A und 6,3 A (Diese Überstromabschaltung ist rein funktional implementiert und kann sicherheitstechnisch nicht belastet werden)
Eingangsprozessabbild	6 Byte (via FSoE bei Verwendung des Default-Projektes)
Ausgangsprozessabbild	7 Byte (via FSoE bei Verwendung des Default-Projektes)
Versorgungsspannung der EP2918	24 V _{DC} (-15% / +20%)
Stromaufnahme U _s (8 Ausgangskanäle geschaltet)	8 Kanäle belegt: typisch 120 mA 0 Kanäle belegt: typisch 80 mA (Sicherung 4 A vorsehen)
Stromaufnahme U _P (8 Ausgangskanäle geschaltet, zuzüglich Lastströme)	8 Kanäle belegt: ca. 70 mA 0 Kanäle belegt: ca. 20 mA (Sicherung 16 A vorsehen)
Verlustleistung der EtherCAT-Box	typisch 4,9 Watt
Potentialtrennung (zwischen den Kanälen)	nein
Potentialtrennung (zwischen den Kanälen und Ether-CAT)	ja
lsolationsspannung (zwischen den Kanälen und Ether- CAT, unter üblichen Betriebsbedingungen)	Isolation geprüft mit 500 V _{DC}
Abmessungen (B x H x T)	60 (+0,5) mm x 150 (+0,5) mm x 26,5 mm
Gehäusematerial	PBT+PET (Valox 855) Flame Class: V-0
Vergussmasse	Polyurethan PU552L Flame Class: V-0
Gewicht	ca. 470 g
zulässige Umgebungstemperatur (Betrieb)	-25°C bis +60°C
zulässige Umgebungstemperatur (Transport/Lagerung)	-40°C bis +85°C
zulässiger Luftdruck (Betrieb/Lagerung/Transport)	750 hPa bis 1100 hPa (dies entspricht einer Höhe von ca690 m bis 2450 m über N.N. bei Annahme einer internationalen Standardatmosphäre)
Unzulässige Betriebsbedingungen	TwinSAFE-EtherCAT-Boxen dürfen unter folgenden Betriebsbedingungen nicht eingesetzt werden:
	unter dem Einfluss ionisierender Strahlung (die das Maß der natürlichen Umgebungsstrahlung überschreitet) in korrestivem Umfeld
EMV-Prüfungen gemäß	in korrosivem Umfeld EN 61326-3-1:2017 (SIL 3) IEC 61131-2:2017 Kapitel 6.2 und 7 (Zone B)
Vibrationsfestigkeit	gemäß EN 60068-2-6 5 Hz ≤ f < 8,4 Hz (3,5 mm peak) 8,4 Hz ≤ f < 150 Hz (10 m/s² peak)
Schockfestigkeit	gemäß EN 60068-2-27 15 g mit Impulsdauer von 11 ms in allen drei Achsen
Schutzart (im verschraubten Zustand)	IP67 (gemäß EN 60529)
zulässige Einbaulage	beliebig
Zulassungen	CE, TÜV SÜD

Derating-Tabelle für Höhen oberhalb von 2000m

Für den Einsatz der TwinSAFE Komponenten oberhalb der spezifizierten maximalen Höhe, kann die Derating-Tabelle (Tabelle 8) der Norm IEC 61131-2:2017 herangezogen werden.

Höhe in m	Derating-Faktor für die Temperatur ¹
0 bis 2000 ²	1,0
3000	0,9
4000	0,8
5000	0,7

Hinweis: Zwischen den Höhenlagen ist eine lineare Interpolation zulässig

Berechnungsbeispiel

In folgendem Beispiel wird die Berechnung für eine TwinSAFE Komponente in einer Betriebshöhe von 4000m berechnet.

Zulässige Umgebungstemperatur bis 2000m Meereshöhe = 55°C

Zulässige Umgebungstemperatur bis 4000m Meereshöhe = 55°C * 0,8 = 44°C

⚠ VORSICHT

Einhaltung der Temperaturgrenzen

Die TwinSAFE Komponente hat eine maximale interne Temperatur, bei der eine Abschaltung erfolgt. Diese ist auf die maximal zulässige Umgebungstemperatur ausgelegt. Wird der Derating-Faktor für die Temperatur für größere Höhen angewendet, ist der Anwender allein dafür verantwortlich, dass die dann berechnete maximale Umgebungstemperatur eingehalten wird.

3.4 Sicherheitstechnische Kenngrößen

Kennzahlen	EP2918-0032
Lifetime [a]	20
Prooftest Intervall [a]	nicht erforderlich ¹
PFH _D	4,16E-09
PFD	2,00E-05
MTTF _D	hoch
DC	hoch
Performance level	PL e
Kategorie	4
HFT	1
Klassifizierung Element ²	Тур В
1) 0	

¹⁾ Spezielle Prooftests während der gesamten Lebensdauer der EtherCAT-Box sind nicht erforderlich.

Die EtherCAT-Box EP2918-0032 kann für sicherheitsgerichtete Applikationen im Sinne der IEC 61508:2010 bis SIL3 und der EN ISO 13849-1:2015 bis PL e (Kat 4) eingesetzt werden.

Zur Berechnung bzw. Abschätzung des MTTF_D Wertes aus dem PFH_D Wert finden Sie weitere Informationen im Applikationshandbuch TwinSAFE oder in der EN ISO 13849-1:2015 Tabelle K.1.

In den sicherheitstechnischen Kenngrößen ist die Safety-over-EtherCAT-Kommunikation mit 1% des SIL3 entsprechend der Protokoll-Spezifikation bereits berücksichtigt.

¹⁾ Umgebungstemperatur des Geräts bei 2 000 m Höhe

²⁾ Der Luftdruck und die Luftdichte nehmen mit abnehmender Höhe zu. Daher wird für Höhen unter dem Meeresspiegel der Derating-Faktor für 0 bis 2000m (1,0) verwendet.

²⁾ Klassifizierung nach EN 61508-2:2010 (siehe Kapitel 7.4.4.1.2 und 7.4.4.1.3)

3.5 Sicherer Ausgang

Die sicheren Ausgänge sind einkanalig pro Modul ausgeführt. Werden zwei oder mehr Ausgänge in einer gemeinsamen Mantelleitung geführt, muss der folgende Hinweis zwingend beachtet werden.

GEFAHR

Getaktete Signale innerhalb einer Mantelleitung

Werden getaktete Signale unterschiedlicher Module innerhalb einer Mantelleitung verwendet, muss ein Fehler eines Moduls, wie Querschluss oder Fremdeinspeisung, zur Abschaltung aller dieser Module führen. Dies wird durch das Setzen des Parameters *Module Fault Link active* aller beteiligten Module realisiert. Dieser Parameter ist per Default = TRUE gesetzt.

3.6 Abmessungen

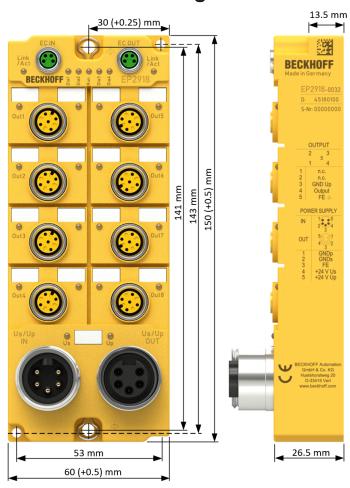


Abb. 3: EP2918 Abmessungen

Das Modul EP2918-0032 hat die folgenden Abmessungen:

Breite 60,0 (+0,5) mm Höhe 150,0 (+0,5) mm Tiefe 26,5 mm

Vollständig verkabelt, erhöhen die angeschlossenen Leitungen die Gesamttiefe des Moduls.

4 Betrieb

4.1 Umgebungsbedingungen

Stellen Sie sicher, dass die TwinSAFE-EtherCAT-Boxen nur bei den spezifizierten Umgebungsbedingungen (siehe technische Daten) transportiert, gelagert und betrieben werden!

⚠ WARNUNG

Verletzungsgefahr!

Die TwinSAFE-EtherCAT-Boxen dürfen unter folgenden Betriebsbedingungen nicht eingesetzt werden.

- unter dem Einfluss ionisierender Strahlung (die das Maß der natürlichen Umgebungsstrahlung überschreitet)
- · in korrosivem Umfeld

HINWEIS

Elektromagnetische Verträglichkeit

Die TwinSAFE-Komponenten entsprechen den Anforderungen der geltenden Normen zur elektromagnetischen Verträglichkeit in Bezug auf Störausstrahlung und insbesondere auf Störfestigkeit. Sollten jedoch in der Nähe der TwinSAFE-Komponenten Geräte (z.B. Funktelefone, Funkgeräte, Sendeanlagen oder Hochfrequenz-Systeme) betrieben werden, welche die in den Normen festgelegten Grenzen zur Störaussendung überschreiten, können diese ggf. die Funktion der TwinSAFE-Komponenten stören.

4.2 Installation

4.2.1 Befestigung

HINWEIS

Anschlüsse vor Verschmutzung schützen!

Schützen Sie während der Montage und des Betriebes der Module alle Anschlüsse vor Verschmutzung! Die Schutzart IP67 ist nur gewährleistet, wenn alle Kabel und Stecker angeschlossen sind und nicht benutzte Anschlüsse mit den entsprechenden Abdeckstopfen geschützt werden! Steckersets siehe Katalog.

- · Module mit schmalem Gehäuse werden mit zwei M3-Schrauben montiert.
- Module mit breitem Gehäuse werden mit zwei M3-Schrauben an den in den Ecken angeordneten oder mit zwei M4-Schrauben an den zentriert angeordneten Befestigungslöchern montiert (Siehe auch Kapitel Power-Anschluss und Erdung).
- Die Schrauben müssen länger als 15 mm sein. Die Befestigungslöcher der Module besitzen kein Gewinde.
- Beachten Sie bei der Montage, dass die Feldbusanschlüsse die Gesamthöhe noch vergrößern.

4.2.2 Anschluss

4.2.2.1 Anzugsmomente für Steckverbinder

M8-Steckverbinder

Es wird empfohlen die M8-Steckverbinder mit einem Drehmoment von **0,4 Nm** festzuziehen. Bei Verwendung des Drehmoment-Schraubendrehers (Beckhoff Artikel ZB8800) ist auch ein max. Drehmoment von **0,5 Nm** zulässig.

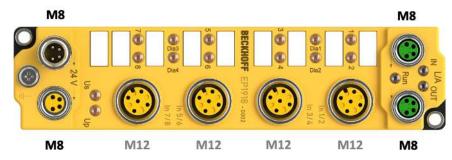


Abb. 4: EtherCAT-Box mit M8-Steckverbindern

M12-Steckverbinder

Es wird empfohlen die M12-Steckverbinder mit einem Drehmoment von **0,6 Nm** festzuziehen.

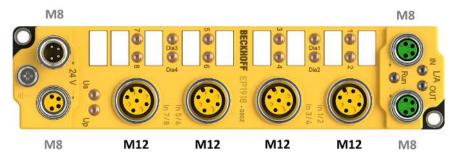


Abb. 5: EtherCAT-Box mit M8- und M12-Steckverbindern

7/8"-Steckverbinder

Es wird empfohlen die 7/8"-Steckverbinder mit einem Drehmoment von 1,5 Nm festzuziehen.

