
Manual | EN

TF5430
TwinCAT 3 | Planar Motion

2024-03-11 | Version: 1.4.1

Foreword

TF5430 3Version: 1.4.1

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TF54304 Version: 1.4.1

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF5430 5Version: 1.4.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Table of contents

TF54306 Version: 1.4.1

Table of contents
1 Foreword.. 3

1.1 Notes on the documentation ... 3
1.2 For your safety .. 3
1.3 Notes on information security.. 5

2 Overview of the new functions .. 9

3 Introduction ... 10

4 States and modes ... 11
4.1 Planar objects state diagram... 11
4.2 Planar mover command diagram .. 12
4.3 Planar track operation modes ... 13

5 Parts ... 15
5.1 Parts and coordinate systems... 15
5.2 Configuration... 16
5.3 Positions with ReferenceId.. 17

6 Planar Motion components .. 18
6.1 Planar mover ... 18

6.1.1 Configuration.. 18
6.1.2 Creating a PLC... 21
6.1.3 Example: "Creating and moving Planar movers" ... 22
6.1.4 Example "Moving a Planar mover to Planar parts" .. 24
6.1.5 Example: "Creating and moving a Planar mover with auxiliary axes".............................. 28
6.1.6 Example "Creating and moving a Planar mover with External Setpoint Generation" 31
6.1.7 Example "Moving a Planar mover with External Setpoint Generation to Planar parts".... 34
6.1.8 Example "Moving the Planar mover in CRotationFreeMovement mode"......................... 38
6.1.9 Limits and options of the motion commands.. 40

6.2 Planar track ... 42
6.2.1 Configuration.. 42
6.2.2 Track networks and collision avoidance... 44
6.2.3 Tracks and parts .. 48
6.2.4 Example "Joining and moving a Planar mover on the track" ... 50
6.2.5 Example "Moving Planar movers on tracks with Planar parts" .. 54
6.2.6 Example "Coupling a Planar mover to a track and moving it in CRotationOnTrack

mode"... 59
6.2.7 Example "Coupling a Planar mover to a track and moving it with

AdoptTrackOrientation" .. 62
6.2.8 Example "Synchronizing a Planar mover on a track with one axis" 65
6.2.9 Example: "Synchronizing a Planar mover on a track with another Planar mover"........... 72
6.2.10 Example "Connecting Planar tracks to a network"... 75
6.2.11 Example "Connecting Planar tracks to network on Planar parts" 79
6.2.12 Example: "Following a Planar mover through a Track Network"...................................... 83
6.2.13 Options for the "StartFromTrackAdvanced" and "EndAtTrackAdvanced" commands 88

6.3 Planar group.. 89
6.3.1 Configuration.. 89

Table of contents

TF5430 7Version: 1.4.1

6.3.2 Example: "Creating and moving Planar movers with group".. 91
6.4 Planar environment ... 96

6.4.1 Configuration.. 96
6.4.2 Example "Configuring the stator area and boundary" .. 99

6.5 Example: "Creating and moving Planar movers with track and group" ... 102
6.6 Planar part... 105

6.6.1 Example "Activating a Planar part position and moving a Planar mover" 106
6.7 Planar Feedback ... 112

6.7.1 Example "Creating a Planar mover and Planar Feedback" ... 112
6.7.2 Example "Planar motion components: averting collision" .. 115
6.7.3 Specialized feedback types.. 119

6.8 Planar TrackTrail ... 120
6.8.1 Example "Synchronization movement over two Planar tracks"...................................... 121

7 PLC Libraries... 125
7.1 Inserting libraries... 125
7.2 Tc3_Mc3PlanarMotion API ... 125

7.2.1 Data Types... 125
7.2.2 Function Blocks.. 134

8 Support and Service ... 173

Table of contents

TF54308 Version: 1.4.1

Overview of the new functions

TF5430 9Version: 1.4.1

2 Overview of the new functions
From version V3.2.60:

• New: The surface that the movers travel on is divided into Planar parts that can be moved during
runtime. Movers can cross boundaries between connected or adjacent Planar parts.

• Requires TwinCAT V3.1.4024.40 or higher

From version V3.1.10.63:

• Requires TwinCAT V3.1.4024.24 or higher

From version V3.1.10.51:

• New: AdoptTrackOrientation rotates the mover on the track to align it with the track orientation. This
changes the C coordinate mode from independent to dependent.

• Advanced: MoveC now always works for standing movers on the track. This may change the C
coordinate mode from dependent to independent.

From version V3.1.10.44:

• New: GearInPosOnTrack and GearInPosOnTrackWithMasterMover commands for coupling a Planar
mover to a master axis or a master mover, respectively

• Advanced: Parameters of the Planar track TcCOM module
• Requires TwinCAT V3.1.4024.17 or higher

From version V3.1.10.30:

• New: CRotation command mode (360° rotation) with modulo positioning
• New: Constraints as a new variant to limit the dynamics of the motion commands
• Advanced: Parameters for modulo positioning on "Closed Loop" tracks

From version V3.1.10.11:

• First version of Planar Motion released
• Requires TwinCAT V3.1.4024.12 or higher

Introduction

TF543010 Version: 1.4.1

3 Introduction
The TwinCAT 3 Planar Motion software package TF5430 is installed together with the software package
TF5400.

Target system

Windows 7/8/10 (only 64-bit)

TwinCAT 3 Planar Motion Base

The TF5430 TwinCAT 3 Planar Motion software combines a wide range of functionalities for controlling
XPlanar movers and enables efficient and intelligent implementation of individual XPlanar applications.
TF5430 TwinCAT 3 Planar Motion is part of TF5890 TwinCAT 3 XPlanar. All associated function blocks are
included in the library Tc3_Mc3PlanarMotion, which is to be used in combination with the library Tc3_Physics.

Additional licensing requirements

TF5430 TwinCAT 3 Planar Motion requires the TC1250 license.

https://infosys.beckhoff.com/content/1033/tc3plclib_tc3_physics/index.html?id=4696947420018373671

States and modes

TF5430 11Version: 1.4.1

4 States and modes

4.1 Planar objects state diagram
The Planar State Machine is used by the Planar mover, the Planar track and the Planar group. All of these
components can be in the seven planar states: Enabling, Enabled, Disabling, Disabled, Resetting,
ErrorPending, Error.

The error reaction depends on how serious the error is. For minor errors, the normal error reaction
is a QuickStop. The user can also force the error reaction Abort by Disable() in this case. The
command must be sent in one of the three states: ErrorPending, Error or Resetting.

Enabling

In the Enabling state, the Enable command is executed. At the end of this command, the component is in the
Enabled state. In the Enabling state, a Disable command can be sent that cancels the Enable command and
causes the state to change to Disabling.

Enabled

In the Enabled state the component is fully functional and can be used by the user. In this state a Disable
command can be sent. The state then switches to Disabling.

Disabling

In the Disabling state the Disable command is executed. At the end of this command, the component is in
the Disabled state. In the Disabling state, an Enable command can be sent that cancels the Disable
command and causes the state to change to Enabling.

Disabled

After the system is booted the components are in the Disabled state. They can be placed in the Enabling
state using an Enable command. The components are not functional in the Disabled state.

Resetting

The component is in the process of rectifying the error. Depending on the error reaction it is then in the
Enabled or Disabled state.

States and modes

TF543012 Version: 1.4.1

ErrorPending

When an error occurs the component reaches the ErrorPending state from all other states except the
Resetting state. Once the error has been processed correctly, the state switches to Error.

Error

The Error state means that an error has occurred and the component can now be placed in the Resetting
state using the Reset command in order to correct the error.

4.2 Planar mover command diagram
The Planar mover has six different command modes that indicate what type of command the mover
executes: OnTrack, LeavingTrack, JoiningTrack, ExternalSetpointGeneration and CRotationFreeMovement/-
OnTrack (from Version V3.1.10.51). In all modes except ExternalSetpointGeneration mode, collision
avoidance is active for the mover when it is in a group.

OnTrack

In the OnTrack mode the mover joins a track and can be moved on it (MoveOnTrack). The mover can also
leave the track again (LeaveTrack), which changes the mode to LeavingTrack. MoveC commands cause a
change to CRotationOnTrack mode if necessary.

LeavingTrack

In LeavingTrack mode the mover does not accept any further commands. The mode is quit automatically
when the mover has ended the LeaveTrack command. The mover is then in FreeMovement mode.

JoiningTrack

In JoiningTrack mode the mover does not accept any further commands. The mode is quit automatically
when the mover has ended the JoinTrack command. The mover is then in the OnTrack mode.

States and modes

TF5430 13Version: 1.4.1

FreeMovement

After enabling the mover, it is automatically in this command mode, unless the mover is twisted too much.
Then it is in CRotationFreeMovement mode. The mover can be moved freely with MoveToPosition
commands. If the user starts the external setpoint generation via a command, the mode switches to
ExternalSetpointGeneration. JoinTrack commands are also possible that change the mode to JoiningTrack.
MoveC commands may cause a change to the CRotationFreeMovement mode.

CRotationFreeMovement/-OnTrack

This mode is started by the MoveC command if the C-movement that is in progress does not take place
entirely within a C-position window. The windows are defined by the position limits of the C-axis of the mover
and exist 4 times each rotated by 90° (the 90° rotation results from the mover symmetry: e.g. limits +-15° ->
window 1. [-15°,+15°], 2. [75°,105°], 3. [165°,195°], 4. [255°,285°]). Depending on whether you were
previously in FreeMovement or OnTrack mode, the mode will be CRotationFreeMovement or
CRotationOnTrack accordingly. The mode is finished when the C-movement is completed and the end
position is within one of the four windows. The mover then automatically returns to the previous mode. The
mover thus changes from CRotationFreeMovement to FreeMovement or from CRotationOnTrack to
OnTrack. Otherwise, it remains in CrotationFreeMovement/-OnTrack mode. In both CRotation modes, the X
and Y-axes of the mover cannot be moved. If the mover already has an orientation outside the 4 windows
when it starts up, it is immediately in CRotationFreeMovement mode instead of FreeMovement.

ExternalSetpointGeneration

In ExternalSetpointGeneration mode, the mover executes a corresponding command. This mode begins (or
ends) with the beginning (or end) of the corresponding command. In the ExternalSetpointGeneration mode,
the mover follows the external setpoints that the user provides cyclically.

External setpoint generation can be used in conjunction with the other modes. In this case, the external
setpoints are simply added as relative offsets from the setpoints of the other modes. However, the mover is
then not in ExternalSetpointGeneration mode.

4.3 Planar track operation modes
The Planar track has four different operation modes that indicate whether and how the track performs or can
perform its function as a "Street for Movers": Moving, Standing, Configuring and Uninitialized.

States and modes

TF543014 Version: 1.4.1

Moving

In Moving mode, one or more movers are about to move on the track (MoveOnTrack). The first mover to
start a movement on the track in Standing mode automatically changes the mode from Standing to Moving.
Accordingly, the last mover that completes its movement changes the mode back to Standing. No mover is
allowed to execute a JoinTrack or LeaveTrack command while the track is in Moving mode. If the track is in a
Planar group, it blocks its surface.

Standing

In Standing mode the track is usable by movers. All movers on the track are standing and waiting for travel
commands. JoinTrack, LeaveTrack and MoveOnTrack commands are allowed for the movers in this mode.
Each of these commands ends the Standing mode of the track. If the track is in a Planar group, it does not
block its surface.

Configuring

In Configuring mode, one or more movers are about to leave the track (LeaveTrack) or join the track
(JoinTrack). The first mover to leave (or join) the track in Standing mode automatically changes the mode
from Standing to Configuring. Accordingly, the last mover to complete leaving or joining changes the mode
back to Standing. No mover is allowed to execute a MoveOnTrack command while the track is in Configuring
mode. If the track is in a Planar group, it does not block its surface.

Uninitialized

The track is not usable by movers in the Uninitialized mode. It does not have a finished geometric description
yet. When the user creates and enables this geometric description, the track switches to Standing mode.

Parts

TF5430 15Version: 1.4.1

5 Parts

5.1 Parts and coordinate systems
From version V3.2.60: The Part feature, which is the subject of this section, is available.

The surface that the XPlanar movers move on is made up of stators in the form of squares with a side length
of 240 mm. The entire base is divided into one or more parts consisting of one or more stators. A stator can
only belong to one part, i.e. the parts do not overlap. The total number of stators of a part must be
assembled in a contiguous surface.

This geometric configuration of the XPlanar system is usually static; it does not change during system
runtime. To create a dynamic configuration, the user must move or relocate individual parts by assigning
them more than one position and activating them at runtime.

In general, an issue arises: the positions are no longer unique or there is no absolute coordinate system. The
user can define several (2D) coordinate systems and place his parts in these.

A 2D position (e.g. of a mover or track) is now incomplete without an indication of which coordinate
system it is located in.

Example

There are four parts, 1-4, and two coordinate systems, A and B. Part 3 is either in coordinate system A or B.
The other parts are permanently assigned to a coordinate system. The position P1 is located in the
coordinate system A at the position X=480 and y=480 (P1=(480,480,A) for short).

The position P2 is located in the coordinate system B at the position X=480 and y=480 (P2=(480,480,B) for
short).

Parts

TF543016 Version: 1.4.1

Without specifying the coordinate system A, the position P1 would not be distinguishable from the position
P2 in coordinate system B (480,480,B). However, both positions are different and are not even in the same
coordinate system, i.e. there is no geometric connection between them (e.g. a mover cannot travel from P1
to P2).

In addition to coordinate systems A and B, there are also local part coordinate systems for each of the parts
1-4. These coordinate systems each have their origin in the bottom left-hand corner of their part. This means
that P1 = (0,0,3) = (0,480,2) = (480,480,1) in the part coordinate systems of parts 1-3.

This is only true for part 3 as long as it lies in coordinate system A. The transparent representation of part 3
in coordinate system B shows that part 3 can change its position from coordinate system A to coordinate
system B. The position of a part is identical to the origin of its coordinate system. Part 3 would therefore be
moved from position P1 (in coordinate system A) to position P2, and now P1 can no longer be specified in
the coordinate system of part 3.

Instead, the position P2 = (0,0,3) = (480,480,4) can be specified in the coordinate system of part 3 (and 4).
Overall, you can see that positions in part coordinate systems are not static if the part is moved with its
coordinate system.

5.2 Configuration
From version V3.2.60: The Part feature, which is the subject of this section, is available.

The configuration of the stators of a part (i.e. the geometric extent) and the part positions in the various
coordinate systems takes place in the XPlanar driver and not in the MC Configuration. Therefore we will not
describe how to create this configuration here.

However, this information is important for both the MC Configuration and for PLC control, so it is read from
the XPlanar driver by the Planar environment when it is activated and distributed from there to all Planar
objects within the MC Configuration. In the PLC, a separate MC_PlanarPart [} 158] object is used to control
the part position and states.

Parts

TF5430 17Version: 1.4.1

The item objects, PositionXYC and PositionXY, are extended to specify items uniquely. They now contain the
ID of the coordinate system (ReferenceId) in addition to the coordinate values. As the positions are no longer
unique, the position of the mover can now be specified in two ways:

1. As the position in the higher-level coordinate system (that the part that the mover is on is located in).
2. As a position in the part coordinate system. The position in the higher-level coordinate system is

specified in the cyclical interface. In addition, its position in the part coordinate system can be queried
using the method GetPositionOnCurrentPart [} 157].

Tracks can be connected to various other tracks depending on the part position. These connections can be
made using two methods, StartFromTrackAdvanced [} 166] and EndAtTrackAdvanced [} 167]. For external
setpoint generation, the coordinate system in which the external setpoint is located must also be specified.
This is done using the method SetExternalSetpointReferenceId.

These functionalities of the MC Configuration are described in detail below.

5.3 Positions with ReferenceId
From version V3.2.60: The Part feature, which is the subject of this section, is available.

With the introduction of parts and coordinate systems, positions no longer make sense without specifying the
reference system in which they are located. For this purpose, the "ReferenceId" property has been added for
the PositionXYC and PositionXY objects. You now also save the ID of the reference system.

These two position objects, PositionXYC and PositionXY, can (and should) now always be used with the
explicit ID of the reference system. Stating a specific reference system is safer, as this makes it explicitly
clear which system is meant.

Not specifying a reference system or specifying the "zero" reference system is only permitted in exceptional
cases if there is only one static coordinate system in which all parts have a fixed position. The ID "zero" is
then converted internally into the ID of the sole coordinate system. In all other cases, the reference system
"zero" is rejected. Non-valid reference systems (invalid object ID of a part/coordinate system) other than
"zero" are always rejected.

https://infosys.beckhoff.com/content/1031/tc3plclib_tc3_physics/14583934603.html?id=4128544836616431089
https://infosys.beckhoff.com/content/1031/tc3plclib_tc3_physics/14583838091.html?id=1614463905654242632
https://infosys.beckhoff.com/content/1031/tc3plclib_tc3_physics/14583934603.html?id=4128544836616431089
https://infosys.beckhoff.com/content/1031/tc3plclib_tc3_physics/14583838091.html?id=1614463905654242632
https://infosys.beckhoff.com/content/1031/tc3plclib_tc3_physics/14583934603.html?id=4128544836616431089
https://infosys.beckhoff.com/content/1031/tc3plclib_tc3_physics/14583838091.html?id=1614463905654242632

Planar Motion components

TF543018 Version: 1.4.1

6 Planar Motion components

6.1 Planar mover
The Planar mover is a software object that represents an XPlanar mover. It summarizes the state of the real
mover (position, velocity, etc.) for the user. In addition, the user has the possibility to influence or control the
state of the real mover via the Planar mover.

6.1.1 Configuration
ü In order to create a Planar mover, an MC Configuration must first be created.
1. Select MOTION > Add New Item….

2. In the following dialog box, select MC Configuration and confirm with OK.

ð You have created an MC Project.
3. Select MC Project > Axes > Add New Item….

Planar Motion components

TF5430 19Version: 1.4.1

4. In the following dialog box, create one (or more) Planar movers and confirm with OK.

ð The Planar mover is now created and can be parameterized.

Open detailed description
• Select the Planar mover in the tree and double-click it.

Purposes of the individual tabs

Object: General information (name, type, ID and so on) is shown here.

Parameter (Init): Specifies initial parameters that the user can change in order to affect the behavior of the
mover.

Parameter (Init) should be put into simulation mode (TRUE) before parameterizing if no hardware
driver is linked. The parameter is hidden and only becomes visible if the "Show Hidden Parameters"
checkbox is activated.

Planar Motion components

TF543020 Version: 1.4.1

The initial parameters are initially set so that the Planar mover (ready linked) can be moved with the
hardware. If the user wants to move without hardware, the "Simulation Mode" parameter must be set to
TRUE. In simulation mode, the "Initial Position" and "PartOID" parameters (from version V3.2.60) should be
set. If the real mover does not have standard dimensions, the "Mover width" and "Mover height" parameters
must be adjusted.

From version V3.1.10.30: The hidden "Minimum/Maximum Position" parameters are used to define when
the mover switches to the CRotation command mode for the C-axis. For all target positions of C-movements,
the "C coordinate modulus" and "C coordinate modulo tolerance window" parameters (the latter for modulo
positioning) define the conversion to the absolute target position. For details see Modulo positioning.

From version V3.1.10.51: AdoptTrackOrientation is also a C-movement and is accordingly influenced by "C
coordinate modulus" and "C coordinate modulo tolerance window". For details, see AdoptTrackOrientation
[} 62].

From version V3.2.60: The "PartOID" parameter specifies the part that the "Initial Position" is located on for
the simulation mode. The "PartOID", "Simulation Mode", and "Initial Position" parameters are all hidden and
in their own "Simulation" grouping.

Other parameters are the "Maximum Dynamic(s)" and the "Default Dynamic(s)". In addition, there are
"monitoring" parameters that activate or parameterize position monitoring of the real mover.

Parameter (Online): Shows the state of the mover during the runtime of the object. The current preset
position ("SetPos") and real position ("ActPos") are displayed along with the state information.

From version V3.1.10.30: The parameter "External setpoint generation" indicates whether the mover follows
(absolute or relative) external setpoints of the user.

https://infosys.beckhoff.com/index.php?content=../content/1031/tf5410_tc3_collision_avoidance/10232370059.html&id=5508189633649835425

Planar Motion components

TF5430 21Version: 1.4.1

From version V3.2.60: The "CoordinateSystemOID" parameter specifies the coordinate system that SetPos
and ActPos are specified in and the coordinate system that the mover is located in.

Data Area: Shows memory areas via which the mover is linked to other objects and exchanges information.

Settings: The user can establish links here. With the two "Link To ..." buttons, the Planar mover can be
linked to the movers in the PLC and the XPlanar driver.

6.1.2 Creating a PLC
ü A PLC must be created to control the mover, track or group, to create the geometry of an environment or

to use Planar Feedback.
1. Select PLC > Add New Item...

2. In the following dialog box, select Standard PLC Project and confirm with OK.

3. Add the libraries "Tc3_Physics" and "Tc3_Mc3PlanarMotion" to the PLC project; see Inserting libraries
[} 125].

https://infosys.beckhoff.com/content/1033/tc3plclib_tc3_physics/index.html?id=4715843385614493280

Planar Motion components

TF543022 Version: 1.4.1

ð The PLC is created and you can issue commands to the corresponding objects as described in the
following examples.

6.1.3 Example: "Creating and moving Planar movers"
Using this short guide you will create a TwinCAT project that contains a Planar mover and moves it in a
simple way.

Creating a Planar mover
ü See Configuration [} 18].
1. Create a Planar mover for this example.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].

1. Use MAIN to create the mover(s) ("MC_PlanarMover [} 143]") as follows.

ð This/these represent(s) the mover(s) in the MC Configuration.
2. Create a Planar mover, a state variable for a state machine and a target position for a travel command of

the mover, as shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 state : UDINT;
 target_position : PositionXYC;
END_VAR

3. Then program a sequence in MAIN.
ð This program code activates the mover and moves it to position x = 100 and y = 100.
CASE state OF
 0:
 mover.Enable(0);
 state := 1;
 1:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 target_position.SetValuesXY(100, 100);
 mover.MoveToPosition(0, target_position, 0, 0);
 state := 3;
END_CASE

Sending the command
4. To send the command, you must call the mover cyclically with its update method after END_CASE:

mover.Update();

Planar Motion components

TF5430 23Version: 1.4.1

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state=3), the mover is in the desired position.

Planar Motion components

TF543024 Version: 1.4.1

6.1.4 Example "Moving a Planar mover to Planar parts"
In this example, a Planar mover is moved onto two Planar parts.

Starting point

You start with a solution that contains a fully configured XPlanar Processing Unit. Two parts, a coordinate
system and a mover are created under the XPlanar Processing Unit. A tile is created under each of the two
parts.

Planar Motion components

TF5430 25Version: 1.4.1

The following geometric situation is set: the two parts are next to each other and the mover starts in the
middle of the left part (position P1). Both parts are not movable and the configuration is therefore static.

The example is developed on the basis of this configuration.

The creation of the initial situation is described in the XPlanar Processing Unit documentation.

Creating a Planar mover and a Planar environment
1. Create a Planar mover for this example, see Configuration [} 18].

2. Create a Planar environment, see Configuration [} 96].

Planar Motion components

TF543026 Version: 1.4.1

3. Set the initial parameter XPlanar processing unit OID to the object ID of the XPlanar Processing Unit.
This activates the Part feature for all MC Configuration objects (especially for the created Planar
mover).

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].

1. Use MAIN to create the mover(s) ("MC_PlanarMover [} 143]") as follows.

ð This/these represent(s) the mover(s) in the MC Configuration.
2. Create a Planar mover, a state variable for a state machine and a target position for a travel command of

the mover, as shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 state : UDINT;
 target_position : PositionXYC;
END_VAR

3. Then program a sequence in MAIN.
ð This program code activates the mover and moves it to the position x=100 and y=100, which is

specified in the part coordinate system of the right part (its object Id is 16#01010030).
CASE state OF
 0:
 mover.Enable(0);
 state := 1;
 1:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 target_position.SetValuesXYCReferenceId(100, 100, 0, 16#01010030);
 mover.MoveToPosition(0, target_position, 0, 0);
 state := 3;
END_CASE

Sending the command
4. To send the command, you must call the mover cyclically with its update method after END_CASE:

mover.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

Planar Motion components

TF5430 27Version: 1.4.1

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

ð In addition, the Planar mover in the "MC Project" (double-click) can be linked with the Link To I/O...
button on the Settings tab.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state=3), the mover is in the desired position. The position is specified in the
coordinate system and not, like the target_position, in the part coordinate system of the right-hand part (its
object Id is 16#01010030). Both systems are shifted by 240 mm in the x-direction. It can also be seen that
the axes a, b and z exhibit a slight noise. This is generated by the simulation of the XPlanar Processing Unit
and has an effect on the initially accepted position when starting up.

Planar Motion components

TF543028 Version: 1.4.1

6.1.5 Example: "Creating and moving a Planar mover with auxiliary
axes"

Using this short guide you will create a TwinCAT project that contains a Planar mover and moves it in a
simple way.

Creating a Planar mover
ü See Configuration [} 18].
1. Create a Planar mover.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].

1. Use MAIN to create the mover(s) ("MC_PlanarMover [} 143]") as follows.

Planar Motion components

TF5430 29Version: 1.4.1

ð This/these represent(s) the mover(s) in the MC Configuration.
2. Create a Planar mover, a state variable for a state machine and a target position for a travel command of

the mover, as shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 state : UDINT;
 target_a : LREAL := 1.0;
 target_b : LREAL := -1.0;
 target_c : LREAL := 3.0;
 target_z : LREAL := 5.0;
END_VAR

3. Then program a sequence in MAIN.
ð This program code activates the mover and moves the four auxiliary axes.
CASE state OF
 0:
 mover.Enable(0);
 state := 1;
 1:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 mover.MoveA(0, target_a, 0);
 mover.MoveB(0, target_b, 0);
 // Since Version V3.1.10.11 MoveC has an options parameter,
 // details can be found in the CRotation example
 // and the options descriptions
 //mover.MoveC(0, target_c, 0); // until version V3.1.10.11
 mover.MoveC(0, target_c, 0, 0); // since version V3.1.10.30
 mover.MoveZ(0, target_z, 0);
 state := 3;
END_CASE

Further information:

• Example "Moving the Planar mover in CRotation mode" [} 38]

• Limits and options of the motion commands [} 40]

Sending the command
4. To send the command, you must call the mover cyclically with its update method after END_CASE:

mover.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

Planar Motion components

TF543030 Version: 1.4.1

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state=3), the mover is in the desired position.

Planar Motion components

TF5430 31Version: 1.4.1

6.1.6 Example "Creating and moving a Planar mover with External
Setpoint Generation"

Using this short guide you will create a TwinCAT project that contains a Planar mover and moves it in a
simple way by means of external setpoint generation.

Creating a Planar mover
ü See Configuration [} 18].
1. Create a Planar mover.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].

1. Use MAIN to create the mover(s) ("MC_PlanarMover [} 143]") as follows.

ð This/these represent(s) the mover(s) in the MC Configuration.

Planar Motion components

TF543032 Version: 1.4.1

2. Create a Planar mover, a state variable for a state machine and variables for the external setpoint, as
shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 state : UDINT;
 p,v,a : MoverVector;
 deltat : LREAL := 0.001;
velo, acc, jerk : LREAL;
END_VAR

3. Then program a sequence in MAIN.
ð This program code activates the mover and starts the external setpoint generation. A profile is then

followed that ends with a positive velocity. The subsequent stopping of the external setpoint
generation ensures that the mover reduces its velocity to zero and is in the FreeMovement state after
stopping (this is done with the maximum dynamics of the mover).

CASE state OF
 0:
 mover.Enable(0);
 state := 1;
 1:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 p.x := 0.0; v.x := 0.0; a.x := 0.0;
 mover.StartExternalSetpointGeneration(0,0);
 mover.SetExternalSetpoint(p,v,a);
 state := 3;
 3:
 velo := v.x;
 acc := a.x;
 p.x := p.x + deltat * velo + deltat * deltat / 2 * acc + deltat * deltat * deltat / 6 *
jerk;
 v.x := v.x + deltat * acc + deltat * deltat / 2 * jerk;
 a.x := a.x + deltat * jerk;
 mover.SetExternalSetpoint(p,v,a);
 IF a.x >= 10.0 THEN
 jerk := -1;
 END_IF;
 IF a.x <= 0.0 THEN
 state := 4;
 END_IF;
 5:
 mover.StopExternalSetpointGeneration(0);
 state := 6;
END_CASE

Sending the command
4. To send the commands you need to trigger the update method of the mover after the END_CASE:

mover.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

Planar Motion components

TF5430 33Version: 1.4.1

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state = 6), the mover is in the desired positive x-position.