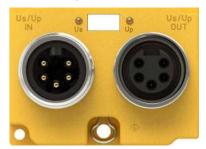


Abb. 6: 7/8"-Steckverbinder

Drehmomentschlüssel

Abb. 7: Drehmomentschlüssel ZB8801

HINWEIS

Korrektes Drehmoment sicherstellen

Verwenden Sie die von Beckhoff lieferbaren Drehmomentschlüssel, um die Steckverbinder festzuziehen (siehe Zubehör)!

4.2.2.2 EtherCAT-Anschluss

Für den ankommenden und weiterführenden EtherCAT-Anschluss verfügt die EtherCAT-Box (EPxxxx) über zwei **grün** gekennzeichnete M8-Buchsen.

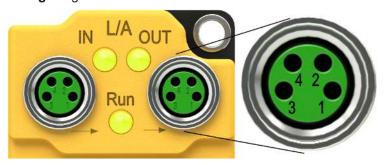


Abb. 8: EtherCAT-Anschluss 30mm Gehäuse M8

Belegung

Es gibt verschiedene Standards für die Belegung und Farben bei Steckverbindern und Leitung für EtherCAT.

EtherCAT		Steckverbinder Leitung			Norm
Signal	Beschreibung	M8	ZB9010, ZB9020, ZK1090-6292	ZB903x, ZK1090-31xx	TIA-568B
Tx +	Transmit Data+	Pin 1	gelb ¹	orange/weiß²	weiß/orange
Tx -	Transmit Data-	Pin 4	orange ¹	orange ²	orange
Rx +	Receive Data+	Pin 2	weiß ¹	blau/weiß²	weiß/grün
Rx -	Receive Data-	Pin 3	blau ¹	blau ²	grün
Schirm	Abschirmung	Gehäuse	Schirm	Schirm	Schirm

¹⁾ Aderfarben nach EN 61918

4.2.2.3 EtherCAT-Kabel

Verwenden Sie zur Verbindung von EtherCAT-Geräten nur geschirmte Ethernet-Kabel, die mindestens der **Kategorie 5 (CAT5) nach EN 50173 bzw. ISO/IEC 11801** entsprechen.

Empfehlungen zur Verkabelung

Detaillierte Empfehlungen zur Verkabelung von EtherCAT können Sie der Dokumentation "Auslegungsempfehlungen zur Infrastruktur für EtherCAT/Ethernet" entnehmen, die auf www.Beckhoff.de zum Download zur Verfügung steht.

EtherCAT nutzt vier Adern der Kabel für die Signalübertragung. Aufgrund der automatischen Leitungserkennung (Auto-Crossing) können Sie zwischen EtherCAT-Geräten von Beckhoff sowohl symmetrisch (1:1) belegte, wie gekreuzte Kabel (Cross-Over) verwenden.

²⁾ Aderfarben

4.2.2.4 **Power-Anschluss und Erdung**

In diesem Kapitel erhalten Sie grundlegende Informationen über die Stromversorgung und Erdung der TwinSAFE-EtherCAT-Box EP2918-0032. Bitte beachten Sie, dass insbesondere die Allgemeinen Informationen zum Anschluss der Funktionserde nur exemplarisch beschrieben werden.

Versorgungsspannungen (Power-Anschluss)

Die Einspeisung und Weiterleitung der Versorgungsspannungen erfolgt über die Anschlüsse:

- Us/Up IN zur Einspeisung der Versorgungsspannungen
- Us/Up OUT zur Weiterleitung der Versorgungsspannungen.

Beide Anschlüsse haben ein 7/8"-Gewinde und befinden sich jeweils links (Us/Up IN) und rechts (Us/Up OUT) von der TwinSAFE-EtherCAT-Box (siehe Abbildung: EP2918 - Poweranschluss).

Information: Eine Übersicht der Steckerbelegung beider Anschlüsse finden Sie weiter unten in diesem Kapitel.

Allgemeine Informationen zum Anschluss der Funktionserde

Die Erdungslaschen der EP2918 sind intern mit den sicheren Ausgängen (Pin 5 der M12-Anschlüsse) verbunden.

Um eine Funktionserdung

herzustellen sollte die Verbindung möglichst:

- · großflächig
- · niederohmig und
- · dauerhaft erstellt werden.

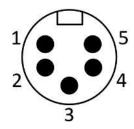
Für die Herstellung einer dauerhaften Verbindung müssen alle Betriebszustände der Maschine, wie z.B. auftretende Vibrationen berücksichtigt werden.

Die Verbindung kann über die folgenden zwei Methoden erstellt werden:

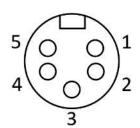
- 1. über eine Schraubverbindung von der TwinSAFE-EtherCAT-Box zum Maschinenbett
- 2. durch einen Ringkabelschuh (Loch-Ø 4,3 mm) mit angeschlossenem Kabel zur Funktionserde

Die Erdungslasche ist am oberen und unteren Befestigungspunkt (Bohrungs-Ø 5 mm für M4-Gewinde) des Gehäuses vorhanden.

HINWEIS



Anschluss der Funktionserde


Es ist empfehlenswert den Anschluss der Funktionserde niederohmig und möglichst großflächig mit FE (Funktionserde) zu verbinden.

EP2918 - Poweranschluss

7/8" - Steckerbeleauna

Kontakt	Spannung
1	GND Up
2	GND Us
3	Anschluss Funktionserde
4	Steuerspannung Us, +24 V _{DC} (Sicherung 4 A vorsehen)
5	Peripheriespannung Up, +24 V _{DC} (Sicherung 16 A vorsehen)

Die Kontakte der 7/8"-Steckverbinder tragen einen maximalen Strom von 16 A.

Zwei LEDs zeigen den Status der Versorgungsspannungen an.

HINWEIS

Power-Anschluss nicht mit EtherCAT-Anschluss verwechseln!

Verbinden Sie die Powerkabel (M8, 24 V_{DC}) nie mit den grün gekennzeichneten EtherCAT-Buchsen der EtherCAT-Box Module. Dies kann die Zerstörung der Module verursachen!

Steuerspannung Us

Aus der 24 V_{DC} Steuerspannung Us werden der Feldbus und die Prozessor-Logik versorgt. Die Steuerspannung ist galvanisch vom Feldbusteil getrennt.

Peripheriespannung Up

Die Peripheriespannung Up versorgt die digitalen sicheren Ausgänge.

Weiterleitung der Versorgungsspannungen

Die Power-Anschlüsse IN und OUT sind im Modul gebrückt. Somit können auf einfache Weise die Versorgungsspannungen Us und Up von EtherCAT-Box zu EtherCAT-Box weitergereicht werden.

⚠ VORSICHT

Maximalen Strom beachten!

Beachten Sie auch bei der Weiterleitung der Versorgungsspannungen Us und Up, dass der für die jeweiligen Kontakte des 7/8"-Steckverbinders maximal zulässige Strom von 16 A nicht überschritten wird!

4.2.2.5 Signalanschluss Ausgänge

Die EP2918 besitzt 8 fehlersichere Ausgänge mit einem maximalen Ausgangsstrom von je 2,0 A (bei 24 $\rm V_{DC}$).

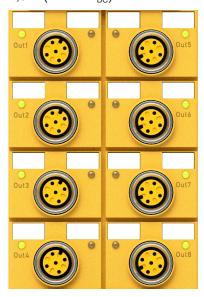


Abb. 9: EP2918 - Sichere Ausgänge 1 bis 8

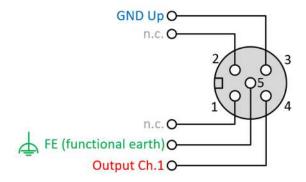


Abb. 10: PinOut sicherer Ausgang

M12-Anschluss	Kontakt	Kanal	Signal
1	1	-	nicht verbunden
	2		nicht verbunden
	3	1	GND Up
	4		Ausgang 1
	5	-	Funktionserde FE
2	1	-	nicht verbunden
	2		nicht verbunden
	3	2	GND Up
	4		Ausgang 2
	5	-	Funktionserde FE
3	1	-	nicht verbunden
	2		nicht verbunden
	3	3	GND Up
	4		Ausgang 3
	5	-	Funktionserde FE
4	1	-	nicht verbunden
	2		nicht verbunden
	3	4	GND Up
	4		Ausgang 4
	5	-	Funktionserde FE
5	1	-	nicht verbunden
	2		nicht verbunden
	3	5	GND Up
	4		Ausgang 5
	5	-	Funktionserde FE
6	1	-	nicht verbunden
	2		nicht verbunden
	3	6	GND Up
	4		Ausgang 6
	5	-	Funktionserde FE
7	1	-	nicht verbunden
	2		nicht verbunden
	3	7	GND Up
	4		Ausgang 7
	5	-	Funktionserde FE
8	1	-	nicht verbunden
	2		nicht verbunden
	3	8	GND Up
	4		Ausgang 8
	5	-	Funktionserde FE

Funktionserde

Die Funktionserde auf Pin 5 der M12-Anschlüsse der Ausgänge ist intern mit den Erdungs-Laschen der EtherCAT-Box verbunden.

4.2.2.6 Überspannungsschutz

Sehen Sie für die Versorgungsspannung der EtherCAT-Box eine Schutzbeschaltung (Surge-Filter) gegen Überspannung vor, falls in Ihrer Anlage der Schutz vor Überspannungen erforderlich ist.

4.2.3 Temperaturmessung EP2918

Die Temperaturmessung der TwinSAFE-EtherCAT-Boxen besteht aus einer einzelnen EtherCAT-Box, die mit entsprechenden Versorgungs- und Kommunikationsleitungen verdrahtet ist. Die Ein- und/oder Ausgänge der EtherCAT-Box werden für den Test eingeschaltet.

HINWEIS

Fremderwärmung / Strahlungswärme / gestörte Konvektion

Die maximal zulässige Umgebungstemperatur von 60°C wurde mit oben beschriebener Beispielkonfiguration geprüft. Eine gestörte Konvektion oder eine ungünstige Position in der Nähe von Wärmequellen wirken sich ggf. negativ auf die interne Erwärmung der TwinSAFE-Komponenten aus.

Maßgeblich ist immer die maximal zulässige intern gemessene Temperatur von 95°C, ab der die TwinSA-FE-Komponenten in den sicheren Zustand wechseln und einen Fehler melden. Die interne Temperatur kann über CoE aus der TwinSAFE-Komponente ausgelesen werden.

4.2.4 Signalleitungen

Zulässige Leitungslänge

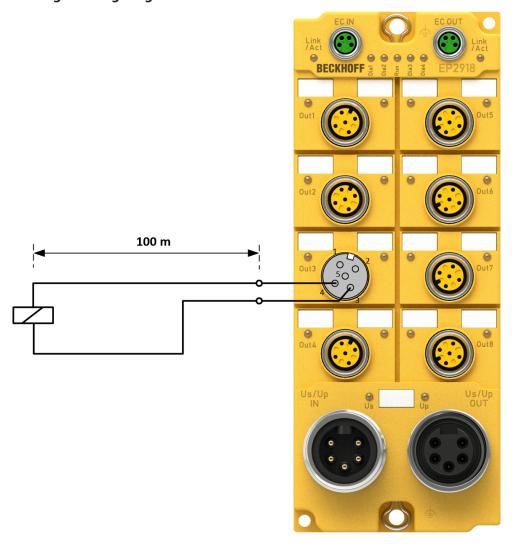


Abb. 11: EP2918 Signalleitungen

Beim Anschluss eines einzelnen Schaltkontakts über eine eigene durchgängige Verkabelung (ggf. auch über eine Mantelleitung) sind bei eingeschalteten Testpulsen maximal 100 Meter Leitungslänge möglich.

Die Verwendung von Kontaktstellen, Steckverbindern oder zusätzlichen Schaltkontakten in der Verkabelung kann die maximale Ausdehnung verringern.

Leitungsführung

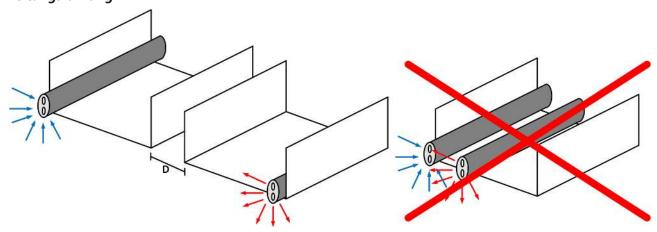


Abb. 12: Leitungsführung

HINWEIS

Signalleitung separat führen

Die Signalleitung muss separat von potentiellen Störquellen wie z.B. Motorzuleitungen, Leistungskabeln mit 230 V_{AC} usw. geführt werden!

Störungen durch parallel geführte Leitungen können die Signalform der Testimpulse beeinflussen und so Diagnosemeldungen (z.B. Sensorfehler oder OpenLoad-Fehler) verursachen.

D: Abstand zwischen den Kabelkanälen (möglichst groß)

blaue Pfeile: Signalleitung rote Pfeile: potentielle Störquelle

Eine gemeinsame Signalführung mit anderen getakteten Signalen in einer Sammelleitung verringert die maximale Ausdehnung ebenfalls, da auf großer Leitungslänge ggf. ein Übersprechen der Signale erfolgen und Diagnosemeldungen hervorrufen kann.

4.3 Konfiguration der EP2918 in TwinCAT

⚠ VORSICHT

CoE-Objekte nicht ändern!

Führen Sie keine Veränderungen an den CoE-Objekten der TwinSAFE-Klemmen durch. Veränderungen (z.B. über TwinCAT) der CoE-Objekte setzen die Klemmen dauerhaft in den Zustand Fail-Stop oder führen zu unerwartetem Verhalten der Klemmen!

4.3.1 Einfügen eines EtherCAT-Devices

Siehe Dokumentation zur Automatisierungs-Software TwinCAT.

4.3.2 Einfügen einer EP2918

Das Einfügen einer EP2918 erfolgt genau wie das Einfügen einer beliebigen anderen Beckhoff EtherCAT-Box. Öffnen Sie in der Liste den Punkt *TwinSAFE Fieldbus Boxes* und wählen Sie die EP2918 aus.

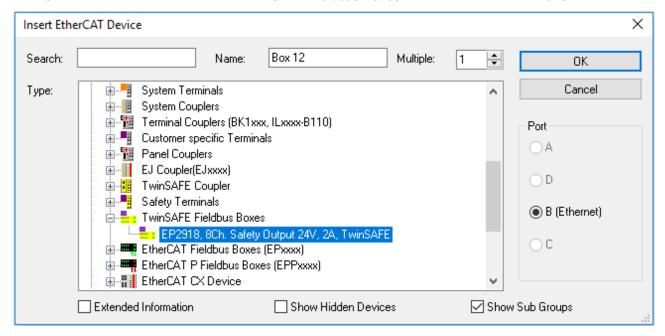


Abb. 13: Einfügen einer EP2918

4.3.3 Verwendung der integrierten TwinSAFE Logic Funktionen

Im Auslieferungszustand verhält sich die EP2918 wie ein sicherer TwinSAFE I/O Slave, der als Alias Device innerhalb einer TwinSAFE Logic z.B. EL6910 verwendet werden kann.

Es kann jedoch auch die lokale Logik-Funktion auf der EP2918 verwendet werden. Dazu legen Sie bitte ein TwinSAFE Projekt im Safety Editor an und wählen als Zielsystem die EP2918 aus. Weitere Informationen zur Erstellung eines Projektes finden Sie in der EL6910 Dokumentation und der Beschreibung der Funktionsbausteine unter http://www.beckhoff.de/german/download/twinsafe.htm.

Um die EP2918 wieder als sicheren TwinSAFE I/O Slave nutzen zu können, löschen Sie bitte die Logik, das Mapping und die Parameter Daten auf der EtherCAT-Box und schalten die Spannung aus und wieder ein.

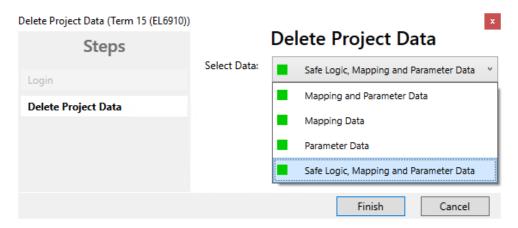


Abb. 14: EP2918 - Delete Project Data

4.3.4 Projektierungsgrenzen der EP2918

Projektierungsgrenzen

Die maximale Projektierungsgröße der EP2918 ist durch den verfügbaren Speicher begrenzt. Dieser wird dynamisch verwaltet. Somit sind die in der folgenden Tabelle angegebenen Werte nur Richtwerte und können von den tatsächlichen Werten je nach Safety-Projekt abweichen.

HINWEIS

Ausführungszeit der Logik-Funktion

Die Ausführungszeit des Logik Programms wird - bei identischem Logik Programm - verglichen zur EL6910 typischerweise größer sein, da zusätzlich noch die sicheren I/O-Signale verarbeitet werden müssen. Dies wirkt sich entsprechend auch auf die Verarbeitung der I/O Signale aus, da mit steigender Projektgröße diese nur mit geringerer Häufigkeit ausgewertet werden können.

Drama a a bhilder i Ca	may 1100 Data is Datas Dishtung
Prozessabbildgröße	max. 1486 Byte je Daten-Richtung
	(Max. Speichergröße 0x1E00 für 3 Puffer, d.h. bei gleicher
	Größe von Input- und Output-Prozessdaten ergibt sich eine
	maximale Größe von 1280 Bytes pro Datenrichtung. Es sind nur
	gerade Startadressen möglich, daher müssen ggf. Füll-Bytes
	berücksichtigt werden.)
TwinSAFE-Verbindungen	maximal 212 (In Summe maximal 255 CRCs - für eine
	TwinSAFE Verbindung mit 1 oder 2 Byte sicheren Daten wird 1
	CRC benötigt.)
Sighara Datan ia TwinSAEE Varhindung	0 /
Sichere Daten je TwinSAFE-Verbindung	maximal 126 Byte (Telegrammlänge 255 Byte)
TwinSAFE-Bausteine	maximal 512 (Bei Verwendung von ESTOP-Bausteinen mit
	komplettem Input- und Output-Mapping. Andere Bausteine
	können zu einer geringeren maximalen Anzahl führen.)
TwinSAFE-Gruppen	maximal 128
TwinSAFE-Benutzer	maximal 40
Eingänge in die Standard-SPS	dynamisch (speicherabhängig) max. 1483 Byte
Ausgänge in die Standard-SPS	dynamisch (speicherabhängig) max. 1483 Byte

HINWEIS

Projektierung

Für die Nutzung der internen Logik-Funktionen wird TwinCAT 3.1 Build 4022.28 oder neuer benötigt. Wird die EP2918 als TwinSAFE-Slave mit dem Default-Projekt verwendet, ist mindestens eine EL6910, EK1960 oder neuere Logik-Komponente als TwinSAFE-Master erforderlich.

4.3.5 Adresseinstellungen auf der TwinSAFE-EtherCAT-Box

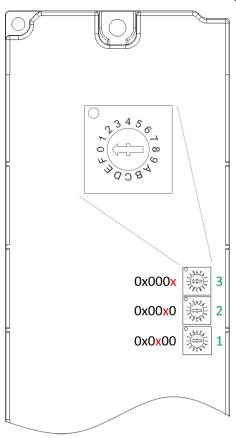


Abb. 15: EtherCAT-Box - Drehschalter auf der Unterseite

Mit den drei Drehschaltern auf der Unterseite der TwinSAFE-EP Box muss die TwinSAFE-Adresse der Box eingestellt werden. Es stehen die TwinSAFE-Adressen von 1 bis 4095 zur Verfügung.

Drehschalter		Adresse	
1 (unten)	2 (mitte)	3 (oben)	
0	0	1	1
0	0	2	2
0	0	3	3
0	0	F	15
0	1	0	16
0	1	1	17
0	F	F	255
1	0	0	256
1	0	1	257
F	F	F	4095

⚠ WARNUNG

TwinSAFE-Adresse

Jede eingestellte TwinSAFE-Adresse darf innerhalb eines Netzwerkes nur einmal vorkommen! Die Adresse 0 ist keine gültige Adresse.

4.3.6 Alias Devices

Die Kommunikation zwischen der Safety Logic und der I/O-Ebene wird über einen Alias-Level realisiert. In diesem Alias-Level (Sub-Knoten *Alias Devices*) werden für alle sicheren Ein- und Ausgänge, aber auch für Standard-Signale entsprechende Alias Devices angelegt. Dies kann für die sicheren Ein- und Ausgänge auch automatisch anhand der I/O-Konfiguration durchgeführt werden.

Über die Alias Devices werden die Verbindungs- und Geräte-spezifischen Parameter eingestellt.

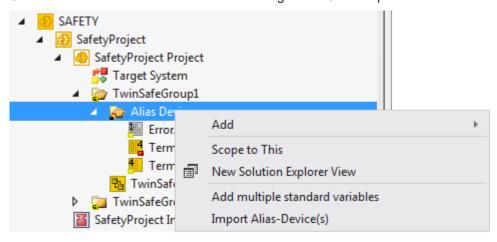


Abb. 16: Starten des automatischen Imports aus der I/O-Konfiguration

Wird der automatische Import aus der I/O-Konfiguration gestartet, wird ein Auswahldialog geöffnet, über den die einzelnen Klemmen, die importiert werden sollen, selektiert werden können.

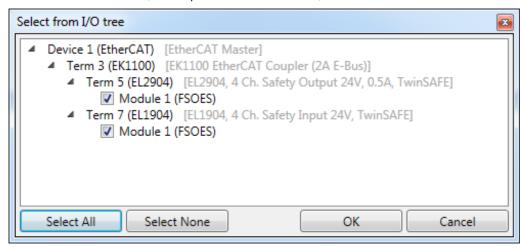


Abb. 17: Auswahl aus dem I/O Baum

Nach dem Schließen des Dialoges über OK, werden die Alias Devices im Safety Projekt angelegt.

Die Alias Devices können auch einzeln durch den Anwender angelegt werden. Dazu wird aus dem Kontextmenu der Eintrag *Add* und *New item* ausgewählt und das gewünschte Gerät ausgewählt.