Planar Motion components

TF543034 Version: 1.4.1

6.1.7 Example "Moving a Planar mover with External Setpoint
Generation to Planar parts"

In this example, a Planar mover is moved to two Planar parts with external setpoint generation.

Starting point

You start with a solution that contains a fully configured XPlanar Processing Unit. Two parts, a coordinate
system and a mover are created under the XPlanar Processing Unit. A tile is created under each of the two
parts.

The following geometric situation is set: the two parts are next to each other and the mover starts in the
middle of the left part (position P1). Both parts cannot be moved; the configuration is therefore static.

Planar Motion components

TF5430 35Version: 1.4.1

The example is developed on the basis of this configuration.

The creation of the initial situation is described in the XPlanar Processing Unit documentation.

Creating a Planar mover and a Planar environment
1. Create a Planar mover for this example, see Configuration [} 18].

2. Create a Planar environment, see Configuration [} 96].
3. Set the initial parameter XPlanar processing unit OID to the object ID of the XPlanar Processing Unit.

This activates the Part feature for all MC Configuration objects (especially for the created Planar
mover).

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].

1. Use MAIN to create the mover(s) ("MC_PlanarMover [} 143]") as follows.

ð This/these represent(s) the mover(s) in the MC Configuration.
2. Create a Planar mover, a state variable for a state machine and variables for the external setpoint, as

shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 state : UDINT;
 p,v,a : MoverVector;
 deltat : LREAL := 0.01;
 refsys : OTCID := 0;
 velo, acc, jerk : LREAL;
 feedback : MC_PlanarFeedback;
END_VAR

3. Then program a sequence in MAIN.
ð This program code activates the mover and starts the external setpoint generation. A profile is then

followed that ends with a positive velocity. The subsequent stopping of the external setpoint
generation ensures that the mover reduces its velocity to zero and is in the FreeMovement state after
stopping (this is done with the maximum dynamics of the mover).

CASE state OF
 0:
 mover.Enable(0);
 state := 1;
 1:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 p := mover.MCTOPLC.SET.SetPos;
 v.x := 0.0; a.x := 0.0;
 mover.StartExternalSetpointGeneration(0,0);
 mover.SetExternalSetpointReferenceId(feedback,p,v,a,refsys);
 jerk := 10;

Planar Motion components

TF543036 Version: 1.4.1

 state := 3;
 3:
 velo := v.x;
 acc := a.x;
 p.x := p.x + deltat * velo + deltat * deltat / 2 * acc + deltat * deltat * deltat / 6 *
jerk;
 v.x := velo + deltat * acc + deltat * deltat / 2 * jerk;
 a.x := acc + deltat * jerk;
 mover.SetExternalSetpointReferenceId(feedback,p,v,a,refsys);
 IF a.x >= 100.0 THEN
 jerk := -10;
 END_IF;
 IF a.x <= 0.0 THEN
 state := 4;
 END_IF;
 4:
 mover.StopExternalSetpointGeneration(0);
 state := 5;

END_CASE

Sending the command
4. To send the commands you need to trigger the update method of the mover after the END_CASE:

mover.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

ð In addition, the Planar mover in the "MC Project" (double-click) can be linked with the Link To I/O...
button on the Settings tab.

Planar Motion components

TF5430 37Version: 1.4.1

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state = 5), the mover is in the desired positive x-position. It has not left the
first part, so in this case you could also specify the object ID of the first part or the coordinate system as
refsys. If the object ID of the first part is specified and the limit to the second part is exceeded, the object ID
of the second part must be used and the x-coordinate reduced by 240 (at the same time!). The object ID of
the global coordinate system works regardless of which part you are on. As the configuration is static, zero is
accepted as an alternative for the global coordinate system ID.

Planar Motion components

TF543038 Version: 1.4.1

Comments on the feedback:

In this example, the feedback was only created and entered in the SetExternalSetpointRefSys call without
doing anything with it. As no errors occur in this example, the feedback is busy from state 2. Otherwise, you
should ALWAYS implement error handling with this feedback in order to handle errors such as an incorrect
RefSysId for the position.

The special feature of this feedback is that it is passed cyclically and the same feedback must be passed in
every call. If errors occur in the external setpoint generation, these errors are displayed in the feedback after
the next call of SetExternalSetpointRefSys with feedback. An update call for the feedback is not necessary
here. In addition, the feedback is not done when StopExternalSetpointGeneration is called, or aborted when
Halt is called.

Even if the information is available in the feedback after the SetExternalSetpointRefSys call, the errors do
not have to come directly from this call, but can also result from previous calls.

6.1.8 Example "Moving the Planar mover in
CRotationFreeMovement mode"

Using this short guide you will create a TwinCAT project that contains a Planar mover and moves it in a
simple way.

Creating a Planar mover
ü See Configuration [} 18].
1. Create a Planar mover.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].

1. Use MAIN to create the mover(s) ("MC_PlanarMover [} 143]") as follows.

Planar Motion components

TF5430 39Version: 1.4.1

ð This/these represent(s) the mover(s) in the MC Configuration.
2. Create a Planar mover, a state variable for a state machine and a target position for a travel command of

the mover, as shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 state : UDINT;
 target_position_c : LREAL;
END_VAR

3. Then program a sequence in MAIN.
ð This program code activates the mover and rotates it to position c=20.
CASE state OF
 0:
 mover.Enable(0);
 state := 1;
 1:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 target_position_c := 20.0;
 mover.MoveC(0, target_position_c, 0, 0);
 state := 3;
END_CASE

Sending the command
4. To send the command, you must call the mover cyclically with its update method after END_CASE:

mover.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.
ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To

PLC... button on the Settings tab.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

The mover is at the end of the state machine (state=3) at the desired (rotated) position and is in command
mode CRotationFreeMovement, since the angle is greater than 15°. A further movement of the C-axis up to
e.g. 90° would change the command mode back to Free Movement after completion of the command.

Planar Motion components

TF543040 Version: 1.4.1

6.1.9 Limits and options of the motion commands
The Planar mover can execute different types of motion commands. Except for the special case of external
setpoint generation, these are similar in structure. The following applies to the rest of the motion commands.
The first parameter of the method call is always the feedback for the command that the user transfers. If he
transfers a "0", this implies that he does not want to have (or use) feedback. The next one or two parameters
describe the destination of the motion and they cannot be completely omitted. The next parameters are the
dynamic limits that should be observed during motion. If the user transfers a "0" here, the default values are
used (TCOM parameters of the mover in the MC Project). The last parameter is the option object, which
differs depending on the command.

Limits

Each motion command runs in the optimal time. For the resulting trajectory to be continuous, the time
derivatives of the position must be limited. The limits include maximum values for the velocity, positive and
negative acceleration, and jerk. If the values specified here exceed the maximum dynamic limits of the
mover (TCOM parameters of the mover in the MC Project), they are reduced accordingly, a warning is
issued and the command is executed with reduced dynamic values. There is only one Limit or Constraint
object. This is understood to be a limitation of the dynamics tangential to the direction of movement of the
mover.

For external setpoint generation, the only parameters are Feedback and Options.

From version V3.1.10.30: The limits should be replaced by Constraints, see Dynamics.

Options

The options vary depending on the command:

MoveToPosition/JoinTrack/LeaveTrack: The only option of these commands is the "UseOrientation" flag.
This flag indicates whether or not the C coordinate of the XYC target position should also be used. If not, the
C-coordinate can be moved separately via "MoveC".

https://infosys.beckhoff.com/content/1031/tc3plclib_tc3_physics/14583598731.html?id=7686457657119170138

Planar Motion components

TF5430 41Version: 1.4.1

MoveOnTrack: The first option is the "gap". This numerical value indicates the distance to the mover in front
during the motion (and after that until the next motion command on the track). This distance is measured
along the track (difference between the track positions of the two movers). Therefore, curvatures in the track
must be taken into account, as they reduce the real 2D distance. The gap is calculated from center to center,
therefore the width of the movers must be taken into account. The second option is "Direction", the direction
of travel on the track towards the destination. This can assume the values "NonModulo" (= absolute),
"Positive" (= forward), "ShortestWay" (= shortest way) and "Negative"(= backward). If the destination is
reachable in the appropriate direction, the command is executed.

From version V3.1.10.30: The third option is "AdditionalTurns": the number of additional laps driven on a
"Closed Loop" track with "Direction" "Positive" or "Negative". For other "Direction" cases, "AdditionalTurns"
must be zero. The fourth option is "ModuloTolerance". This parameter is used to avoid unintended rotations
when the start and target positions are very similar. If the distance between the start and target position is
less than or equal to the "ModuloTolerance", the target position is approached by the shortest route (as with
"Direction" = "Shortest Way"), i.e. against the specified "Direction". For the "Direction" "NonModulo" the
ModuloTolerance must be zero. For details, see Modulo positioning.

From version V3.1.10.30: MoveC: The first option is "AdditionalTurns": the number of additional whole C-
turns related to the "C coordinate modulus" parameter of the mover with "Direction" "Positive" or "Negative".
For other "Direction" cases, "AdditionalTurns" must be zero. The second option is "Direction": the direction of
rotation of the C coordinate towards the target. This can assume the values "NonModulo" (= absolute),
"Positive" (= forward), "ShortestWay" (= shortest way) and "Negative"(= backward). For details, see Modulo
positioning.

From version V3.1.10.51: AdoptTrackOrientation: The first option is "AdditionalTurns": The number of
additional whole C-turns related to the "C coordinate modulus" parameter of the mover with "Direction",
"Positive", or "Negative". For other "Direction" cases, "AdditionalTurns" must be zero. The second option is
"Direction": the direction of rotation of the C-coordinate towards the target. This can assume the values
"NonModulo" (= absolute), "Positive" (= forward), "ShortestWay" (= shortest way) and "Negative"(=
backward). For details, see Modulo positioning.

From version V3.1.10.44: GearInPosOnTrack: The first option is the "Gap", which has the same
interpretation here as with MoveOnTrack. The second parameter is the "InSyncToleranceDistance". It
specifies how far the master and slave may move away from each other before the active Planar mover
loses its synchronicity. The following two options are "Direction" and "ModuloTolerance", which both refer to
the parameter "SlaveSyncPosition" (as input at the function call). These options are only available if the
Planar track that the Planar mover performs its synchronization movement on is a closed loop. In this case,
the interpretation of these options is analogous to that for MoveC, where here the modulus is given by the
length of the Planar track. For details, see Modulo positioning. The last parameter
"AllowedSlaveSyncDirections" specifies in which direction, i.e. positive (default), negative or both, the Planar
mover is allowed to move during the synchronization phase. This parameter can be used, for example, to
prevent a back oscillation, which would occur with the option "Both", in order to achieve the fastest possible
synchronization. If the Planar mover is in sync, or has been in sync, and is currently trying to get back in
sync, this parameter has no further effect.

From version V3.1.10.30: GearInPosOnTrackWithMasterMover: The first four options, "Gap",
"InSyncToleranceDistance", as well as the two modulo options for the SlaveSyncPosition, are identical to the
first four options of the GearInPosOnTrack command in terms of their meaning. This is followed by two
parameters "Direction" and "ModuloTolerance" for the MasterSyncPosition, which are available in the same
way as the modulo parameters for the SlaveSyncPosition when the Master Planar Mover is on a closed-loop
track. The following option "AllowedSlaveSyncDirections" has exactly the same function as the
GearInPosOnTrack command. If the last option, "FollowMover", is set, it ensures that the Slave Planar
Mover does not necessarily have to obtain a Planar TrackTrail [} 120] to know which Planar tracks it will
perform its movement over. The Slave Planar Mover will simply follow the Master Planar Mover as it moves
through the network. If the Master Planar Mover and the Slave Planar Mover are on different Planar tracks
when the motion command is received and the "FollowMover" option is set, the slave will try to reach the
Planar track that the MasterSyncPosition is commanded on by the shortest route. In addition to the
"FollowMover" option, a PlanarTrackTrail can be specified for the Slave Planar Mover. In this case, it is used
to command the path to the Planar track that the MasterSyncPosition lies on (e.g. if it is to deviate from the
shortest path). If it does not fully reach this Planar track, the remaining path is filled with the shortest route. If
a PlanarTrackTrail is specified when the "FollowMover" option is set, the SlaveSyncPosition can be specified

https://infosys.beckhoff.com/content/1033/tf5410_tc3_collision_avoidance/10232370059.html?id=5508189633649835425
https://infosys.beckhoff.com/content/1033/tf5410_tc3_collision_avoidance/10232370059.html?id=5508189633649835425
https://infosys.beckhoff.com/content/1033/tf5410_tc3_collision_avoidance/10232370059.html?id=5508189633649835425
https://infosys.beckhoff.com/content/1033/tf5410_tc3_collision_avoidance/10232370059.html?id=5508189633649835425
https://infosys.beckhoff.com/content/1033/tf5410_tc3_collision_avoidance/10232370059.html?id=5508189633649835425

Planar Motion components

TF543042 Version: 1.4.1

on a different Planar track than its initial one. In general, the following rule applies: if the "FollowMover"
option is set, the Slave Planar Mover follows the master from the Planar track that the MasterSyncPosition is
located on, regardless of whether a PlanarTrackTrail object has been specified.

Addition version V3.1.10.30 - Option was already available before with a different type:
StartExternalSetpointGeneration: Here the user has the choice between the mode "Absolute" and "Relative".
In absolute mode, the mover follows only the external setpoints specified by the user and is in
ExternalSetpointGeneration command mode; otherwise, the mover is in any other command mode and adds
the user's external setpoints as an offset to its current setpoint.

6.2 Planar track
The Planar track is a software object that represents a (virtual) one-dimensional path on the two-dimensional
XPlanar stator surface. Several Planar movers can be lined up and moved on this path. Collisions are
prevented by keeping a preset distance between the movers.

6.2.1 Configuration
ü In order to create a Planar track, an MC Configuration must first be created.
1. Select MOTION > Add New Item….

2. In the following dialog box, select MC Configuration and confirm with OK.

ð You have created an MC Project.
3. Select MC Project > Groups > Add New Item….

4. In the following dialog box, create one (or more) Planar tracks and confirm with OK.

Planar Motion components

TF5430 43Version: 1.4.1

ð The Planar track is now created and can be parameterized.

Open detailed description
• Select the Planar track in the tree and double-click it.

Purposes of the individual tabs

Object: General information (name, type, ID and so on) is shown here.

Parameter (Init): Specifies initial parameters that the user can change in order to affect the behavior of the
track.