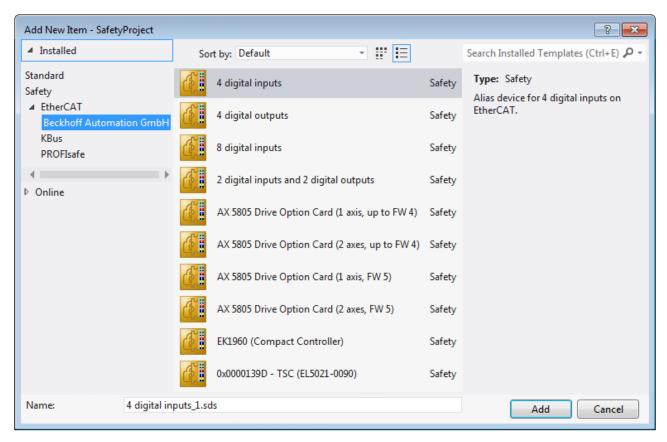


Abb. 18: Anlegen der Alias Devices durch den Anwender

4.3.7 Parameter der EP2918

Nach dem Anlegen des Alias Devices kann dieses entsprechend der Anwender-Vorgaben parametriert werden. Unter dem Karteireiter *Linking* wird die FSoE-Adresse eingestellt und die Verlinkung mit dem physikalischen Device erstellt.

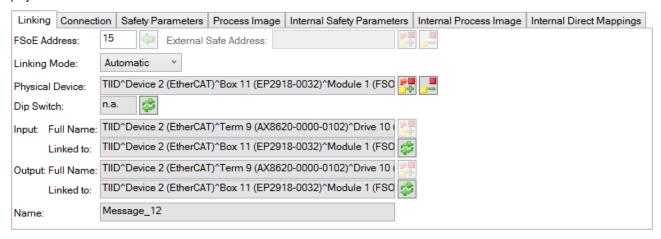


Abb. 19: EP2918 - Reiter Linking

Name	Beschreibung
FSoE Address	Parametrierte FSoE-Adresse (durch den Anwender einzustellen)
External Safe Address	aktuell nicht unterstützt
Linking Mode	Automatic (Automatische Verlinkung zum physikalischen Device)
	Manual (Manuelles Verlinken auf z.B. Netzwerkvariablen)
	Local (Signale werden in der lokalen Logik verwendet)
Physical Device	Verlinkung zur TwinSAFE-Komponente innerhalb der TwinCAT Solution
Dip Switch	Aus der TwinSAFE-Komponente ausgelesene DIP bzw. Dreh-Schalter Adresse
Input: Full Name	Im Manual Mode: Anzeige der Variablen unterhalb der TwinSAFE Logic z.B. EL6910
Input: Linked to:	Im Manual Mode: Anzeige der verlinkten Variablen
Output: Full Name	Im Manual Mode: Anzeige der Variablen unterhalb der TwinSAFE Logic z.B. EL6910
Output: Linked to	Im Manual Mode: Anzeige der verlinkten Variablen
Name	Im Manual Mode: Name der TwinSAFE Message unterhalb der TwinSAFE Logic und für die Info- Daten

Unter dem Karteireiter *Connection* können weitere Einstellungen, wie z.B. das Mapping der Info-Daten oder das Verhalten bei einem Modulfehler, vorgenommen werden.

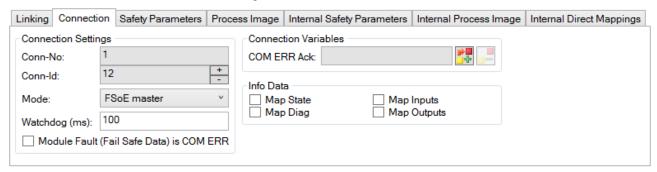


Abb. 20: EP2918 - Reiter Connection

Name	Beschreibung
Conn-No	Connection Nummer (vom System vergeben)
Conn-Id	Connection ID: Vom System vorbelegt, kann durch den Anwender geändert werden. Die Connection ID muss eindeutig innerhalb des TwinCAT Projektes sein.
Mode	FSoE Master (die Logik ist Master zu diesem Alias Device)
	FSoE Slave (die Logik ist Slave zu diesem Alias Device)
Watchdog	Einstellung der Watchdogzeit in ms für diese Verbindung. Diese Einstellung hat direkte Auswirkungen auf die Fehlerreaktionszeit.
Module Fault is Com Error	Wenn die Checkbox gesetzt ist, wird bei einem Modulfehler auch ein ComError ausgelöst, der die TwinSAFE Gruppe, in der die Connection angelegt ist, in den Fehlerzustand versetzt.
Com ERR Ack	Es kann zusätzlich pro Connection noch ein zusätzlicher Error Acknowledge konfiguriert werden. Neben dem Err Ack der jeweiligen Gruppe muss dann auch noch zusätzlich die Connection quittiert werden.
Map State	Der Connection State wird in die zyklischen Prozessdaten gelegt.
Map Diag	Die Connection Diagnose wird in die zyklischen Prozessdaten gelegt.
Map Inputs	Die sicheren Eingangsinformationen der Connection werden in die zyklischen Prozessdaten gelegt.
Map Outputs	Die sicheren Ausgangsinformationen der Connection werden in die zyklischen Prozessdaten gelegt.

Der Karteireiter Safety Parameters enthält die einzustellenden Parameter der EP2918. Die Ausgänge werden über die Objekte 0x8000 und folgende parametriert.

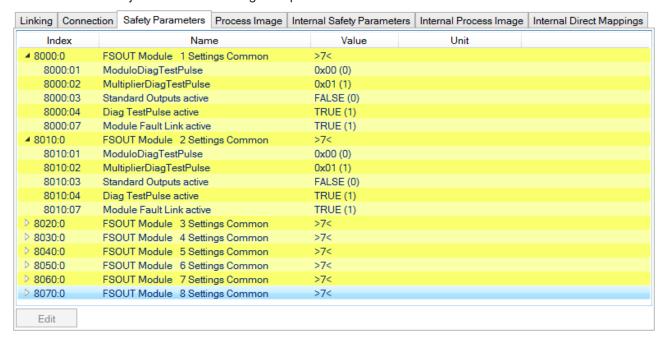


Abb. 21: EP2918 - Parameter

Index	Name	Defaultwert/ Einheit	Beschreibung
8000:01	ModuloDiagTestPulse (FSOUT Module 1)	0x00 / Ganzzahl	Modulowert für die Häufigkeit der Generierung eines Testpulses. 0 -> jedes Mal 1 -> jedes 2. Mal
8000:02	MultiplierDiagTestPulse (FSOUT Module 1)	0x01 / Ganzzahl	Länge des Testpulses in Vielfachen von 400 μs
8000:03	Standard Outputs active (FSOUT Module 1)	FALSE / Boolean	Aktivierung der logischen UND Verknüpfung der sicheren und Standard-Ausgänge des Moduls
8000:04	Diag TestPulse active (FSOUT Module 1)	TRUE / Boolean	Aktivierung von Testpulsen für das entsprechende Ausgangsmodul
8000:07	Module Fault Link active (FSOUT Module 1)	TRUE / Boolean	Im Falle eines Modul Fehlers dieses Moduls, werden alle weiteren Ausgangs-Module dieser TwinSAFE Komponente, bei denen dieser Parameter ebenfalls auf TRUE gesetzt ist, in einen Modul Fehler gesetzt.
8010:01-07	Parameter für FSOUT Module 2	siehe Module 1	siehe Module 1
8020:01-07	Parameter für FSOUT Module 3	siehe Module 1	siehe Module 1
8030:01-07	Parameter für FSOUT Module 4	siehe Module 1	siehe Module 1
8040:01-07	Parameter für FSOUT Module 5	siehe Module 1	siehe Module 1
8050:01-07	Parameter für FSOUT Module 6	siehe Module 1	siehe Module 1
8060:01-07	Parameter für FSOUT Module 7	siehe Module 1	siehe Module 1
8070:01-07	Parameter für FSOUT Module 8	siehe Module 1	siehe Module 1

4.3.8 Prozessabbild der EP2918

Das Prozessabbild der EP2918 besteht aus 6 Byte Eingangs- und 7 Byte Ausgangsdaten. Das 6-Byte Telegramm enthält 1 Byte sichere Daten, das 7-Byte Telegramm enthält 2 Byte sichere Daten.

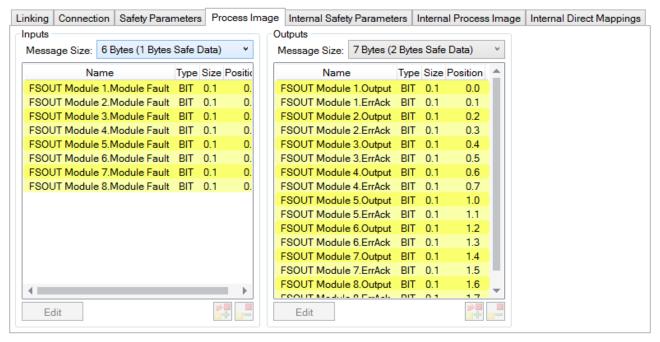


Abb. 22: EP2918 Prozessabbild

Die Zuordnung der einzelnen Signale in den sicheren Daten sind in folgender Tabelle aufgelistet.

9	J		
Bezeichnung	Prozessabbild	Bit-Position	Beschreibung
FSOUT Module 1.Module Fault	IN	0.0	Modulfehler Information für den sicheren Ausgang 1
FSOUT Module 2.Module Fault	IN	0.1	Modulfehler Information für den sicheren Ausgang 2
FSOUT Module 3.Module Fault	IN	0.2	Modulfehler Information für den sicheren Ausgang 3
FSOUT Module 4.Module Fault	IN	0.3	Modulfehler Information für den sicheren Ausgang 4
FSOUT Module 5.Module Fault	IN	0.4	Modulfehler Information für den sicheren Ausgang 5
FSOUT Module 6.Module Fault	IN	0.5	Modulfehler Information für den sicheren Ausgang 6
FSOUT Module 7.Module Fault	IN	0.6	Modulfehler Information für den sicheren Ausgang 7
FSOUT Module 8.Module Fault	IN	0.7	Modulfehler Information für den sicheren Ausgang 8
FSOUT Module1.Output	OUT	0.0	Sicherer Ausgang 1
FSOUT Module1.ErrAck	OUT	0.1	Error Acknowledge für das sichere Ausgangs-Modul 1
FSOUT Module2.Output	OUT	0.2	Sicherer Ausgang 2
FSOUT Module2.ErrAck	OUT	0.3	Error Acknowledge für das sichere Ausgangs-Modul 2
FSOUT Module3.Output	OUT	0.4	Sicherer Ausgang 3
FSOUT Module3.ErrAck	OUT	0.5	Error Acknowledge für das sichere Ausgangs-Modul 3
FSOUT Module4.Output	OUT	0.6	Sicherer Ausgang 4
FSOUT Module4.ErrAck	OUT	0.7	Error Acknowledge für das sichere Ausgangs-Modul 4
FSOUT Module5.Output	OUT	1.0	Sicherer Ausgang 5
FSOUT Module5.ErrAck	OUT	1.1	Error Acknowledge für das sichere Ausgangs-Modul 5
FSOUT Module6.Output	OUT	1.2	Sicherer Ausgang 6
FSOUT Module6.ErrAck	OUT	1.3	Error Acknowledge für das sichere Ausgangs-Modul 6
FSOUT Module7.Output	OUT	1.4	Sicherer Ausgang 7
FSOUT Module7.ErrAck	OUT	1.5	Error Acknowledge für das sichere Ausgangs-Modul 7
FSOUT Module8.Output	OUT	1.6	Sicherer Ausgang 8
FSOUT Module8.ErrAck	OUT	1.7	Error Acknowledge für das sichere Ausgangs-Modul 8

4.4 Reaktionszeiten TwinSAFE

Die TwinSAFE-Klemmen bilden ein modular aufgebautes Sicherheitssystem, welches über das Safety-over-EtherCAT-Protokoll sicherheitsgerichtete Daten austauscht. Dieses Kapitel soll dabei helfen die Reaktionszeit des Systems vom Signalwechsel am Sensor bis zur Reaktion am Aktor zu bestimmen.