The initial parameters are first set so that the Planar track (ready linked) can be traversed with the hardware.
If the movers on the track are larger or smaller, the two "Maximum mover width/height" parameters should
be adjusted. The parameter "Check collision against static objects" determines whether a track in a Planar
group is checked for collisions with other static objects (tracks/edge of the stator surface). The parameter
"Collision range mode" determines whether the "Collision range at start/end" is specified by the user via the

Planar Motion components

TF543044 Version: 1.4.1

corresponding parameters or whether it is automatically calculated internally by the track. The "Collision
range" is the distance from the start/end of the track from which a Planar mover is taken into account for
collision avoidance for Planar movers on other tracks.

From version V3.1.10.44: The parameters "Geometric information", "Closed loop", "Starts from tracks" and
"Ends at tracks" can be used to define the geometry of the track and its connection to other tracks. The
parameters act exactly like the corresponding PLC commands.

From version V3.2.60: The "PartOID" parameter specifies which part this track is permanently assigned to.
If there is a unique part or the part feature is not used (no reading of the processing unit by the environment),
the parameter does not need to be set. Otherwise, the parameter must be set so that the track starts. All
positions in the Init and online parameters (Geometric [online] information) are specified in this part system.
The "Starts from tracks" and "Ends at tracks" parameters have been extended to reflect the additional
functionality of the corresponding PLC commands for the part feature.

Parameters (Online): Shows the state of the track at runtime, e.g. the number of Planar movers or the
length.

From version V3.1.10.30: The parameters "Previous Tracks" and "Subsequent Tracks" are arrays that
contain the OIDs of all tracks directly before or directly after this track.

From version V3.1.10.44: The "Geometric online information" parameter shows the geometry of the track
available at runtime. This results from the corresponding initial parameter and/or the PLC commands used.

From version V3.2.1: The "Closed loop online information" parameter specifies whether the track forms a
closed loop (a circle).

Data Area: Shows the memory area via which the track communicates with the PLC track.

6.2.2 Track networks and collision avoidance

Tracks and track networks

Tracks are user-specified static paths on the stator surface. Multiple tracks can be connected continuously
(including direction and curvature) at one point so that movers can switch from one track to another. If more
than two tracks are connected at one point in such a way, a switch is created there. This allows you to create
a network of contiguous tracks.

A mover can move both forward and backward on a single track. A transition to another track can only be
done from a track end to a track start, not the other way around.

Collision avoidance in a track network

Movers that move on a track network avoid collisions with other movers in the same track network. Excluded
from this are places where tracks cross without a switch or pass too close to each other or lead past
themselves (see illustrations). Such configurations should be avoided.

Planar Motion components

TF5430 45Version: 1.4.1

Negative examples:

This is no switch.

Each mover has a minimum gap set for it, which it must maintain to the mover in front of it on its path. This
gap is measured between the positions of the movers on the track and can be reset with each travel
command.

In the vicinity of a switch, a mover must, if necessary, additionally pay attention to potential collisions with
movers that are located on other tracks connected to the switch, even if these tracks are not part of the
planned path of the mover. Whether this additional collision avoidance is active for a mover at a point in time
depends on four factors:

• the current position of the mover,
• the earliest possible resting position of the mover (resulting from the current dynamics and dynamic

limits),
• the set gap of the mover,
• the corresponding Collision Range parameter of the current track.

If the distance between the current position and the earliest possible resting position of the mover is at any
point less than Gap + Collision Range from the switch, the additional collision avoidance for this mover is
active. If this is the case, all other movers for which this condition is also met are included in the dynamic
planning.

Planar Motion components

TF543046 Version: 1.4.1

Definition of the Collision Ranges

The importance of the Collision Range parameters for collision avoidance was described in the previous
section. "Collision Range at start" refers to the distance to the switch at the starting point of the track and
"Collision Range at end" refers to the distance to the switch at the end point of the track.

A more intuitive understanding of the Collision Range parameters arises from the following recommendation:
the Collision Range should be set so that a mover that is at this distance from the associated switch (at the
start or end of the track) cannot collide with movers on other tracks that connect to the switch.

In order to simplify the configuration, the corresponding values for the Collision Ranges are automatically
calculated and applied when the "Collision range mode" parameter is set to "Automatic". If "Manual" is
selected instead of "Automatic", the values entered by the user are used instead. If these are set too small,
this may result in collisions. If, on the other hand, they are set much too large, movers may block one
another on different tracks that are actually far apart and cannot collide at all.

If a track at the starting point (end point) either has no switch, or if no other tracks start (end) at the switch,
the corresponding Collision Range can be set to 0.

Examples and illustrations:

In this example, the "Collision range at end" for track 1 can be set to zero, because, although two other
tracks start at the switch, no other tracks end. The parameter "Collision range at start" for tracks 2 and 3
should be set so that a mover with this distance to the switch cannot collide with movers on the respective
other track.

Collision Range

Collision Range

Example of the determination of meaningful Collision Range parameters (T1, T2 and T3 end at the start of
T4): If R is the maximum mover radius of movers on the track, a "hose" with radius 2*R can be placed
around a track (in this case around track 2) in order to determine a minimum for the Collision Ranges on the
other tracks. In this example, track 1 has a smaller "Collision range at end" as it quickly moves away from the
other tracks and track 3 and track 2 have a larger "Collision range at end" as they run close together for
longer.

Collision Range at end (Track 1)

Gap (Mover 2)

T1

T2

T3

M1

M2

In this example, the additional collision avoidance at the switch is active for Mover 1, since its distance to the
switch alone is smaller than the set Collision Range.

Mover 2 is standing still in this example and is further away from the switch than Gap or Collision Range. The
additional collision avoidance is therefore not active and the two movers do not have to take each other into
consideration at this time.

Planar Motion components

TF5430 47Version: 1.4.1

Collision Range at end (Track 1)

T1

M1

Gap (Mover 2)

M2 (v>0)

T2

T3

In this example, mover 1 is on track 1 outside the Collision Range, so mover 1 blocks the movement of
mover 2 to track 3. Mover 2 stops exactly at the start of the Collision Range of track 2, as this is the last safe
stopping point. If the gap between mover 1 and mover 2 would allow it, mover 2 would move to a
correspondingly later stop.

Collision Range at end (Track 1)

M1

M2 (v>0)

Gap (Mover 2)

T3

T1

T2

In this example, mover 1 is on track 1 outside the Collision Range, so mover 1 blocks the movement of
mover 2 to track 3. Mover 2 stops exactly at the distance of its gap to the end of track 2. If the gap between
mover 1 and mover 2 would allow it, mover 2 would move to a correspondingly later stop.

In the last two examples, mover 2 moves on when mover 1 has moved so far forward that both movers have
a minimum distance that is greater than the gap between the two movers.

M1
M2

Gap (Mover 2)

T3

T1

T2

In this example, mover 2 is further away from the switch than the Gap or Collision Range, so mover 1 can
drive onto track 3 unhindered. If mover 2 moves back, a blockage may occur if the distance to the switch is
less than the Gap or Collision Range.

Planar Motion components

TF543048 Version: 1.4.1

This is an example of a design to be avoided where the end of a track (in this case T2) affects the Collision
Range at the start of another track (T3) (and vice versa). In the case of Automatic Collision Range Mode,
such a situation is not detected. If it is still desired, however, a manual adjustment of the Collision Ranges is
necessary here. However, Tracks with such tight curves as T2 in this example are also strongly discouraged
due to the strong limitation of the dynamics (tight curves generate large centrifugal forces even when driving
through at low velocities).

6.2.3 Tracks and parts
From version V3.2.60: The Part feature, which is the subject of this section, is available.

Tracks can be used together with parts, but there are a few special features to bear in mind:

• A track is always permanently assigned to a single part. This is done via the initial parameter
"PartOID".

• The track must be geometrically complete on the corresponding part.
• The track has a fixed static geometry relative to its part. So if the position of his part changes, the

position of the track changes accordingly.
• If more than one part exists in the configuration, the initial parameter "PartOID" must be specified,

otherwise (each) track is automatically assigned to the only part.
• Tracks on the same part can be easily connected. The start and end of each track can only be

connected to another track once. This means that StartFromTrack [} 165] and EndAtTrack [} 165] can
be successfully called up a maximum of once per track.

• Tracks on different parts can only be connected if the connection between them lies exactly on the
boundary of both parts. This means that the start or end of one of the two tracks must already be on
the part boundary so that the other can be connected. This connection can only be crossed if both
parts are at this point. If one of the parts is moved to a different position, the connection can no longer
be crossed (like any open end of a track). In this case, however, both tracks can be connected to other
tracks on other parts in other positions.

To close all these different connections between tracks, the methods StartFromTrack [} 165] and
EndAtTrack [} 165] can be called more than once for each track.

Planar Motion components

TF5430 49Version: 1.4.1

In this example, parts 1 and 2 are static. Part 3 has 2 positions, so that it is connected once to part 1 and
once to part 2. Once tracks 1 and 2 have been defined on parts 1 and 2, track 3 on part 3 can be connected
to both. Depending on the direction of the tracks, either track 3 must be connected to positions 1 and 2 (or
tracks 1 and 2) with two StartFromTrack [} 165] calls or with two EndAtTrack [} 165] calls. The first call
defines the geometry and a logical connection of the start or end of track 3, while the second call only
defines a logical connection and only assumes (and checks) that the geometric connection is suitable.

Planar Motion components

TF543050 Version: 1.4.1

In this example, part 1 is static and part 3 has 2 positions so that it touches part 1 at different points. After
track 3 is defined, it is unclear how to interpret a EndAtTrack [} 165] from track 1 to track 3. Should track 1 be
geometrically connected to track 3 in the upper or lower configuration? This can be realized with the new
methods EndAtTrackAdvanced [} 167] and StartFromTrackAdvanced [} 166]. The exact position of the two
parts of the tracks involved is specified in order to connect the tracks in this configuration.

6.2.4 Example "Joining and moving a Planar mover on the track"
Using this guide, you will to create a TwinCAT project that contains two Planar movers and one Planar track.
Both movers are joined and moved on the track.

Creating a Planar mover
ü See Configuration [} 18].
1. Create two Planar movers.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.
3. Change the start position of the second mover to x = 240.

Creating a Planar track
4. Add the Planar track via Groups > Add New Item…, see Configuration [} 42].

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].

Planar Motion components

TF5430 51Version: 1.4.1

1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

ð These represent movers and tracks in the MC Configuration.
2. Create two Planar movers, a Planar track, a state variable for a state machine and two auxiliary positions

for the track, as shown below.
PROGRAM MAIN
VAR
 mover_one, mover_two : MC_PlanarMover;
 track : MC_PlanarTrack;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

3. Then program a sequence in MAIN.
ð This program code creates and activates a track and both movers. After that, both movers are joined

and moved on the track.
CASE state OF
 0:
 pos1.SetValuesXY(0, 0);
 pos2.SetValuesXY(400, 0);
 track.AppendLine(0, pos1, pos2);
 track.Enable(0);
 state := 1;
 1:
 IF track.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 mover_one.Enable(0);
 mover_two.Enable(0);
 state := 3;
 3:
 IF mover_one.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled
 AND mover_two.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 4;
 END_IF
 4:
 mover_one.JoinTrack(0, track, 0, 0);
 mover_two.JoinTrack(0, track, 0, 0);
 state := 5;
 5:
 IF mover_one.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack
 AND mover_two.MCTOPLC.STD.CommandMode=MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := 6;
 END_IF
 6:
 mover_one.MoveOnTrack(0, 0, 150.0, 0, 0);
 mover_two.MoveOnTrack(0, 0, 350.0, 0, 0);
 state := 7;
 7:
 IF mover_one.MCTOPLC.SETONTRACK.SetPos >= 149.9
 AND mover_two.MCTOPLC.SETONTRACK.SetPos >= 349.9 THEN
 state := 8;
 END_IF

END_CASE

Planar Motion components

TF543052 Version: 1.4.1

Sending the command
4. To send the command, you must call the movers and the track cyclically with their update method after

the END_CASE:
mover_one.Update();
mover_two.Update();
track.Update();

Building the PLC creates symbols of the "PLC mover" and “track”, which can then be linked to the mover and
track instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar movers in the "MC Project" can be linked with the Link To PLC... button on
the Settings tab.

ð The track must be linked separately via the following dialog boxes.

Planar Motion components

TF5430 53Version: 1.4.1

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state=8), the movers are in the desired positions.

Planar Motion components

TF543054 Version: 1.4.1

6.2.5 Example "Moving Planar movers on tracks with Planar parts"
In this example, a Planar mover is moved on two Planar tracks over two Planar parts.

Starting point

You start with a solution that contains a fully configured XPlanar Processing Unit. Two parts, a coordinate
system and a mover are created under the XPlanar Processing Unit. A tile is created under each of the two
parts.

Planar Motion components

TF5430 55Version: 1.4.1

The following geometric situation is set: the two parts are next to each other and the mover starts in the
middle of the left part (position P1). Both parts are not movable and the configuration is therefore static.

The example is developed on the basis of this configuration.

The creation of the initial situation is described in the XPlanar Processing Unit documentation.

Creating Planar movers, Planar tracks and Planar environment
1. Create a Planar mover for this example, see Configuration [} 18].

2. Create a Planar environment, see Configuration [} 96].

Planar Motion components

TF543056 Version: 1.4.1

3. Set the initial parameter XPlanar processing unit OID to the object ID of the XPlanar Processing Unit.
This activates the Part feature for all MC Configuration objects (especially for the created Planar
mover).

4. Add two Planar tracks via Groups > Add New Item…, see Configuration [} 42].
5. Set the initial parameter "PartOID" of the two tracks to the corresponding part; in this example, the first

track is set to part 1 and the second track to part 2.

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

ð These represent movers and tracks in the MC Configuration.
2. Create a Planar mover, two Planar tracks, a state variable for a state machine and two auxiliary positions

for the tracks, as shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 track_one, track_two : MC_PlanarTrack;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

3. Then program a sequence in MAIN.
ð This program code creates and activates two tracks and the mover. The mover is then coupled onto

the first track and driven onto the second track, crossing the boundary between Part 1 and Part 2.
CASE state OF
 0:
 pos1.SetValuesXYCReferenceId(40, 120, 0, 16#01010060);
 pos2.SetValuesXYCReferenceId(240, 120, 0, 16#01010060);
 track_one.AppendLine(0, pos1, pos2);
 track_two.StartFromTrack(0, track_one);
 pos1.SetValuesXYCReferenceId(260, 120, 0, 16#01010060);
 pos2.SetValuesXYCReferenceId(440, 120, 0, 16#01010060);
 track_two.AppendLine(0, pos1, pos2);
 track_one.Enable(0);
 track_two.Enable(0);
 state := 1;
 1:
 IF track_one.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled AND
 track_two.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 mover.Enable(0);
 state := 3;
 3:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 4;
 END_IF
 4:
 mover.JoinTrack(0, track_one, 0, 0);
 state := 5;
 5:
 IF mover.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN

Planar Motion components

TF5430 57Version: 1.4.1

 state := 6;
 END_IF
 6:
 mover.MoveOnTrack(0, track_two, 150.0, 0, 0);
 state := 7;

END_CASE

Sending the command
4. To send the command, you must call the movers and the track cyclically with their update method after

the END_CASE:
mover.Update();
track_one.Update();
track_two.Update();

Building the PLC creates symbols of the "PLC mover" and “track”, which can then be linked to the mover and
track instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar movers in the "MC Project" can be linked with the Link To PLC... button on
the Settings tab.

ð In addition, the Planar mover in the "MC Project" (double-click) can be linked with the Link To I/O...
button on the Settings tab.

Planar Motion components

TF543058 Version: 1.4.1

ð The tracks must be linked separately via the following dialog boxes.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button .

3. Log in the PLC via the button in the menu bar .

Planar Motion components

TF5430 59Version: 1.4.1

4. Start the PLC via the Play button in the menu bar.

The mover is at the end of the state machine (state=7) on the second track on part two. The positions of the
AppendLine commands were specified in the global coordinate system, as was the end position of the
mover.

6.2.6 Example "Coupling a Planar mover to a track and moving it in
CRotationOnTrack mode"

Using this guide, you will to create a TwinCAT project that contains two Planar movers and one Planar track.
Both movers are joined and moved on the track.

Creating a Planar mover
ü See Configuration [} 18].
1. Create two Planar movers.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.
3. Change the start position of the second mover to x = 240.

Creating a Planar track
4. Add the Planar track via Groups > Add New Item…, see Configuration [} 42].

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].

Planar Motion components

TF543060 Version: 1.4.1

1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

ð These represent movers and tracks in the MC Configuration.
2. Create two Planar movers, a Planar track, a state variable for a state machine and two auxiliary positions

for the track, as shown below.
PROGRAM MAIN
VAR
 mover_one, mover_two : MC_PlanarMover;
 track : MC_PlanarTrack;
 state : UDINT;
 pos1, pos2 : PositionXYC;
 join_track_options : ST_JoinTrackOptions;
END_VAR

3. Then program a sequence in MAIN.
ð This program code creates and activates a track and both movers. Then both movers are coupled on

the track and rotated.
CASE state OF
 0:
 pos1.SetValuesXY(0, 0);
 pos2.SetValuesXY(400, 0);
 track.AppendLine(0, pos1, pos2);
 track.Enable(0);
 state := 1;
 1:
 IF track.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 mover_one.Enable(0);
 mover_two.Enable(0);
 state := 3;
 3:
 IF mover_one.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled
 AND mover_two.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 4;
 END_IF
 4:
 join_track_options.useOrientation := FALSE;
 mover_one.JoinTrack(0, track, 0, join_track_options);
 mover_two.JoinTrack(0, track, 0, join_track_options);
 state := 5;
 5:
 IF mover_one.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack
 AND mover_two.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := 6;
 END_IF
 6:
 mover_one.MoveC(0, 20.0, 0, 0);
 mover_two.MoveC(0, 90.0, 0, 0);
 state := 7;
 7:
 IF mover_one.MCTOPLC.SET.SetPos.c >= 19.9
 AND mover_two.MCTOPLC.SET.SetPos.c >= 89.9 THEN
 state := 8;
 END_IF

END_CASE

Planar Motion components

TF5430 61Version: 1.4.1

Sending the command
4. To send the command, you must call the movers and the track cyclically with their update method after

the END_CASE:
mover_one.Update();
mover_two.Update();
track.Update();

Building the PLC creates symbols of the "PLC mover" and “track”, which can then be linked to the mover and
track instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.
ð Subsequently, the Planar movers in the "MC Project" can be linked with the Link To PLC... button on

the Settings tab.
ð The track must be linked separately via the following dialog boxes.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state=8), the movers are in the desired positions. Mover two is (again) in the
OnTrack state and mover one is in the CRotationOnTrack state after both were in the CRotationOnTrack
state during the movement. Mover one can now only continue to rotate, while mover two can continue to
move on the track or even leave the track.

Planar Motion components

TF543062 Version: 1.4.1

6.2.7 Example "Coupling a Planar mover to a track and moving it
with AdoptTrackOrientation"

Using this guide, you will to create a TwinCAT project that contains two Planar movers and one Planar track.
Both movers are joined and moved on the track.

Creating a Planar mover
ü See Configuration [} 18].
1. Create two Planar movers.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.
3. Change the start position of the second mover to x = 240.

Creating a Planar track
4. Add the Planar track via Groups > Add New Item…, see Configuration [} 42].

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

Planar Motion components

TF5430 63Version: 1.4.1

ð These represent movers and tracks in the MC Configuration.
2. Create two Planar movers, a Planar track, a state variable for a state machine and two auxiliary positions

for the track, as shown below.
PROGRAM MAIN
VAR
 mover_one, mover_two : MC_PlanarMover;
 track : MC_PlanarTrack;
 state : UDINT;
 pos1, pos2 : PositionXYC;
 join_track_options : ST_JoinTrackOptions;
END_VAR

3. Then program a sequence in MAIN.
ð This program code creates and activates a track and both movers. Then both movers are coupled on

the track and rotated.
CASE state OF
 0:
 pos1.SetValuesXY(0, 0);
 pos2.SetValuesXY(400, 0);
 track.AppendLine(0, pos1, pos2);
 track.Enable(0);
 state := 1;
 1:
 IF track.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 mover_one.Enable(0);
 mover_two.Enable(0);
 state := 3;
 3:
 IF mover_one.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled
 AND mover_two.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 4;
 END_IF
 4:
 join_track_options.useOrientation := TRUE;
 mover_one.JoinTrack(0, track, 0, join_track_options);
 mover_two.JoinTrack(0, track, 0, join_track_options);
 state := 5;
 5:
 IF mover_one.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack
 AND mover_two.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := 6;
 END_IF
 6:
 mover_one.MoveC(0, 20.0, 0, 0);
 mover_two.MoveC(0, 190.0, 0, 0);
 state := 7;
 7:
 IF mover_one.MCTOPLC.SET.SetPos.c >= 19.9
 AND NOT mover_one.MCTOPLC.STD.Busy.busyMover
 AND mover_two.MCTOPLC.SET.SetPos.c >= 189.9
 AND NOT mover_two.MCTOPLC.STD.Busy.busyMover THEN
 state := 8;
 END_IF
 8:
 mover_one.AdoptTrackOrientation(0, 0, 0);

Planar Motion components

TF543064 Version: 1.4.1

 mover_two.AdoptTrackOrientation (0, 0, 0);
 state := 9;

END_CASE

Sending the command
4. To send the command, you must call the movers and the track cyclically with their update method after

the END_CASE:
mover_one.Update();
mover_two.Update();
track.Update();

Building the PLC creates symbols of the "PLC mover" and “track”, which can then be linked to the mover and
track instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.
ð Subsequently, the Planar movers in the "MC Project" can be linked with the Link To PLC... button on

the Settings tab.
ð The track must be linked separately via the following dialog boxes.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

Planar Motion components

TF5430 65Version: 1.4.1

Both movers are added to the track with orientation coupled to the track. Afterwards the orientation is
decoupled from the track by a MoveC. At the end of the state machine (state=9), the movers are in the
desired positions. Both movers are (again) in the OnTrack state and have the orientation coupled to the track
again by the AdoptTrackOrientation command. The command has 3 parameters: first, an optional Feedback
object, second, an optional Constraints object, and third, an optional Options object.

6.2.8 Example "Synchronizing a Planar mover on a track with one
axis"

Using these instructions, you will create a TwinCAT project in which a Planar mover located on a track is
coupled to an axis whose setpoints it then follows.

In this case, the Planar mover is not controlled directly by a MoveOnTrack command, in which a specified
target position is approached with subsequent halt, see Example "Joining and moving a Planar mover on the
track" [} 50]. Instead, the Planar mover remains coupled to an axis until a subsequent command terminates
this coupling, or an error occurs.

After sending the GearInPosOnTrack [} 147] command that initiates the coupling to an axis, the Planar mover
will attempt to be at the specified slaveSyncPosition if the axis it is coupled to is at the masterSyncPosition
and simultaneously assumes the dynamics of the master axis. If synchronicity can be reached earlier

Planar Motion components

TF543066 Version: 1.4.1

(i.e. the Planar mover already has the same dynamics at slaveSyncPosition – x as the master axis, which is
at masterSyncPosition – x at this time), then the Planar mover will activate this configuration and become
synchronous earlier. If synchronicity cannot be reached at the specified time, the Planar mover will attempt
to synchronize with the master axis until a subsequent command is received or an error occurs.

If the Planar mover loses its synchronization status, e.g. due to rapidly changing dynamics of the master
axis, it will try to synchronize again as soon as possible. The synchronization status can be accessed at any
time from the PLC via the corresponding feedback object. Synchronization can also be lost if maintaining the
specified distance from the Planar mover that is ahead requires the synchronous Planar mover to
decelerate. Again, the system tries to regain synchronization as quickly as possible once the obstacle is
removed.

An example of an error that causes the command to abort is a master axis behavior that would force the
Planar mover to move at negative velocity beyond the start of a Planar track. Such a movement is not
permitted even with a MoveOnTrack [} 146] command. In such a case, the Planar mover will remain in sync
(or try to sync, if it isn't already) until it is forced to stop so that it comes to a halt at the beginning of the
Planar track. In addition, an error is reported back. The exact position at which the Planar mover initiates its
stop depends on the current dynamic limits.

If the GearInPosOnTrack [} 147] command is given dynamic limits whose velocity limit is below the current
velocity of the master axis, the Planar mover will nevertheless attempt to synchronize, since it cannot be
ruled out that the master axis will decelerate at a later point in time in such a way that it can be reached
again. In particular, no error is returned in such a case.

Creating a Planar mover
ü See Configuration [} 18].
1. Create a Planar mover.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a Planar track
3. Add the Planar track via Groups > Add New Item…, see Configuration [} 42].
ð The Solution Explorer has the following entries:

Creating a master axis
ü To create a master axis, an NC/PTP NCI configuration must first be created.

Planar Motion components

TF5430 67Version: 1.4.1

1. Select MOTION > Add New Item….

2. In the following dialog box, select NC/PTP NCI Configuration and confirm with OK.

ð You have created an NC/PTP NCI Project.

Planar Motion components

TF543068 Version: 1.4.1

3. Right-click in the created NC project Axes > Add New Item....

4. In the following dialog box, create one (or more) axes and confirm with OK

Creating a PLC

For this PLC project, you must also add "Tc2_MC2" to control the master axis, see Inserting
libraries [} 125].

ü See preliminary steps under Creating a PLC [} 21].
1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

Planar Motion components

TF5430 69Version: 1.4.1

ð These represent movers and tracks in the MC Configuration.
2. Create the following variables.

PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 track : MC_PlanarTrack;
 axis : AXIS_REF;
 power_axis : MC_Power;
 move_axis : MC_MoveAbsolute;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

3. Build the PLC to create symbols of the "PLC mover", the "PLC track" and the "PLC axis".

4. Link the Planar mover, Planar track (see Example "Joining and moving a Planar mover on the track"
[} 50]) and the axis, as described in the next section.

Linking an axis
5. Double-click Axis 1

in the Solution Explorer.
6. Switch to the Settings tab.

Planar Motion components

TF543070 Version: 1.4.1

7. Click Link to PLC... and select in the dialog that follows the entry MAIN.axis and confirm with OK.

Programming state machines

With the following state machine, which is programmed in MAIN, the Planar track is geometrically defined
and activated (State 0), the Planar mover is activated and coupled to the Planar track (State 2 or 4), and the
master axis is enabled (State 6) and moved (State 7).

Finally, the command to start synchronization with the master axis ("GearInPosOnTrack [} 147]") is sent to
the Planar mover (State 8). Here, too, the Planar objects are updated cyclically or the axis FBs are called
(after END_CASE statement):
CASE state OF
 0:
 pos1.SetValuesXYC(100, 100, 0);
 pos2.SetValuesXYC(860, 100, 0);
 track.AppendLine(0, pos1, pos2);
 track.Enable(0);
 state := state + 1;
 1:
 IF track.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 2:
 mover.Enable(0);
 state := state + 1;
 3:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 4:
 mover.JoinTrack(0, track, 0, 0);
 state := state + 1;
 5:
 IF mover.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := state + 1;
 END_IF
 6:
 power_axis(Axis := axis,
 Enable := TRUE,
 Enable_Positive := TRUE);
 IF power_axis.Status THEN
 move_axis(Axis := axis, Execute := FALSE);
 state := state + 1;
 END_IF
 7:
 move_axis(Axis := axis,
 Position := 600,
 Velocity := 30,
 Acceleration := 100,
 Deceleration := 100,
 Jerk := 100,
 Execute := TRUE);
 state := state + 1;
 8:
 mover.GearInPosOnTrack(0, axis.DriveAddress.TcAxisObjectId, 0, 100, 100, track, 0, 0);
 state := state + 1;
END_CASE

Planar Motion components

TF5430 71Version: 1.4.1

mover.Update();
track.Update();
power_axis(Axis := axis);
move_axis(Axis := axis);
axis.ReadStatus();

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

The master axis will move to the given target position (600 in this case), and the Planar mover will follow its
movement. The position of the Planar mover can be tracked in the online view (by clicking the button).

The mover comes to a halt at position 600, since the master axis also reaches zero dynamics here. If a value
greater than the length of the track (760 in this case) is programmed in State 7 for the target position of the
master axis, the Planar mover comes to a halt at the end of the Planar track in order not to derail and does
not follow the master axis any further. The error in such a scene is potentially returned to the PLC by the MC,
but is not accepted by the above PLC code in this case. A feedback [} 119] object is required for this
purpose and for monitoring the synchronization status.

In the function call in State 8, the sync positions of the master axis (third argument) or the Slave Planar
Mover (fourth argument) are passed to the Planar mover. These are the respective positions at which the
slave becomes synchronous with the master, i.e. at which it reaches its dynamic values. The fifth argument
in the function call specifies the Planar track to which the position in the previous argument refers. In fact, it
is possible for the slave to get in sync with its master significantly sooner.