Typische Reaktionszeit

Die typische Reaktionszeit ist die Zeit, die benötigt wird, um eine Information vom Sensor zum Aktor zu übermitteln, wenn das Gesamtsystem fehlerfrei im Normalbetrieb arbeitet.

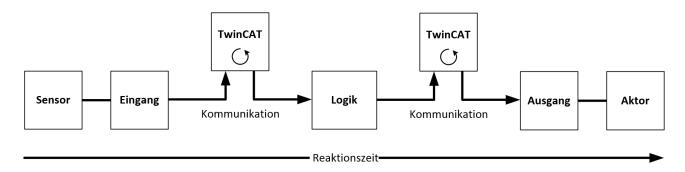


Abb. 23: Typische Reaktionszeit

Definition	Beschreibung
RT _{Sensor}	Reaktionszeit des Sensors, bis das Signal an der Schnittstelle zur Verfügung gestellt wird. Wird typischerweise vom Sensorhersteller geliefert.
RT _{Input}	Reaktionszeit des sicheren Eingangs, wie z.B. EL1904 oder EP1908. Diese Zeit kann aus den technischen Daten entnommen werden. Bei der EL1904 sind dies 4 ms.
RT _{Comm}	Reaktionszeit der Kommunikation. Diese ist typischerweise 3x die EtherCAT Zykluszeit, da neue Daten immer erst in einem neuen Safety-over-EtherCAT Telegramm versendet werden können. Diese Zeiten hängen von der übergeordneten Standard-Steuerung direkt ab (Zykluszeit der PLC/NC).
RT _{Logic}	Reaktionszeit der Logikklemme. Dieses ist die Zykluszeit der Logikklemme und beträgt typischerweise 500 µs bis 10 ms für die EL6900, je nach Safety-Projektgröße. Die tatsächliche Zykluszeit kann aus der Klemme ausgelesen werden.
RT _{Output}	Reaktionszeit der Ausgangsklemme. Diese liegt typischerweise im Bereich von 2 bis 3 ms.
RT _{Actuator}	Reaktionszeit des Aktors. Diese Information wird typischerweise vom Aktor-Hersteller geliefert
WD_Comm	Watchdog-Zeit der Kommunikation

Es ergibt sich für die typische Reaktionszeit folgende Formel:

$$ReactionTime_{typ} = RT_{Sensor} + RT_{Input} + 3*RT_{Comm} + RT_{Logic} + 3*RT_{Comm} + RT_{Output} + RT_{Actuator}$$

mit z.B.

 $ReactionTime_{tvp} = 5ms + 4ms + 3*1ms + 10ms + 3*1ms + 3ms + 20ms = 48ms$

Worst-Case-Reaktionszeit

Die Worst-Case-Reaktionszeit gibt die Zeit an, die maximal benötigt wird, um im Fehlerfall ein Abschalten des Aktors durchzuführen.

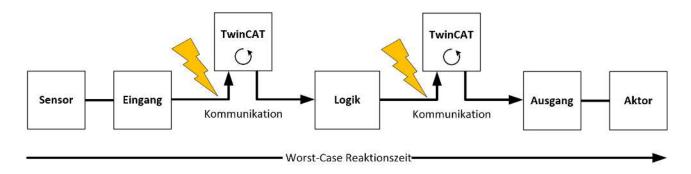


Abb. 24: Worst-Case-Reaktionszeit

Dabei wird davon ausgegangen, dass am Sensor ein Signalwechsel erfolgt und dieser an den Eingang übermittelt wird. Gerade in dem Moment, wo das Signal an die Kommunikationsschnittstelle übergeben werden soll, tritt eine Kommunikationsstörung auf. Dies wird nach Ablauf der Watchdog-Zeit der Kommunikationsverbindung von der Logik detektiert. Diese Information soll dann an den Ausgang übergeben werden, wobei hier dann eine weitere Kommunkationsstörung auftritt. Diese Störung wird am Ausgang nach Ablauf der Watchdog-Zeit erkannt und führt dann zur Abschaltung.

Damit ergibt sich für die Worst-Case-Reaktionszeit folgende Formel:

$$ReactionTime_{\max} = WD_{Comm} + WD_{Comm} + RT_{Actuator}$$

mit z.B.

 $ReactionTime_{max} = 2*15ms + 20ms = 50ms$

4.5 Diagnose

4.5.1 EtherCAT - Feldbus-LEDs

Abb. 25: EP2918 - Feldbus-LEDs

LED-Anzeigen

LED	Anzeige	Bedeutung
IN Link/Act	aus	keine Verbindung zum vorhergehenden EtherCAT-Modul
	leuchtet	LINK: Verbindung zum vorhergehenden EtherCAT-Modul
	blinkt	ACT: Kommunikation mit vorhergehenden EtherCAT-Modul
OUT Link/Act	aus	keine Verbindung zum nachfolgendem EtherCAT-Modul
	leuchtet	LINK: Verbindung zum nachfolgendem EtherCAT-Modul
	blinkt	ACT: Kommunikation mit nachfolgendem EtherCAT-Modul
Run	aus	EtherCAT-Modul ist im Status Init
	blinkt schnell	EtherCAT-Modul ist im Status Pre-Operational
	blinkt langsam	EtherCAT-Modul ist im Status Safe-Operational
	leuchtet	EtherCAT-Modul ist im Status Operational

4.5.2 Status-LEDs

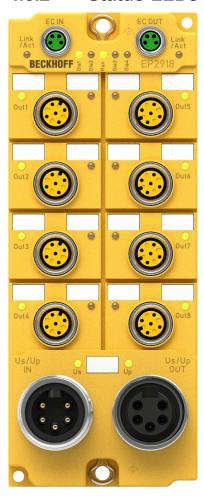


Abb. 26: EP2918 - Status-LEDs

LED	Anzeige	Bedeutung		
Out 1	an	Ausgang 1 ist geschaltet		
	aus	Ausgang 1 ist nicht geschaltet		
Out 2	an	Ausgang 2 ist geschaltet		
	aus	Ausgang 2 ist nicht geschaltet		
Out 3	an	Ausgang 3 ist geschaltet		
	aus	Ausgang 3 ist nicht geschaltet		
Out 4	an	Ausgang 4 ist geschaltet		
	aus	Ausgang 4 ist nicht geschaltet		
Out 5	an	Ausgang 5 ist geschaltet		
	aus	Ausgang 5 ist nicht geschaltet		
Out 6	an	Ausgang 6 ist geschaltet		
	aus	Ausgang 6 ist nicht geschaltet		
Out 7	an	Ausgang 7 ist geschaltet		
	aus	Ausgang 7 ist nicht geschaltet		
Out 8	an	Ausgang 8 ist geschaltet		
	aus	Ausgang 8 ist nicht geschaltet		
Us	an	Steuerspannung Us ist vorhanden		
	aus	Steuerspannung Us ist nicht vorhanden		
Up	an	Peripheriespannung Up ist vorhanden		
	aus	Peripheriespannung Up ist nicht vorhanden		

4.5.3 Diagnose-LEDs

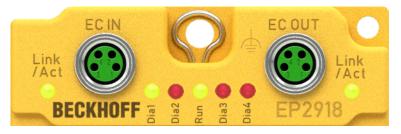


Abb. 27: EP2918 - Diagnose LEDs

LED-Anzeigen

LED	leuchtet	blinkt	flackert	aus
Dia1 (grün)	Umgebungsvariablen, Betriebsspannung und interne Tests sind im gültigen Bereich • Wenn Dia2 blinkt,	-		Umgebungsvariablen, Betriebsspannung und interne Tests sind außerhalb des gültigen Bereichs
	handelt es sich um einen Logik-Fehlercode			Wenn Dia2 blinkt, handelt es sich um einen Environment- Fehlercode
Dia2 (rot)	Zusammen mit Dia3 und 4: Global Shutdown ¹⁾ liegt vor. (siehe Diag-Historie der TwinSAFE- Komponente)	Fehlercode entsprechend Dia1 und untenstehender	sicheren	Zusammen mit Dia3 und 4: Global Fault ¹⁾ liegt vor. (siehe Diag-Historie der TwinSAFE-Komponente)
Dia3 (rot)	Global Fault oder Global Shutdown auf µC1¹)	-		Kein Global Fault oder Global Shutdown auf µC1¹¹
Dia4 (rot)	Global Fault oder Global Shutdown auf μC2 ¹⁾	-		Kein Global Fault oder Global Shutdown auf μC2 ¹⁾

¹⁾ Ein Global Fault setzt die TwinSAFE-Komponente dauerhaft still, so dass sie ausgetauscht werden muss. Ein Global Shutdown setzt die TwinSAFE-Komponente temporär still. Durch Aus- und wieder Einschalten kann der Fehler zurückgesetzt werden.

Logik-Fehlercodes der LED Dia2 (wenn LED Dia1 leuchtet)

Blink-Code	Beschreibung
1	Funktionsblockfehler in einer der TwinSAFE-Gruppen
2	Kommunikationsfehler in einer der TwinSAFE-Gruppen
3	Fehlerkombination: Funktionsblock und Kommunikation
4	Allgemeiner Fehler in einer der TwinSAFE-Gruppen
5	Fehlerkombination: Allgemein und Funktionsblock
6	Fehlerkombination: Allgemein und Kommunikation
7	Fehlerkombination: Allgemein, Funktionsblock und Kommunikation

Environment-Fehlercodes der LED Dia2 (wenn LED Dia1 aus)

Blink-Code	Beschreibung	
1	Maximale Versorgungsspannung μC1 überschritten	
2	Minimale Versorgungsspannung μC1 unterschritten	
3	Maximale Versorgungsspannung μC2 überschritten	
4	Minimale Versorgungsspannung μC2 unterschritten	
5	Maximale Innentemperatur überschritten	
6	Minimale Innentemperatur unterschritten	
7	Zulässige Temperaturdifferenz zwischen μC1 und μC2 überschritten	
8	nicht verwendet	
9	nicht verwendet	
10	Allgemeiner Fehler	

4.5.4 Darstellung der Blink-Codes

LED	Darstellung	Beschreibung
blinkt	مست	400 ms ON / 400 ms OFF 1 Sekunde Pause zwischen den Blink-Codes
flackert		50 ms ON / 50 ms OFF

4.5.5 Diagnose-Objekte

⚠ VORSICHT

CoE-Objekte nicht ändern!

Führen Sie keine Veränderungen an den CoE-Objekten der TwinSAFE-Komponenten durch! Veränderungen (z.B. mit TwinCAT) der CoE-Objekte setzen die TwinSAFE-Komponenten dauerhaft in den Zustand Fail-Stop!

Index F984_{hex}: Device Info Data C1

Das CoE-Objekt F984_{hex} zeigt aktuelle interne Temperatur- und Spannungswerte der TwinSAFE-Komponente neben den Firmware- und Vendor-Daten-CRCs an.

Index	Name	Bedeutung	Flags	Default
F984:01	Voltage C2	Spannung µC2	RO	O _{dec}
F984:02	Temperature C1	Temperatur µC1	RO	O _{dec}
F984:03	Firmware CRC C1	CRC der Firmware auf µC1	RO	-
F984:04	Vendor data CRC C1	CRC der Vendor-Daten auf µC1	RO	-

Index F985_{hex}: Device Info Data C2

Das CoE-Objekt F985_{hex} zeigt aktuelle interne Temperatur- und Spannungswerte der TwinSAFE-Komponente neben den Firmware- und Vendor-Daten-CRCs an.

Index	Name	Bedeutung	Flags	Default
F985:01	Voltage C1	Spannung µC1	RO	O _{dec}
F985:02	Temperature C2	Temperatur μC2	RO	O _{dec}
F985:03	Firmware CRC C2	CRC der Firmware auf µC2	RO	-
F985:04	Vendor data CRC C2	CRC der Vendor-Daten auf µC2	RO	-

Diagnose-Historie

Fehler, die während des Betriebes der TwinSAFE-Komponente auftreten, wie z.B. Übertemperatur oder Unterspannung werden mit einem entsprechenden Zeitstempel in der Diagnose-Historie eingetragen.

Index F100_{hex}: FSLOGIC Status

Das CoE-Objekt F100_{hex} zeigt den aktuellen Status der TwinSAFE-Komponente an.

Index	Name	Bedeutung	Flags	Default
F100:01	Safe Logic State	Status der internen Logik:	RO	O _{bin}
		0: OFFLINE 1: RUN 3: SAFE 6: START 8: PREPARE 10: RESTORE 11: PROJECT-CRC-OK		
F100:02	Cycle Counter	Lebenszykluszähler, der mit jedem TwinSAFE Logic Cycle inkrementiert wird.	RO	O bin

Folgende Tabelle enthält eine Beschreibung aller Werte des Index F100_{hex} SubIndex 01

Index	Wert	Beschreibung
F100:01	0: OFFLINE	Im Zustand OFFLINE ist kein TwinSAFE-Logic Programm geladen. Es werden keine TwinSAFE Gruppen und keine TwinSAFE Connections bearbeitet.
	1: RUN	Im Zustand RUN werden alle TwinSAFE Gruppen und alle TwinSAFE Connections bearbeitet, die in dem TwinSAFE-Logic Programm konfiguriert sind.
	3: SAFE	Der Zustand SAFE wird aus dem Zustand RUN eingenommen, wenn das TwinSAFE-Logic Programm gestoppt wird. Wenn das TwinSAFE-Logic Programm wieder gestartet wird, ohne dass ein neues TwinSAFE-Logic Programm übertragen wurde, soll die TwinSAFE-Logic wieder von SAFE nach RUN wechseln, dabei aber alle TwinSAFE Gruppen mit dem Initialzustand STOPER-ROR initialisieren, damit eine Fehlerquittung erfolgt, bevor sichere Ausgänge wieder geschaltet werden. Im Zustand SAFE werden keine TwinSAFE Gruppen und keine TwinSAFE Connections bearbeitet.
	6: START	Der Zustand START wird eingenommen, wenn das TwinSAFE-Logic Programm geladen ist, der Standard-Kommunikationskanal (z.B. EtherCAT) aber noch nicht im Prozessdaten-austausch ist oder die über den Standard-Kommunikationskanal konfigurierten Prozessdatenlängen nicht mit den über das TwinSAFE-Logic Programm berechneten Prozessdatenlängen übereinstimmen. Der Zustand START wird ebenfalls eingenommen, wenn ein Benutzer eingeloggt ist, um das aktuelle TwinSAFE-Logic Programm zu löschen oder die Benutzerliste zu übertragen. Im Zustand START werden keine TwinSAFE Gruppen und keine TwinSAFE Connections bearbeitet.
	8: PREPARE	Der Zustand PREPARE wird beim Übergang von START nach RUN bzw. SAFE nach RUN eingenommen. Im Zustand PREPARE werden die aus dem FRAM eingelesenen gespeicherten Daten geprüft und dann der Zustand RUN eingenommen. Wenn beim Prüfen der gespeicherten Daten ein Fehler festgestellt wurde, nehmen alle TwinSAFE Gruppen den Initialzustand STOPERROR ein. Wenn beim Prüfen der gespeicherten Daten kein Fehler festgestellt wurde, nehmen alle TwinSAFE Gruppen den Initialzustand STOP ein.
	10: RESTORE	Im Zustand RESTORE soll das geladene TwinSAFE Restore Programm geprüft werden, in dem dessen Project CRC mit den über die entsprechenden TwinSAFE Connections eingelesenen Project CRCs verglichen wird. Im Zustand RESTORE werden alle TwinSAFE Connections bearbeitet, die in dem TwinSAFE Restore Programm konfiguriert sind.
	11: PROJECT-CRC-OK	Der Zustand PROJECT-CRC-OK wird eingenommen, wenn die Project CRC des geladenen TwinSAFE Restore Programms über die TwinSAFE Connections erfolgreich geprüft wurde. Im Zustand PROJECT-CRC-OK werden keine TwinSAFE Gruppen und keine TwinSAFE Connections bearbeitet.

Dieses CoE-Objekt wird zusätzlich auch in das zyklische Prozessabbild der TwinSAFE-Komponente kopiert. Von dort können diese Informationen auch direkt in die SPS verknüpft werden.

Abb. 28: Diagnose-Objekt: FSLOGIC Status (F100_{hex}) im Prozessabbild der TwinSAFE-Komponente.

4.5.6 Zykluszeit des Safety-Projektes

Die Abarbeitungszeit der TwinSAFE-Logic kann aus untenstehenden CoE-Objekten ausgelesen werden. Für die Bestimmung der Zykluszeit muss diese mit 1,25 multipliziert werden, da intern über diesen Faktor eine Wartezeit vor dem nächsten Zyklus angelegt wird.

Index FEA0_{hex}: CTRL Diag Data

Index	Name	Bedeutung	Flags	Default
FEA0:09	Actual Safety Control Task Execution Time	Aktuelle Abarbeitungszeit der TwinSAFE-Logic bei Logik-State = 1 (RUN) Zykluszeit = 1,25 * Wert (Mittelwert über 64 Zyklen)	RO	O _{hex}
FEA0:0A	Min Safety Control Task Execution Time	Minimale Abarbeitungszeit der TwinSAFE-Logic bei Logik-State = 1 (RUN) Zykluszeit = 1,25 * Wert	RO	0 _{hex}
FEA0:0B	Max Safety Control Task Execution Time	Maximale Abarbeitungszeit der TwinSAFE-Logic bei Logik-State = 1 (RUN) Zykluszeit = 1,25 * Wert	RO	0 _{hex}
FEA0:15	Actual Safety Control Task Execution Time	Aktuelle Abarbeitungszeit der TwinSAFE-Logic bei Logik-State <> 1 Zykluszeit = 1,25 * Wert (Mittelwert über 64 Zyklen)	RO	O _{hex}
FEA0:16	Min Safety Control Task Execution Time	Minimale Abarbeitungszeit der TwinSAFE-Logic bei Logik-State <> 1 Zykluszeit = 1,25 * Wert	RO	0 _{hex}
FEA0:17	Max Safety Control Task Execution Time	Maximale Abarbeitungszeit der TwinSAFE-Logic bei Logik-State <> 1 Zykluszeit = 1,25 * Wert	RO	0 _{hex}

Rücksetzen der Werte

Ein Rücksetzen der Min- und Max-Werte ist über das Schreiben eines Wertes auf CoE-Objekt 0x1C32:08 möglich.

4.5.7 Reiter Diag-Historie

Alle innerhalb der TwinSAFE-Komponenten auftretenden Fehler werden in deren Diag-Historie abgelegt. Die Diag-Historie kann durch Auswahl der entsprechenden TwinSAFE-Komponente in der I/O-Baumstruktur und Auswahl des Reiters *Diag History* eingesehen werden. Durch Betätigen des Buttons *Update History* werden die aktuellen Daten von der TwinSAFE-Komponente geholt. Fehler innerhalb der Logik, der Funktionsbausteine, der Verbindungen oder der Komponente selbst werden mit einem entsprechenden Zeitstempel abgelegt.

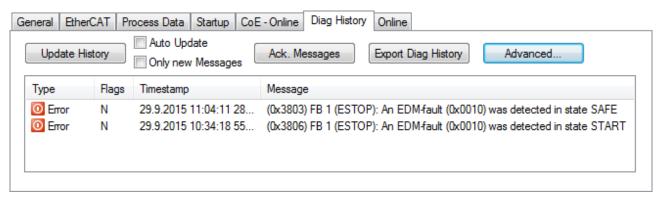


Abb. 29: Diag-Historie

Über den Button *Advanced…* können die erweiterten Einstellungen geöffnet werden. Hier kann der Anwender das Verhalten der Diag-Historie anpassen.

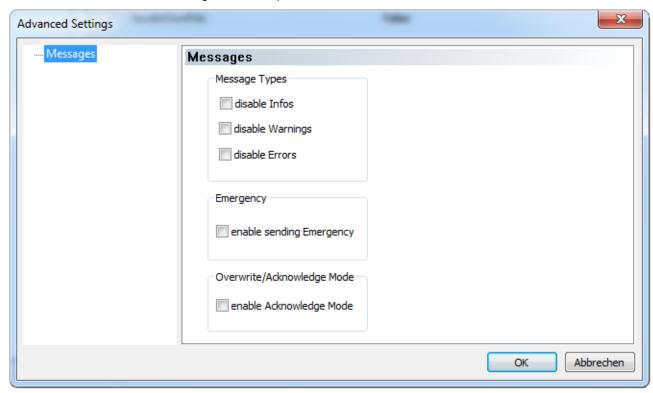


Abb. 30: Diag-Historie - Erweiterten Einstellungen (Advanced Settings)

Advanced Settings

Einstellung	Beschreibung
Message Types	disable Infos Messages mit Status <i>Info</i> , werden nicht in der Diag-Historie gespeichert
	disable Warnings Messages mit Status <i>Warning</i> , werden nicht in der Diag-Historie gespeichert
	disable Errors Messages mit Status <i>Error</i> , werden nicht in der Diag-Historie gespeichert
Emergency	Zusätzlich zum Speichern der Meldung in der Diag-Historie, wird auch noch ein Emergency Objekt gesendet, welches im Logger-Fenster von TwinCAT angezeigt wird.
Overwrite / Acknowledge Mode	Diese Einstellung wird derzeit nicht unterstützt.

4.5.8 Diagnose-Historie

Die Diagnose-Historie der TwinSAFE Geräte, die diese Funktion unterstützen, wird entsprechend der <u>ETG</u> Richtlinie ETG.1020 Kapitel 13 "Diagnosis Handling" realisiert. Die Diagnosemeldungen werden vom TwinSAFE Gerät in einem eigenen CoE-Objekt unter 0x10F3 abgelegt und können von der Applikation oder von TwinCAT ausgelesen werden.

Im CoE-Objekt 0x10F3 finden sich sowohl die Steuereinträge, wie die Historie selbst. Der Eintrag Newest Message (0x10F3:02) enthält den Subindex von 0x10F3, der die neueste Diagnosemeldung enthält, also z.B. 0x06 für Diagnosemeldung 1.