A synchronization movement over a sequence of consecutive tracks is possible by using a Planar TrackTrail
[} 120] object. In such a case, a transition from one Planar track to the next is possible during the
synchronization phase or when synchronicity already exists. The deceleration of the Planar mover analogous
to the above example with only one Planar track would only occur at the end of the last Planar track, if the
movement of the master axis would require it to be exceeded.

Planar Motion components

TF543072 Version: 1.4.1

6.2.9 Example: "Synchronizing a Planar mover on a track with
another Planar mover"

Guided by these instructions you will create a TwinCAT project in which a Planar mover located on a Planar
track is coupled to another Planar mover on a parallel Planar track and then follows its setpoints.

Coupling a Planar mover to another Planar mover is largely analogous to coupling a Planar mover to an axis;
see Example "Synchronizing a Planar mover on a track with one axis" [} 65]. This example is short and builds
on the above example.

Creating a Planar mover
ü See Configuration [} 18].
1. Create two Planar movers.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a Planar track
3. Add two Planar tracks via Groups > Add New Item…, see Configuration [} 42].
ð The Solution Explorer has the following entries:

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

Planar Motion components

TF5430 73Version: 1.4.1

ð These represent movers and tracks in the MC Configuration.
2. Create the following variables.

PROGRAM MAIN
VAR
 master_mover : MC_PlanarMover;
 slave_mover : MC_PlanarMover;
 master_track : MC_PlanarTrack;
 slave_track : MC_PlanarTrack;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

3. Build the PLC to create symbols of the "PLC movers" and "PLC tracks".

4. Link the Planar movers and the Planar tracks (see Example "Joining and moving a Planar mover on the
track" [} 50]).

Programming state machines

With the following state machine, which is programmed in MAIN, the Planar tracks are geometrically defined
and activated (states 0 to 3), the Planar movers are activated and coupled to the respective Planar track
(states 4 to 11), and the Planar mover acting as master moves on its track (state 12).

Finally, the command to start synchronization with the Master Planar Mover
(GearInPosOnTrackWithMasterMover [} 148]) is sent to the Slave Planar Mover (state 13). After the
END_CASE statement, the Planar objects are updated cyclically.
CASE state OF
 0:
 pos1.SetValuesXYC(100, 620, 0);
 pos2.SetValuesXYC(860, 620, 0);
 master_track.AppendLine(0, pos1, pos2);
 master_track.Enable(0);
 state := state + 1;
 1:
 IF master_track.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 2:
 pos1.SetValuesXYC(100, 100, 0);
 pos2.SetValuesXYC(860, 100, 0);
 slave_track.AppendLine(0, pos1, pos2);
 slave_track.Enable(0);

Planar Motion components

TF543074 Version: 1.4.1

 state := state + 1;
 3:
 IF slave_track.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 4:
 master_mover.Enable(0);
 state := state + 1;
 5:
 IF master_mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 6:
 master_mover.JoinTrack(0, master_track, 0, 0);
 state := state + 1;
 7:
 IF master_mover.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := state + 1;
 END_IF
 8:
 slave_mover.Enable(0);
 state := state + 1;
 9:
 IF slave_mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 10:
 slave_mover.JoinTrack(0, slave_track, 0, 0);
 state := state + 1;
 11:
 IF slave_mover.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := state + 1;
 END_IF
 12:
 master_mover.MoveOnTrack(0, 0, 500.0, 0, 0);
 state := state + 1;
 13:
 slave_mover.GearInPosOnTrackWithMasterMover(0, master_mover, 0, 100.0, master_track, 100.0, slav
e_track, 0, 0);
 state := state + 1;
END_CASE

master_mover.Update();
slave_mover.Update();
master_track.Update();
slave_track.Update();

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

The Master Planar Mover will move to the given target position (in this case 500) on the specified Planar
track, and the Slave Planar Mover will follow its movement. The positions of the Planar movers can be
tracked in the online view (by clicking the button).

The Slave Planar Mover stops at position 500, since the Master Planar Mover also reaches zero dynamics
here.

In the function call in State 13, the sync positions of the master (arguments 4 and 5) or slave (arguments 6
and 7) are passed to the Slave Planar Mover. These are the respective positions at which the slave
becomes synchronous with the master, i.e. at which it reaches its dynamic values. In fact, here as well as in
Example "Synchronizing a Planar mover on a track with one axis" [} 65], it is possible for the slave to get in
sync with its master significantly sooner. Like with synchronization with an axis, a special Specialized
feedback types [} 119] object is required for monitoring synchronicity status and possible errors.

Planar Motion components

TF5430 75Version: 1.4.1

Like with synchronization with a master axis, the synchronization movement of the slave can be programmed
over several tracks by specifying a Planar TrackTrail [} 120] object.

If the Master Planar Mover moves across a track boundary during an active synchronization command, the
position it passes to its slave is simply summed across the track boundary.

If a master sync position is to be specified on a Planar track passed by the Master Planar Mover in the
future, make sure that the Master Planar Mover has already commanded a move involving that Planar track
at the time the GearInPosOnTrackWithMasterMover [} 148] command is sent.

6.2.10 Example "Connecting Planar tracks to a network"
Using this guide, you will be able to create a TwinCAT project that connects four Planar tracks to a network.

Creating a Planar track
1. Add four Planar tracks via Groups > Add New Item…, see Configuration [} 42].

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

ð These represent movers and tracks in the MC Configuration.
2. Create four tracks as shown below, plus a state variable for a state machine and two auxiliary positions

for the tracks.

Planar Motion components

TF543076 Version: 1.4.1

PROGRAM MAIN
VAR
 track_one, track_two, track_three, track_four : MC_PlanarTrack;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

3. Then program a sequence in MAIN.
ð This program code creates and activates four tracks that are connected to a network, as shown in

the illustration above. The so-called "blendings", i.e. the non-linear parts of the track in this example,
are generated automatically here. You only specify the straight sections.

CASE state OF
 0:
 pos1.SetValuesXY(250, 120);
 pos2.SetValuesXY(650, 120);
 track_one.AppendLine(0, pos1, pos2);
 pos1.SetValuesXY(700, 170);
 pos2.SetValuesXY(800, 450);
 track_one.AppendLine(0, pos1, pos2);
 pos1.SetValuesXY(650, 500);
 pos2.SetValuesXY(250, 500);
 track_one.AppendLine(0, pos1, pos2);
 state := 1;
 1:
 pos1.SetValuesXY(200, 450);
 pos2.SetValuesXY(200, 170);
 track_two.StartFromTrack(0,track_one);
 track_two.AppendLine(0, pos1, pos2);
 track_two.EndAtTrack(0,track_one);
 state := 2;
 2:
 pos1.SetValuesXY(200, 500);
 pos2.SetValuesXY(120, 500);
 track_three.StartFromTrack(0,track_one);
 track_three.AppendLine(0, pos1, pos2);
 state := 3;
 3:
 pos1.SetValuesXY(200, 550);
 pos2.SetValuesXY(200, 750);
 track_four.StartFromTrack(0,track_one);
 track_four.AppendLine(0, pos1, pos2);
 state := 4;
 4:
 track_one.Enable(0);
 track_two.Enable(0);
 track_three.Enable(0);
 track_four.Enable(0);
 state := 5;
 5:
 IF track_one.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled AND
 track_two.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled AND
 track_three.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled AND
 track_four.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 6;
 END_IF
END_CASE

Tracks must be C²-continuous at all points. This means that their positions, directions, and
curvatures must merge seamlessly. The automatically generated blendings take this requirement
into account. Even if the corner pieces look like quarter circles, they are not, because circles have a
positive (constant) curvature at each point and straight lines have a zero curvature.

Sending the command
4. To send the command, you must trigger the tracks cyclically with their update method after the

END_CASE:
track_one.Update();
track_two.Update();
track_three.Update();
track_four.Update();

Building the PLC creates symbols of the "PLC mover" and “track”, which can then be linked to the mover and
track instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

Planar Motion components

TF5430 77Version: 1.4.1

ð The tracks must each be linked separately via the following dialog boxes.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

Planar Motion components

TF543078 Version: 1.4.1

The creation of the track network is finished at the end of the state machine (state = 6).

The length of each track is in the online parameters of the TCom objects in the MC Project.

Planar Motion components

TF5430 79Version: 1.4.1

6.2.11 Example "Connecting Planar tracks to network on Planar
parts"

In this example, a network of Planar tracks is created on moving Planar parts.

Starting point

We start with a solution that contains a fully configured XPlanar Processing Unit. Two parts, a coordinate
system and a mover are created under the XPlanar Processing Unit. There are 8 tiles under the first part and
2 tiles under the second part.

The following geometric situation is set: the two parts are next to each other and part 2 can occupy two
positions. This means that there are two different connections between the parts, depending on the part
positions.

Planar Motion components

TF543080 Version: 1.4.1

The example is developed on the basis of this configuration. The creation of the initial situation is described
in the XPlanar Processing Unit documentation.

Creating Planar tracks and a Planar environment
1. Create a Planar environment, see Configuration [} 96].
2. Set the initial parameter XPlanar processing unit OID to the object ID of the XPlanar Processing Unit.

This activates the Part feature for all MC Configuration objects (especially for the created Planar
mover).

3. Add three Planar tracks via Groups > Add New Item…, see Configuration [} 42].
4. Set the initial parameter "PartOID" of the three tracks to the corresponding parts. In this example, the first

and second tracks are on part 1 and the third track is on part 2.

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

Planar Motion components

TF5430 81Version: 1.4.1

ð These represent movers and tracks in the MC Configuration.
2. Create three planar tracks as shown below, a state variable for a state machine and two auxiliary

positions for the tracks.
PROGRAM MAIN
VAR
 track_one, track_two, track_three : MC_PlanarTrack;
 state : UDINT;
 pos1, pos2 : PositionXYC;
 part_one_oid : OTCID := 16#01010020;
 part_two_oid : OTCID := 16#01010030;
 start_options : ST_StartFromTrackAdvancedOptions;
 end_options : ST_EndAtTrackAdvancedOptions;
END_VAR

3. Then program a sequence in MAIN.
ð This program code creates three tracks on the parts. Depending on the active part position, the

tracks are connected at different positions. First, track 3 is created on part 2 (state=0). Track 2 is then
started at track 3, with part 2 in the upper position (index=2). Track 2 also ends at track 3, but part 2
is in the lower position (index=1). Finally, track 1 is started at track 3, part 2 is in the lower position
(index=1), and finished, part 2 is in the upper position (index=2).

CASE state OF
 0:
 pos1.SetValuesXYCReferenceId(0, 360, 0, part_two_oid);
 pos2.SetValuesXYCReferenceId(80, 360, 0, part_two_oid);
 track_three.AppendLine(0, pos1, pos2);
 pos1.SetValuesXYCReferenceId(120, 320, 0, part_two_oid);
 pos2.SetValuesXYCReferenceId(120, 160, 0, part_two_oid);
 track_three.AppendLine(0, pos1, pos2);
 pos1.SetValuesXYCReferenceId(80, 120, 0, part_two_oid);
 pos2.SetValuesXYCReferenceId(0, 120, 0, part_two_oid);
 track_three.AppendLine(0, pos1, pos2);
 state := 1;
 1:
 start_options.thisTrackPartPositionIndex := 1;
 start_options.otherTrackPartPositionIndex := 2;
 track_two.StartFromTrackAdvanced(0, track_three, start_options);
 pos1.SetValuesXYCReferenceId(440, 600, 0, part_one_oid);
 pos2.SetValuesXYCReferenceId(400, 600, 0, part_one_oid);
 track_two.AppendLine(0, pos1, pos2);
 pos1.SetValuesXYCReferenceId(360, 560, 0, part_one_oid);
 pos2.SetValuesXYCReferenceId(360, 400, 0, part_one_oid);
 track_two.AppendLine(0, pos1, pos2);
 pos1.SetValuesXYCReferenceId(400, 360, 0, part_one_oid);
 pos2.SetValuesXYCReferenceId(440, 360, 0, part_one_oid);
 track_two.AppendLine(0, pos1, pos2);
 end_options.thisTrackPartPositionIndex := 1;
 end_options.otherTrackPartPositionIndex := 1;
 track_two.EndAtTrackAdvanced(0, track_three, end_options);
 state := 2;
 2:
 start_options.thisTrackPartPositionIndex := 1;
 start_options.otherTrackPartPositionIndex := 1;
 track_one.StartFromTrackAdvanced(0, track_three, start_options);
 pos1.SetValuesXYCReferenceId(440, 120, 0, part_one_oid);
 pos2.SetValuesXYCReferenceId(160, 120, 0, part_one_oid);
 track_one.AppendLine(0, pos1, pos2);
 pos1.SetValuesXYCReferenceId(120, 160, 0, part_one_oid);
 pos2.SetValuesXYCReferenceId(120, 800, 0, part_one_oid);

Planar Motion components

TF543082 Version: 1.4.1

 track_one.AppendLine(0, pos1, pos2);
 pos1.SetValuesXYCReferenceId(160, 840, 0, part_one_oid);
 pos2.SetValuesXYCReferenceId(440, 840, 0, part_one_oid);
 track_one.AppendLine(0, pos1, pos2);
 end_options.thisTrackPartPositionIndex := 1;
 end_options.otherTrackPartPositionIndex := 2;
 track_one.EndAtTrackAdvanced(0, track_three, end_options);
 state := 3;
END_CASE

Sending the command
4. To send the commands, you must call the track cyclically with its update method after the END_CASE:

track_one.Update();
track_two.Update();
track_three.Update();

Building the PLC creates symbols of the "PLC mover" and “track”, which can then be linked to the mover and
track instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð The tracks can now be linked via the following dialog boxes.

Planar Motion components

TF5430 83Version: 1.4.1

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button .

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state=3), the three tracks are configured as shown. The start of track 3 is
connected to the end of track 2 at position 2 and the end of track 3 is connected to the start of track 1 and
position 2 when part 2 is in the lower position. In the upper position, the start of track 3 is connected to the
end of track 1 at position 4 and the end of track 3 is connected to the start of track 2 and position 1. Track 2
and track 3 are the same length.

6.2.12 Example: "Following a Planar mover through a Track
Network"

Guided by these instructions, you will create a TwinCAT project in which a Planar mover located on a Planar
track follows a preceding Planar mover on the same Planar track on its path through a track network.

Following through a track network is realized by the command GearInPosOnTrackWithMasterMover [} 148],
which is described in more detail in Example: "Synchronizing a Planar mover on a track with another Planar
mover" [} 72]. Creating and building a network of Planar tracks is explained in more detail in the Example
"Connecting Planar tracks to a network" [} 75]. This example is short and builds on the above examples.