Index 10F3_{hex} **Diagnosis History**

Index (hex)	Name	Bedeutung	Datentyp	Flags	Default
10F3:0	Diagnosis History				
10F3:01	Maximum Messages	Maximale Anzahl der gespeicherten Nachrichten. Es können maximal 64 Nachrichten gespeichert werden. Danach werden die jeweils ältesten Meldungen überschrieben.	UINT8	RO	0x40 (64 _{dez})
10F3:02	Newest Message	Subindex der neusten Nachricht	UINT8	RO	0x00 (0 _{dez})
10F3:03	Newest Acknowledged Message	Subindex der letzten bestätigten Nachricht	UINT8	RW	0x00 (0 _{dez})
10F3:04	New Messages Available	Zeigt an, wenn eine neue Nachricht verfügbar ist	BOOLEA N	RO	0x00 (0 _{dez})
10F3:05	Flags	Wird über die Startup Liste gesetzt. Wenn auf 0x0001 gesetzt, werden die Diagnose- Meldungen zusätzlich per Emergency an den EtherCAT Master gesendet	UINT16	RW	0x0000 (0 _{dez})
10F3:06	Diagnosis Message 001	Diagnosemeldung 1	BYTE[32]	RO	{0}
10F3:45	Diagnosis Message 064	Diagnosemeldung 64	BYTE[32]	RO	{0}

Aufbau der Diagnosemeldungen

- DiagCode (4 Byte) hier immer 0x 0000 E000
- Flags (2 Byte) Diagnose Type (Info, Warnung oder Fehler), Zeitstempel und Anzahl enthaltener Parameter (siehe folgende Tabelle)
- Text-ID (2 Byte) ID der Diagnosemeldung als Referenz auf den Meldungstext aus der ESI/XML
- · Zeitstempel (8 Byte) lokale Slave-Zeit in ns seit Einschalten des TwinSAFE Gerätes
- dynamische Parameter (16 Byte) Parameter, die in den Meldungstext eingefügt werden können (siehe folgende Tabelle)

Flags in Diagnosemeldungen

Datentyp	Offset	Descrip	Description		
UINT16	Bit 03	DiagType (Wert)			
		0	Info Message		
		1	Warning Message		
		2 Error Message			
		315	reserviert		
	Bit 4	Wenn Bit = 1, ist der in der Message enthaltene Zeitstempel der lokale Zeitst des TwinSAFE Gerätes. Das Alter der Diagnosemeldung kann über eine Bei mit dem aktuellen Zeitstempel aus CoE-Objekt 0x10F8 erfolgen.			
	Bit 57	reserviert			
	Bit 815	Anzahl c	der Parameter in dieser Diagnosemeldung		

Dynamic Parameter in Diagnosemeldungen

Тур	Datentyp	Beschreibung
Flags Parameter 1	UINT16	Beschreibt den Typ des Parameters 1
		Bit 1215 = 0 Bit 011 = Datentyp Parameter 1
		0x0001 - BOOLEAN 0x0002 - INT8 0x0003 - INT16 0x0004 - INT32 0x0005 - UINT8 0x0006 - UINT16 0x0007 - UINT32 0x0008 - REAL32 0x0011 - REAL64 0x0015 - INT64 0x001B - UINT64 Text Parameter und Formatierungen sind in ETG.2000 spezifiziert.
Parameter 1	Datentyp entsprechend Flags	Wert von Parameter 1
Flags Parameter 2	UINT16	siehe Flags Parameter 1
Parameter 2	Datentyp entsprechend Flags	Wert von Parameter 2

In der zum TwinSAFE Gerät gehörigen ESI/XML-Datei werden die Diagnosemeldungen in Textform hinterlegt. Anhand der in der Diagnosemeldung enthaltenen Text-ID kann die entsprechende Klartextmeldung in den jeweiligen Sprachen gefunden werden. Die Parameter können an den entsprechenden Stellen eingefügt werden. Im folgenden Beispiel ist %x für eine hexadezimale Darstellung der Parameter verwendet.

Abb. 31: ESI/XML MessageText

Der Anwender erhält durch den Eintrag *New Messages Available* die Information, dass neue Meldungen vorliegen. Die Meldungen können per CompleteAccess (ein CoE Read Kommando für das komplette CoE-Objekt 0x10F3) ausgelesen werden. Nach dem Lesen der Nachrichten wird das Bit *New Messages Available* zurückgesetzt.

Durch das Hinzufügen von CoE-Objekt 0x10F3:05 zur Startup Liste (Transition IP, Wert 0x0001), wird das Senden von Emergency Nachrichten an den EtherCAT Master aktiviert. Treffen neue Diagnosemeldungen ein, werden diese im Objekt 0x10F3 eingetragen und zusätzlich per Emergency an den EtherCAT Master gesendet.

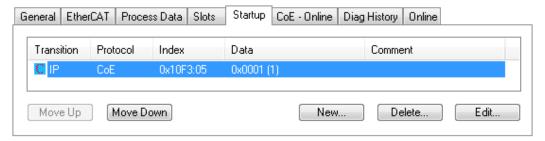


Abb. 32: Startup Liste

4.6 Instandhaltung

Wartung

Die TwinSAFE-Komponenten sind wartungsfrei!

Umgebungsbedingungen

⚠ WARNUNG

Spezifizierte Umgebungsbedingungen einhalten!

Stellen Sie sicher, dass die TwinSAFE-Komponenten nur bei den spezifizierten Umgebungsbedingungen (siehe technische Daten) gelagert und betrieben werden.

Falls die TwinSAFE-Komponente außerhalb des zulässigen Umgebungstemperaturbereichs betrieben wird, geht sie in den Zustand *Global Shutdown*.

Reinigung

Schützen Sie die TwinSAFE-Komponenten während des Betriebs und der Lagerung vor unzulässiger Verschmutzung!

Falls die TwinSAFE-Komponente unzulässiger Verschmutzung ausgesetzt wurde, darf sie nicht weiter betrieben werden!

MARNUNG

Verschmutzte Komponenten überprüfen lassen!

Eine Reinigung der TwinSAFE-Komponente durch den Anwender ist unzulässig! Schicken Sie verschmutzte Komponenten zur Überprüfung und Reinigung zum Hersteller!

4.7 Lebensdauer

Die TwinSAFE-EtherCAT-Boxen haben eine Lebensdauer von 20 Jahren.

Spezielle Proof-Tests sind aufgrund der hohen Diagnoseabdeckung innerhalb des Lebenszyklusses nicht notwendig.

Date Code

Die TwinSAFE-EtherCAT-Boxen tragen einen Date Code (D:), der wie folgt aufgebaut ist:

Date Code: WW JJ SW HW

Legende: Beispiel: Date Code 16 18 01 02

WW: Kalenderwoche der Herstellung Kalenderwoche: 16

JJ: Jahr der Herstellung Jahr: 2018

SW: Software-Stand Software-Stand: 01
HW: Hardware-Stand Hardware-Stand: 02

Seriennummer (S-Nr.)

Zusätzlich tragen die TwinSAFE-EtherCAT-Boxen eine eindeutige Seriennummer (S-Nr.).

EP2918-0032

|D: 45180100

S-Nr: 00000000

Abb. 33: EP2918 Seriennummer und DateCode

4.8 Außerbetriebnahme

⚠ WARNUNG

Verletzungsgefahr durch Stromschlag!

Setzen Sie das Bus-System in einen sicheren, spannungslosen Zustand, bevor Sie mit der Demontage der Geräte beginnen!

Entsorgung

Zur Entsorgung muss das Gerät ausgebaut werden.

Gemäß der WEEE-Richtlinie 2012/19/EU nimmt Beckhoff Altgeräte und Zubehör in Deutschland zur fachgerechten Entsorgung zurück. Die Transportkosten werden vom Absender übernommen.

Senden Sie die Altgeräte mit dem Vermerk "zur Entsorgung" an: Beckhoff Automation GmbH & Co. KG Abteilung Service Stahlstraße 31 D-33415 Verl

Beachten Sie die geltenden nationalen Gesetzte und Richtlinien zur Entsorgung!

- Gehäuseteile (Polycarbonat, Polyamid (PA6.6)) können dem Kunststoffrecycling zugeführt werden.
- Metallteile können dem Metallrecycling zugeführt werden.
- Elektronik-Bestandteile, wie z.B. Leiterplatten sind entsprechend der nationalen Elektronik-Schrott-Verordnung zu entsorgen.

4.9 Update der Firmware von TwinSAFE-Produkten

Für TwinSAFE-Produkte gibt es die Möglichkeit ein Firmware-Update über das EtherCAT-Interface durchzuführen. Hierbei wird die komplette Firmware der TwinSAFE-Komponente gelöscht und durch eine neue Version ersetzt.

Die jeweils aktuelle Firmware kann von der Beckhoff Homepage heruntergeladen werden oder beim Beckhoff Support angefragt werden. Die Versionen liegen in einer verschlüsselten Form vor und können nur auf das passende TwinSAFE-Produkt geladen werden. Eine falsche Firmware Datei wird vom jeweiligen TwinSAFE-Produkt abgelehnt.

Voraussetzung für ein Firmware-Update

A GEFAHR

Setzen Sie die Maschine in den sicheren Zustand!

Bei einem Firmware-Update wird die aktuelle Abarbeitung der Firmware des TwinSAFE-Produktes gestoppt. Dazu ist es zwingend erforderlich, dass Sie das TwinSAFE-System in den sicheren Zustand schalten, bevor Sie mit einem Update beginnen.

Alle sicheren Ausgänge müssen sich im sicheren, energielosen Zustand befinden. Sind an der Maschine oder dem TwinSAFE-System hängende oder ziehende Lasten vorhanden, müssen diese ggf. auch durch externe Sicherungsmaßnahmen in einen sicheren Zustand gebracht werden.

▲ GEFAHR

Überwachen Sie den Maschinenzustand!

Es ist erforderlich, dass Sie die Maschine unter Ihrer Kontrolle haben, d.h. diese einsehen und somit sicherstellen können, dass sich die Maschine in einem sicheren Zustand befindet und ein Firmware-Update ohne Gefährdung der Bediener bzw. des Personals erfolgen kann.

HINWEIS

Vermeiden Sie Kommunikations-Unterbrechungen während des Downloads

Bitte trennen Sie die EtherCAT-Verbindung während des Downloads der Firmware unter keinen Umständen. Sollte doch ein Kommunikationsfehler auftreten, ist das TwinSAFE-Produkt anschließend möglicherweise unbrauchbar und muss an den Beckhoff Service gesendet werden.

⚠ WARNUNG

Default Projekt bei TwinSAFE-I/O-Komponenten mit lokaler Logik-Funktion!

Nach einem Firmware-Update startet ein ggf. implementiertes Default-Projekt automatisch auf. Ein EK1960 zum Beispiel, würde nach einem Firmware-Update als TwinSAFE-I/O-Slave aufstarten.

HINWEIS

Firmware-Update von TwinSAFE-Logiken

Wird ein Firmware-Update für eine TwinSAFE-Logik-Komponente durchgeführt, wie z.B. auf einer TwinSA-FE-Logic EL6910, muss das sicherheitsgerichtete Anwenderprogramm nach dem Update erneut auf die TwinSAFE-Logic geladen werden. Die Benutzerverwaltung ist nach dem Update auf den Default-Einstellungen.

EtherCAT-Kommunikation

Bei einem Firmware-Update einer EtherCAT-Komponente, wird diese in den BOOTSTRAP Mode geschaltet. Dies kann Auswirkungen auf die EtherCAT-Kommunikation zu anderen EtherCAT-Teilnehmern haben.