Planar Motion components

TF543084 Version: 1.4.1

Creating a Planar mover
ü See Configuration [} 18].
1. Create two Planar movers.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a Planar track
3. Add three Planar tracks via Groups > Add New Item…, see Configuration [} 42].

ð The Solution Explorer has the following entries:

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create the desired number of movers ("MC_PlanarMover") and tracks ("MC_PlanarTrack") via MAIN.

ð These represent movers and tracks in the MC Configuration.
2. Create the following variables.

Planar Motion components

TF5430 85Version: 1.4.1

PROGRAM MAIN
VAR
 master_mover : MC_PlanarMover;
 slave_mover : MC_PlanarMover;
 track_in : MC_PlanarTrack;
 track_out1 : MC_PlanarTrack;
 track_out2 : MC_PlanarTrack;
 move_feedback : MC_PlanarFeedback;
 options : ST_GearInPosOnTrackWithMasterMoverOptions;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

3. Build the PLC to create symbols of the "PLC movers" and "PLC tracks".

4. Link the Planar movers and the Planar tracks (see Example "Joining and moving a Planar mover on the
track" [} 50]).

Programming state machines

With the following state machine, which is programmed in MAIN, first the Planar tracks are geometrically
defined and activated (states 0 to 7), so that they represent the following switch configuration:

In states 8 to 19 the two Planar movers are activated, coupled to the Planar track in front of the switch
(track_in) and moved to position 200 (master_mover) or 0 (slave_mover). The Master Planar Mover is
then commanded to position 500 on the upper of the two branching Planar tracks (track_out1) (State 20).
Finally, in State 21, the GearInPosOnTrackWithMasterMover [} 148] command is sent to the Slave Planar
Mover. As usual, the Planar objects are updated cyclically after the END_CASE statement.
CASE state OF
 0:
 pos1.SetValuesXYC(100, 360, 0);
 pos2.SetValuesXYC(400, 360, 0);
 track_in.AppendLine(0, pos1, pos2);
 track_in.Enable(0);
 state := state + 1;
 1:
 IF track_in.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF

Planar Motion components

TF543086 Version: 1.4.1

 2:
 track_out1.StartFromTrack(0, track_in);
 state := state + 1;
 3:
 pos1.SetValuesXYC(450, 410, 0);
 pos2.SetValuesXYC(860, 620, 0);
 track_out1.AppendLine(0, pos1, pos2);
 track_out1.Enable(0);
 state := state + 1;
 4:
 IF track_out1.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 5:
 track_out2.StartFromTrack(0, track_in);
 state := state + 1;
 6:
 pos1.SetValuesXYC(450, 310, 0);
 pos2.SetValuesXYC(860, 100, 0);
 track_out2.AppendLine(0, pos1, pos2);
 track_out2.Enable(0);
 state := state + 1;
 7:
 IF track_out2.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 8:
 master_mover.Enable(0);
 state := state + 1;
 9:
 IF master_mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 10:
 master_mover.JoinTrack(0, track_in, 0, 0);
 state := state + 1;
 11:
 IF master_mover.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := state + 1;
 END_IF
 12:
 master_mover.MoveOnTrack(move_feedback, track_in, 200, 0, 0);
 state := state + 1;
 13:
 IF move_feedback.Done THEN
 state := state + 1;
 END_IF
 14:
 slave_mover.Enable(0);
 state := state + 1;
 15:
 IF slave_mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 16:
 slave_mover.JoinTrack(0, track_in, 0, 0);
 state := state + 1;
 17:
 IF slave_mover.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := state + 1;
 END_IF
 18:
 slave_mover.MoveOnTrack(move_feedback, track_in, 0, 0, 0);
 state := state + 1;
 19:
 IF move_feedback.Done THEN
 state := state + 1;
 END_IF
 20:
 master_mover.MoveOnTrack(0, track_out1, 500, 0, 0);
 state := state + 1;
 21:
 options.followMover := TRUE;
 slave_mover.GearInPosOnTrackWithMasterMover(0, master_mover, 0, 210, track_in, 10, track_in, 0,
options);
 state := state + 1;
END_CASE

master_mover.Update();
slave_mover.Update();

Planar Motion components

TF5430 87Version: 1.4.1

track_in.Update();
track_out1.Update();
track_out2.Update();
move_feedback.Update();

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

The Master Planar Mover will move to the given target position (in this case 500) on the specified Planar
track, and the Slave Planar Mover will follow its movement. The positions of the Planar movers can be

tracked in the online view (by clicking the button).

Since the positions 210 for the master and 10 for the slave were specified as the sync positions of the two
Planar movers in the function call in State 21, the Slave Planar Mover will follow its master through the
network at a distance of 200. It stops at position 300 on the upper of the two branching Planar tracks (on
which the Master Planar Mover is also located), which can be checked in the online view:

Planar Motion components

TF543088 Version: 1.4.1

Note that setting the "FollowMover" option in the Options object and passing it in the function call in State 21
avoids the need to specify a PlanarTrackTrail [} 120] object. The path through the network that the Slave
Planar Mover should take does not have to be explicitly determined, since it automatically follows the Master
Planar Mover and turns to the correct Planar track at the switch. With the set option this behavior is also
reproduced in a larger network, where the Master Planar Mover moves across multiple track boundaries.

6.2.13 Options for the "StartFromTrackAdvanced" and
"EndAtTrackAdvanced" commands

As described in the introduction and shown in the examples, it is not always clear what a StartFromTrack
[} 165] or a EndAtTrack [} 165] command means. Therefore, both commands are offered in "Advanced"
variants (StartFromTrackAdvanced [} 166], EndAtTrackAdvanced [} 167]) and extended by an option
argument. This extension is also mapped in the init parameters.

The option argument has three components: "thisTrackPartPositionIndex", "otherTrackPartPositionIndex"
and "linkOnlyInSpecifiedPartPositions". The first component "thisTrackPartPositionIndex" specifies the
position of the part on which the called track is located. The unique index of the position must be specified.
The second component has the same meaning for the track that is passed as an argument. The third
component specifies whether both tracks are only connected in the specified position or also in all other
geometrically compatible positions.

Planar Motion components

TF5430 89Version: 1.4.1

If both indices are zero and the flag false, the behavior is identical to the previous commands. This can
also be achieved by simply passing "0" as an option argument for the "Advanced" commands.

6.3 Planar group
The Planar group is a software object that prevents collisions between Planar movers as well as collisions of
Planar movers with the boundary of the stator area on the two-dimensional XPlanar stator area. To do this,
the 2D areas of all objects in the group are blocked. When a motion command is transferred to a mover, the
required area is requested from the Planar group and the motion command is rejected if this area would
collide with already reserved areas. If the motion command can be executed, the area is added to the set of
reserved area and blocked accordingly.

6.3.1 Configuration
ü In order to create a Planar group, an MC Configuration must first be created.
1. Select MOTION > Add New Item… .

2. In the following dialog box, select MC Configuration and confirm with OK.

ð You have created an MC Project.
3. Select MC Project > Groups > Add New Item….

Planar Motion components

TF543090 Version: 1.4.1

4. In the following dialog box, create one (or more) Planar groups and confirm with OK.

ð The Planar group is now created and can be parameterized.

Open detailed description
• Select the Planar group in the tree and double-click it.

Meaning of the individual tabs

Object: General information (name, type, ID and so on) is shown here.

Planar Motion components

TF5430 91Version: 1.4.1

Parameter (Init): The group has no initial parameters.

Parameter (Online): The number of objects managed in the group (movers, tracks, environment) is
displayed here. The state of the group is also displayed.

Data Area: Shows the memory area via which the group communicates with the PLC track.

6.3.2 Example: "Creating and moving Planar movers with group"
Using this guide, you will create a TwinCAT project that contains two Planar movers and one Planar group.
Both movers are added to the group and moved.

Creating a Planar mover
ü See Configuration [} 18].
1. Create two Planar movers.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.
3. Change the start position of the second mover to x = 240.

Creating a Planar group
4. Add the Planar group via Groups > Add New Item…, see Configuration [} 89].

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create two movers ("MC_PlanarMover") and a Planar group "MC_PlanarGroup" via MAIN.

Planar Motion components

TF543092 Version: 1.4.1

ð These represent the movers and the group in the MC Configuration.
2. Create a state variable for a state machine as shown below, plus two auxiliary positions for the

MoveToPosition [} 144] commands of the movers.
PROGRAM MAIN
VAR
 mover_one, mover_two : MC_PlanarMover;
 group : MC_PlanarGroup;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

3. Then program a sequence in MAIN.
ð This program code activates the group and both movers. Both movers are then added to the group.
CASE state OF
 0:
 mover_one.Enable(0);
 mover_two.Enable(0);
 state := 1;
 1:
 IF mover_one.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled
 AND mover_two.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 group.Enable(0);
 state := 3;
 3:
 IF group.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 4;
 END_IF
 4:
 mover_one.AddToGroup(0, group);
 mover_two.AddToGroup(0, group);
 state := 5;
 5:
 IF mover_one.MCTOPLC.STD.GroupOID = group.MCTOPLC_STD.GroupOID
 AND mover_two.MCTOPLC.STD.GroupOID = group.MCTOPLC_STD.GroupOID THEN
 state := 6;
 END_IF
 6:
 pos1.SetValuesXY(0, 240);
 pos2.SetValuesXY(0, 0);
 mover_one.MoveToPosition(0, pos1, 0, 0);
 mover_two.MoveToPosition(0, pos2, 0, 0);
 state := 7;
END_CASE

Sending the command
4. To send the command you must trigger the movers and the group cyclically using the update methods:

mover_one.Update();
mover_two.Update();
group.Update();

Building the PLC creates symbols of the "PLC mover" and the "PLC group", which can then be linked to the
mover or group instance in the MC project.

Planar Motion components

TF5430 93Version: 1.4.1

5. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar movers in the "MC Project" can be linked with the Link To PLC... button on
the Settings tab.

6. Double-click Mover one first, then Mover two.

ð The group must be linked separately via the following dialog boxes.

Planar Motion components

TF543094 Version: 1.4.1

Planar Motion components

TF5430 95Version: 1.4.1

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

After logging into the PLC and starting, you will see that the movers are not both in the target positions at the
end of the state machine (state=7). Mover one has moved to x = 0 and y = 240. Mover two has not moved to
the origin because Mover one still stood there and the command was therefore rejected because both are in
a common group.

Since the dynamic limits of the movers are quite high by default, the change of positions after logging in may
be difficult to follow with the naked eye. For the dynamic limits, see Planar mover [} 18].

Planar Motion components

TF543096 Version: 1.4.1

6.4 Planar environment
The Planar environment is a software object that represents the two-dimensional XPlanar stator surface.
Together with Planar movers in a group, it prevents collisions of the movers with the edge of the surface.

6.4.1 Configuration
ü In order to create a Planar environment, an MC Configuration must first be created.
1. Select MOTION > Add New Item….

2. In the following dialog box, select MC Configuration and confirm with OK.

ð You have created an MC Project.
3. Select MC Project > Groups > Add New Item….

4. In the following dialog box, create one (or more) Planar environments and confirm withOK.

Planar Motion components

TF5430 97Version: 1.4.1

ð The Planar environment is now created and can be parameterized.

Open detailed description
• Select the Planar environment in the tree and double-click it.

Purposes of the individual tabs

Object: General information (name, type, ID and so on) is shown here.

Parameter (Init): Specifies initial parameters that the user can change in order to affect the behavior of the
environment.

Planar Motion components

TF543098 Version: 1.4.1

The environment has the initial parameter "XPlanar processing unit OID". When this (>0) is set to the object
ID of the XPlanar processing unit, the environment automatically reads the stator configuration from the
XPlanar processing unit and generates the boundary elements for collision detection from this information.
This takes place as soon as the user calls the CreateBoundary() command in the PLC.

From version V3.2.60: If the "XPlanar processing unit OID" parameter is set to the object ID of the XPlanar
processing unit, the environment also reads the part configuration from the XPlanar processing unit and
generates an internal representation of all parts. This is used both to perform collision checks with the edge
of the parts when the environment is in the Planar group and to provide all components (movers, tracks,
group) with a complete system description.

Parameter (Online): Shows the state of the environment during the runtime of the object.

The number of stators inserted into the environment and the boundary elements calculated from them are
displayed here.

From version V3.2.60: The "PartCount" parameter specifies the number of parts read out and created
internally. The "PlanarPartsInfo" parameter displays information for all parts. This information consists of the
object ID of the part, the Planar state of the part, the active position index, the position of the part consisting
of the object ID of the coordinate system and x/y coordinates, and the "disableForced" flag of the part.

Data Area: Shows the memory area via which the group communicates with the PLC environment.

Planar Motion components

TF5430 99Version: 1.4.1

6.4.2 Example "Configuring the stator area and boundary"
Using this guide you will be able to create a TwinCAT project that contains a Planar environment and you will
configure its stator surface and boundary.

Creating a Planar environment
1. Create a Planar environment, see Configuration [} 96].

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].
1. Create an "MC_PlanarEnvironment" via MAIN.

ð This represents the environment in the MC configuration.
2. Create a state variable for a state machine as shown below.

PROGRAM MAIN
VAR
 environment : MC_PlanarEnvironment;
 state : UDINT;
END_VAR

3. Then program a sequence in MAIN.
ð This program code adds four stators to the environment. The lower left corner of the square stators

(side length 240 mm) is specified in each case. CreateBoundary() then calculates the outer boundary
of the stator surface.
The stators (red) and boundary elements (blue) are shown schematically in the following illustration.

CASE state OF
 0:
 environment.AddStator(0,0.0,0.0);

Planar Motion components

TF5430100 Version: 1.4.1

 environment.AddStator(0,240.0,0.0);
 environment.AddStator(0,0.0,240.0);
 environment.AddStator(0,240.0,240.0);
 environment.CreateBoundary(0);
 state := 1;
END_CASE

Sending the command
4. To send the command, you must call the environment cyclically with its update method after the

END_CASE:
environment.Update();

When creating the PLC, a symbol of the "PLC environment" is created, which can then be linked to the
Planar environment in the MC project.

5. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð The Planar environment can then be linked in the "MC Project".

Planar Motion components

TF5430 101Version: 1.4.1

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

The environment is in the desired state at the end of the state machine (state = 1).

Planar Motion components

TF5430102 Version: 1.4.1

6.5 Example: "Creating and moving Planar movers with
track and group"

Using this guide you will create a TwinCAT project that includes two Planar movers, a Planar track and a
Planar group, and moves the movers both on and alongside the track.