Durchführung des Firmware-Updates

Klicken Sie im TwinCAT-System den Button (1) um in den Konfig-Modus zu gelangen. Bestätigen Sie die Abfrage mit OK (2). Danach erscheint ein weiteres Fenster, welches mit Ja (Yes) (3) bestätigt werden muss. Deaktivieren Sie den "Free Run" mit Nein (No) (4). Nun befindet sich das System im Konfigurationsmodus.

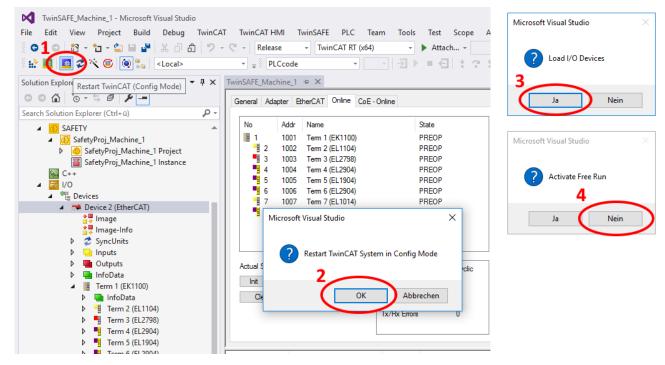


Abb. 34: Update der Firmware von TwinSAFE-Produkten - Teil 1

Um das Firmware-Update durchzuführen, müssen Sie beim "EtherCAT Device" (5) den Reiter "Online" (6) auswählen. Wenn Sie mehrere Komponenten updaten wollen, können Sie die entsprechenden Komponenten (7) zusammen selektieren, bei nur einer Komponente selektieren Sie nur diese. Klicken Sie anschließend mit der rechten Maustaste in den selektierten Bereich und wählen Sie dann in der Befehlsübersicht den Befehl "Firmware Update…" (8).

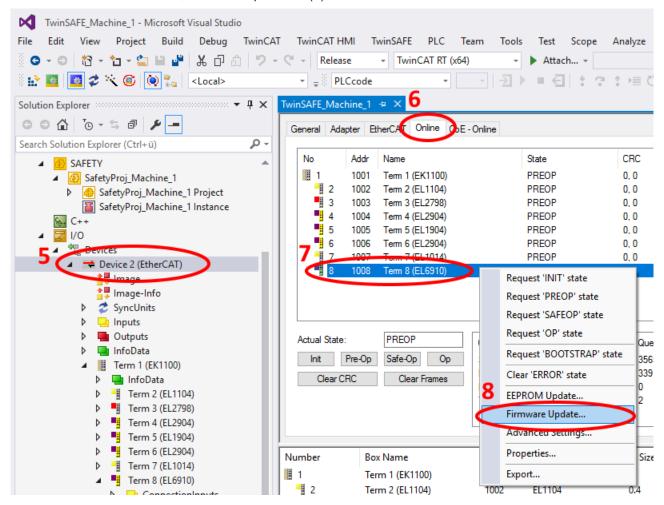


Abb. 35: Update der Firmware von TwinSAFE-Produkten - Teil 2

Selektieren Sie in dem Speicherort, wo Sie die gewünschte Firmware-Version gespeichert haben, die Firmware-Datei (9) aus und klicken auf "Öffnen" (Open) (10). Das erscheinende Fenster bestätigen Sie mit "OK" (11), anschließend wird das Firmware-Update durchgeführt. Nach erfolgreicher Beendigung müssen Sie auf "OK" (12) im Abschlussfenster "Function Succeeded" klicken. Danach können Sie das System wieder in den Run-Modus schalten und das TwinSAFE-System verwenden.

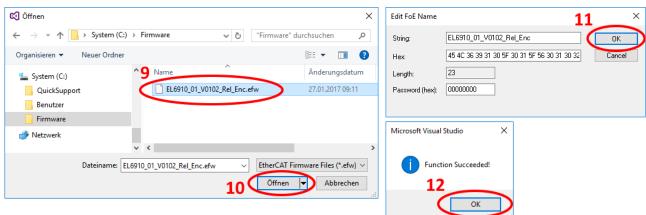


Abb. 36: Update der Firmware von TwinSAFE-Produkten - Teil 3

5 Anhang

5.1 Schutzarten nach IP-Code

In der Norm IEC 60529 (DIN EN 60529) sind die Schutzgrade festgelegt und nach verschiedenen Klassen eingeteilt. Die Bezeichnung erfolgt in nachstehender Weise.

1. Ziffer: Staub- und Berührungsschutz

1. Ziffer	Bedeutung
0	Nicht geschützt
1	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Geschützt gegen feste Fremdkörper Ø50 mm
2	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Geschützt gegen feste Fremdkörper Ø12,5 mm
3	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Geschützt gegen feste Fremdkörper Ø2,5 mm
4	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Geschützt gegen feste Fremdkörper Ø1 mm
5	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubgeschützt. Eindringen von Staub ist nicht vollständig verhindert, aber der Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird
6	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Staubdicht. Kein Eindringen von Staub

2. Ziffer: Wasserschutz*

2. Ziffer	Bedeutung
0	Nicht geschützt.
1	Geschützt gegen Tropfwasser.
2	Geschützt gegen Tropfwasser, wenn das Gehäuse bis zu 15° geneigt ist.
3	Geschützt gegen Sprühwasser. Wasser, das in einem Winkel bis zu 60° beiderseits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben.
4	Geschützt gegen Spritzwasser. Wasser, das aus jeder Richtung gegen das Gehäuse spritzt, darf keine schädlichen Wirkungen haben.
5	Geschützt gegen Strahlwasser.
6	Geschützt gegen starkes Strahlwasser.
7	Geschützt gegen die Wirkungen beim zeitweiligen Untertauchen in Wasser. Wasser darf nicht in einer Menge eintreten, die schädliche Wirkungen verursacht, wenn das Gehäuse für 30 Minuten in 1 m Tiefe in Wasser untergetaucht ist.

^{*)} In diesen Schutzklassen wird nur der Schutz gegen Wasser definiert, nicht gegen andere Flüssigkeiten.

5.2 Support und Service

Beckhoff und seine weltweiten Partnerfirmen bieten einen umfassenden Support und Service, der eine schnelle und kompetente Unterstützung bei allen Fragen zu Beckhoff Produkten und Systemlösungen zur Verfügung stellt.

Beckhoff Support

Der Support bietet Ihnen einen umfangreichen technischen Support, der Sie nicht nur bei dem Einsatz einzelner Beckhoff Produkte, sondern auch bei weiteren umfassenden Dienstleistungen unterstützt:

- Support
- · Planung, Programmierung und Inbetriebnahme komplexer Automatisierungssysteme
- umfangreiches Schulungsprogramm für Beckhoff Systemkomponenten

Hotline: +49(0)5246 963 157
Fax: +49(0)5246 963 9157
E-Mail: support@beckhoff.com

Beckhoff Service

Das Beckhoff Service-Center unterstützt Sie rund um den After-Sales-Service:

- Vor-Ort-Service
- · Reparaturservice
- · Ersatzteilservice
- · Hotline-Service

Hotline: +49(0)5246 963 460 Fax: +49(0)5246 963 479 E-Mail: service@beckhoff.com

Weitere Support- und Serviceadressen finden Sie auf unseren Internetseiten unter http://www.beckhoff.de.

Beckhoff Firmenzentrale

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Deutschland

Telefon: +49(0)5246 963 0 Fax: +49(0)5246 963 198 E-Mail: info@beckhoff.com

Die Adressen der weltweiten Beckhoff Niederlassungen und Vertretungen entnehmen Sie bitte unseren Internetseiten:

http://www.beckhoff.de

Dort finden Sie auch weitere <u>Dokumentationen</u> zu Beckhoff Komponenten.

5.3

Zertifikate

Anhang

CERTIFICATE

No. Z10 062386 0067 Rev. 00

Holder of Certificate: Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl GERMANY

Factory(ies): 062386

Certification Mark:

Product: Safety components

Model(s): EP2918

Parameters: Supply voltage: 24VDC (-15%/+20%)

Ambient temperature: -25°C...+60°C

Protection class: IP67

Tested 2006/42/EC

according to: EN 61508-1:2010 (SIL1-3) EN 61508-2:2010 (SIL1-3)

EN 61508-3:2010 (SIL1-3)

EN 62061:2005/A2:2015 (SIL CL3) EN ISO 13849-1:2015 (Cat 4, PL e)

The product was tested on a voluntary basis and complies with the essential requirements. The certification mark shown above can be affixed on the product. It is not permitted to alter the certification mark in any way. In addition the certification holder must not transfer the certificate to third parties. See also notes overleaf.

Test report no.: BV94567T

Valid until: 2024-11-11

Date, 2019-11-12 (Peter Weiß)

Page 1 of 1

TÜV SÜD Product Service GmbH • Certification Body • Ridlerstraße 65 • 80339 Munich • Germany

Version: 1.0.0

TÜV®

Abbildungsverzeichnis

Abb. 1	EtherCAT-Box-Module erweitern das EtherCAT-System in Schutzart IP67	9
Abb. 2	EP2918-0032 - TwinSAFE-EtherCAT-Box mit 8 fehlersicheren Ausgängen	10
Abb. 3	EP2918 Abmessungen	14
Abb. 4	EtherCAT-Box mit M8-Steckverbindern	16
Abb. 5	EtherCAT-Box mit M8- und M12-Steckverbindern	16
Abb. 6	7/8"-Steckverbinder	16
Abb. 7	Drehmomentschlüssel ZB8801	16
Abb. 8	EtherCAT-Anschluss 30mm Gehäuse M8	17
Abb. 9	EP2918 - Sichere Ausgänge 1 bis 8	20
Abb. 10	PinOut sicherer Ausgang	20
Abb. 11	EP2918 Signalleitungen	22
Abb. 12	Leitungsführung	23
Abb. 13	Einfügen einer EP2918	24
Abb. 14	EP2918 - Delete Project Data	25
Abb. 15	EtherCAT-Box - Drehschalter auf der Unterseite	26
Abb. 16	Starten des automatischen Imports aus der I/O-Konfiguration	27
Abb. 17	Auswahl aus dem I/O Baum	27
Abb. 18	Anlegen der Alias Devices durch den Anwender	28
Abb. 19	EP2918 - Reiter Linking	29
Abb. 20	EP2918 - Reiter Connection	30
Abb. 21	EP2918 - Parameter	31
Abb. 22	EP2918 Prozessabbild	32
Abb. 23	Typische Reaktionszeit	33
Abb. 24	Worst-Case-Reaktionszeit	34
Abb. 25	EP2918 - Feldbus-LEDs	35
Abb. 26	EP2918 - Status-LEDs	36
Abb. 27	EP2918 - Diagnose LEDs	37
Abb. 28	Diagnose-Objekt: FSLOGIC Status (F100hex) im Prozessabbild der TwinSAFE-Komponente.	40
Abb. 29	Diag-Historie	41
Abb. 30	Diag-Historie - Erweiterten Einstellungen (Advanced Settings)	41
Abb. 31	ESI/XML MessageText	43
Abb. 32	Startup Liste	44
Abb. 33	EP2918 Seriennummer und DateCode	45
Abb. 34	Update der Firmware von TwinSAFE-Produkten - Teil 1	47
Abb. 35	Update der Firmware von TwinSAFE-Produkten - Teil 2	48
Ahh 36	Undate der Firmware von TwinSAFF-Produkten - Teil 3	48

Version: 1.0.0