Creating a Planar mover
ü See Configuration [} 18].
1. Create two Planar movers.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.
3. Change the start position of the second mover to x = 240.

Creating a Planar track and Planar group
4. Add the Planar track via Groups > Add New Item…, see Configuration [} 42].
5. Proceed in the same way for the Planar group.

Creating a PLC
ü To control the movers, the track and the group, a PLC must be created from which the user can issue

commands to the mover, see Creating a PLC [} 21].

6. Create two mowers (MC_PlanarMovers [} 143]), an MC_PlanarTrack [} 161] and an MC_PlanarGroup
[} 141] via MAIN.
ð These represent the movers, the track and the group in the MC Configuration.

Planar Motion components

TF5430 103Version: 1.4.1

7. Create a state variable for a state machine and two auxiliary positions for the track, as shown below.
8. Also create a feedback.

ð The feedback can be associated with any commands. It provides detailed information about the
command execution and the execution time.

PROGRAM MAIN
VAR
 mover_one, mover_two : MC_PlanarMover;
 track : MC_PlanarTrack;
 group : MC_PlanarGroup;
 state : UDINT;
 pos1, pos2 : PositionXYC;
 feedback : MC_PlanarFeedback;
END_VAR

9. Then program a sequence in MAIN.
ð This program code creates and activates a track, a group and both movers. Both the movers and the

track are added to the group. After that, Mover one is joined and moved on the track. When moving,
feedback is provided via which we receive the rejection of the command as an error. The command
is rejected because Mover two is blocking the track (collision error).

CASE state OF
 0:
 pos1.SetValuesXY(0, 0);
 pos2.SetValuesXY(400, 0);
 track.AppendLine(0, pos1, pos2);
 track.Enable(0);
 group.Enable(0);
 state := 1;
 1:
 IF track.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled
 AND group.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 2;
 END_IF
 2:
 mover_one.Enable(0);
 mover_two.Enable(0);
 state := 3;
 3:
 IF mover_one.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled
 AND mover_two.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 4;
 END_IF
 4:
 mover_one.AddToGroup(0,group);
 mover_two.AddToGroup(0,group);
 track.AddToGroup(0,group);
 state := 5;
 5:
 IF mover_one.MCTOPLC.STD.GroupOID > 0
 AND mover_two.MCTOPLC.STD.GroupOID > 0
 AND track.MCTOPLC_STD.GroupOID > 0 THEN
 state := 6;
 END_IF
 6:
 mover_one.JoinTrack(0, track, 0, 0);
 state := 7;
 7:
 IF mover_one.MCTOPLC.STD.CommandMode = MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := 8;
 END_IF
 8:
 mover_one.MoveOnTrack(feedback, 0, 150.0, 0, 0);
 pos2.SetValuesXY(240, 320);
 mover_two.MoveToPosition(0, pos2, 0, 0);
 state := 9;
 9:
 IF NOT mover_two.MCTOPLC.STD.Busy.busyXYC THEN
 state := 10;
 END_IF
 10:
 mover_one.MoveOnTrack(0, 0, 150.0, 0, 0);
 state := 11;
 11:
 IF NOT mover_one.MCTOPLC.STD.Busy.busyXYC THEN
 state := 12;

Planar Motion components

TF5430104 Version: 1.4.1

 END_IF

END_CASE

Sending the command
10. To send the command, you must call the mover, the track and the group cyclically with their update

method after the END_CASE:
mover_one.Update();
mover_two.Update();
track.Update();
group.Update();
feedback.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

Planar Motion components

TF5430 105Version: 1.4.1

At the end of the state machine (state=12), the movers are in the desired position.

The feedback indicates the collision error. In addition, in case of collision errors in the feedback, the blocking
object is displayed with its OID. It would now be possible, after Mover two has been moved out of the way, to
move Mover one on the track.

6.6 Planar part
From version V3.2.60: The Part feature, which is the subject of this section, is available.

The MC_PlanarPart [} 158] is a PLC software object that represents the part in the PLC. It displays the state
of the part and offers methods for changing the status.

The connection of the MC_PlanarPart [} 158] is established indirectly via the MC_PlanarEnvironment [} 134].
To do this, the initialize method of the MC_PlanarPart [} 158] must be called with the correct object ID of the
part after starting the PLC. The state of the MC_PlanarPart [} 158] can then be both read and changed by
method calls.

Possible commands for the MC_PlanarPart [} 158] are the ActivatePosition [} 159] method and the
AllowEnable [} 160], ForceDisable [} 160] and Reset [} 160] methods. The ActivatePosition [} 159] method
moves the part to one of the possible positions. The methods AllowEnable [} 160], ForceDisable [} 160] and
Reset [} 160] change the PlanarState of the MC_PlanarPart [} 158].

Planar Motion components

TF5430106 Version: 1.4.1

After calling the AllowEnable [} 160] method, the PlanarPart is allowed to start up the PlanarState Machine
(up to the CoE state OperationEnabled). As soon as the first mover in a coordinate system is activated with
an Enable() command, all parts in this system are activated. Activating the part that the mover is located on
is necessary for activating the mover and takes place first. Activating the remaining parts in a coordinate
system is optional and may fail without preventing or canceling the activation. Conversely, calling the
Disable() command on the last active mover in a coordinate system causes all parts to be switched off. The
parts do not have to be switched off in order to switch off the mover and this takes place after the mover has
been switched off.

Similarly, parts are activated or deactivated when the first/last activated mover enters or leaves a coordinate
system by calling the ActivatePosition [} 159] method of its part. The parts are also deactivated if the last
active mover has an error with an "abort" error response. If a mover has an error with the "quick stop" error
response, the parts remain activated. This applies during the error and the subsequent reset until the part is
reactivated. If the error response is changed to "abort" by a Disable() command from the mover during the
error or the Reset [} 160] command, the parts switch off.

If a part is forced into the disabled state by calling the ForceDisable [} 160] method, all movers on this part
are set to the error state and other parts in the coordinate system may be switched off if there are no other
active movers in the coordinate system. The part remains in the disabled state until at least the next
AllowEnable [} 160] call.

Error states of the part force errors of all movers on this part. The errors of the movers are attained before
the part error. Other movers or parts in the coordinate system are not affected by these errors.

In the event of a part error, a Reset [} 160] command can be triggered to rectify the error. Any mover errors
are not affected by this. Conversely, a Reset [} 160] command from a mover triggers a Reset [} 160]
command for all parts in the coordinate system with an error. The Reset [} 160] command of the mover has
as a necessary condition that its own part is error-free; accordingly, the part is reset before the mover.

6.6.1 Example "Activating a Planar part position and moving a
Planar mover"

In this example, a Planar mover is moved to three Planar parts while the movable one of the parts is moved.

Starting point

You start with a solution that contains a fully configured XPlanar Processing Unit. Three parts, two
coordinate systems and a mover are created under the XPlanar Processing Unit. A tile is created under each
of the three parts.

Planar Motion components

TF5430 107Version: 1.4.1

The following geometric situation is set: the first two parts are fixed in the two coordinate systems at the
origin and the third part can change position between the two coordinate systems. It is conceivable, for
example, that the two coordinate systems are arranged one above the other in two planes and Part 3 is an
elevator between the two systems. The mover starts in the middle of the first part in coordinate system 1,
while the third part starts in coordinate system 2.

Planar Motion components

TF5430108 Version: 1.4.1

Creating a Planar mover and a Planar environment
1. Create a Planar mover for this example, see Configuration [} 18].

2. Create a Planar environment, see Configuration [} 96].
3. Set the initial parameter XPlanar processing unit OID to the object ID of the XPlanar Processing Unit.

This activates the Part feature for all MC Configuration objects (especially for the created Planar
mover).

Creating a PLC
ü See preliminary steps Creating a PLC [} 21].

1. Use MAIN to create the mover(s) ("MC_PlanarMover [} 143]") as follows.

ð This/these represent(s) the mover(s) in the MC Configuration.
2. Create a Planar mover, a Planar environment, a Planar part, a state variable for a state machine and a

target position for a travel command of the mover, as shown below.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 environment : MC_PlanarEnvironment;
 part_three : MC_PlanarPart;
 state : UDINT;
 target_position : PositionXYC;
END_VAR

3. Then program a sequence in MAIN.
ð This program code initializes part 3, activates the mover, moves part 3 to coordinate system 1,

moves the mover to part 3, moves part 3 back to coordinate system 2 and finally moves the mover to
part 2 in coordinate system 2.

CASE state OF
 0:
 part_three.Initialize(0, 16#01010080, environment);
 state := 1;
 1:
 IF part_three.IsInitialized THEN
 state := 2;
 END_IF
 2:
 mover.Enable(0);
 state := 3;
 3:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 4;
 END_IF
 4:
 part_three.ActivatePosition(0,1);
 state := 5;
 5:
 IF part_three.PositionIndex = 1 THEN
 state := 6;
 END_IF
 6:
 target_position.SetValuesXYCReferenceId(120, 120, 0, part_three.PartOID);
 mover.MoveToPosition(0, target_position, 0, 0);
 state := 7;

Planar Motion components

TF5430 109Version: 1.4.1

 7:
 IF mover.MCTOPLC.SET.SetPos.y > 300 AND NOT mover.MCTOPLC.STD.Busy.busyXYC THEN
 state := 8;
 END_IF
 8:
 part_three.ActivatePosition(0,2);
 state := 9;
 9:
 IF part_three.PositionIndex = 2 THEN
 state := 10;
 END_IF
 10:
 target_position.SetValuesXYCReferenceId(120, 120, 0, 16#01010030); // Position on part two
 mover.MoveToPosition(0, target_position, 0, 0);
 state := 11;

END_CASE

Sending the command
4. To send the motion command, you must call the mover cyclically with its update method after the

END_CASE; to send the commands of the Planar part, the environment must be called cyclically with its
update method:
mover.Update();
environment.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

ð In addition, the Planar mover in the "MC Project" (double-click) can be linked with the Link To I/O...
button on the Settings tab.

Planar Motion components

TF5430110 Version: 1.4.1

ð The Planar environment can then be linked in the "MC Project".

Planar Motion components

TF5430 111Version: 1.4.1

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state = 11, shown in hexadecimal in the figure below as B), the mover is in
the desired position. The position is specified in coordinate system two (object Id 16#010100A0). The mover
has changed the coordinate system together with part 3, or has moved to a different level with the elevator.
Overall, the example clearly shows that the Planar-Part PLC objects are only lightweight environment
wrappers that have to be initialized with the environment and send their commands via the environment.

Planar Motion components

TF5430112 Version: 1.4.1

6.7 Planar Feedback
The MC Planar Feedback [} 137] is a PLC software object that bundles all the status information for a
command that is given by the user to a mover, track, group or other Planar component.

This ranges from the sending of the command by the user to the processing of the command by the
components and from the subsequent acceptance (or possibly rejection) to the execution and termination of
the command. The user can track all of this using a feedback object if he so desires.

To do this, he must transfer a feedback object in the PLC as the first argument when the command method
is called. Subsequently, whenever the user triggers the feedback object (or calls its update method), he can
retrieve the current command state.

In order for a Planar Feedback to be used, it must be declared in the PLC. The Planar Feedback has no
fixed equivalent in a TCOM object on the Motion Control side. From there, it receives the information directly
from the corresponding TCOM object (e.g. Planar mover), which executes the corresponding command.
Therefore, feedback does not need to be created, parameterized or linked separately in the MC project.

6.7.1 Example "Creating a Planar mover and Planar Feedback"
Using this short guide you will create a TwinCAT project that contains a Planar mover and a Planar
Feedback.

Creating a Planar mover
ü See Configuration [} 18].
1. Create a Planar mover.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Planar Motion components

TF5430 113Version: 1.4.1

Creating a PLC
ü See preliminary steps under Creating a PLC [} 21].
1. Create a mover ("MC_PlanarMover") and a Planar Feedback ("MC_PlanarFeedback") via MAIN as

follows.

ð These represent the mover and the Planar Feedback in the MC Configuration.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 feedback : MC_PlanarFeedback;
 state : UDINT;
 target_position : PositionXYC;
END_VAR

In this simple example you have created a state variable for a state machine and a target position for a travel
command of the Mover. A feedback is also declared in order to monitor the command process, with which a
sequence can subsequently be programmed in the MAIN:
CASE state OF
 0:
 mover.Enable(feedback);
 state := 1;
 1:
 IF feedback.Done THEN
 state := 2;
 END_IF
 2:
 target_position.SetValuesXY(1000, 1000);
 mover.MoveToPosition(feedback, target_position, 0, 0);
 state := 3;
END_CASE

This program code activates the mover and moves it to position x = 1000 and y = 1000.

Note that the state machine will only be advanced when the feedback signals the successful termination of
the command via its "Done" flag.

Sending the command
2. To issue the command and monitor the feedback, you must call the mover and feedback cyclically with

their update methods after the END_CASE:
mover.Update();
feedback.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

Planar Motion components

TF5430114 Version: 1.4.1

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

The mover is in the desired position at the end of the state machine (state = 3) and the feedback signals the
termination of the command with the "Done" flag.

Planar Motion components

TF5430 115Version: 1.4.1

6.7.2 Example "Planar motion components: averting collision"
Using this brief guide you will create a TwinCAT project that contains a Planar mover whose travel command
is rejected due to a collision with the Planar environment.

Creating a Planar mover
ü See Configuration [} 18].
1. Create a Planar mover.
2. Put "Parameter (Init)" into simulation mode (TRUE). The parameter is hidden and only becomes visible if

the "Show Hidden Parameters" checkbox is activated.

Creating a Planar environment
3. Create a Planar environment, see Configuration [} 96].

Creating a Planar group
4. Create a Planar group, see Configuration [} 89].

Creating a PLC
ü In order to create the geometry of the environment and control the mover, a PLC must be created from

which the user can send commands to both.

Planar Motion components

TF5430116 Version: 1.4.1

5. Add the libraries Tc3_Physics and Tc3_Mc3PlanarMotion to the PLC project, see Inserting libraries
[} 125].

6. Create an MC_PlanarMover [} 143] and an MC_PlanarEnvironment [} 134] via MAIN.

ð These represent the mover and the environment in the MC Configuration.
PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 environment : MC_PlanarEnvironment;
 group : MC_PlanarGroup;
 feedback : MC_PlanarFeedback;
 state : UDINT;
 target_position : PositionXYC;
END_VAR

In this example you have created a state variable for a simple state machine and a target position for a travel
command of the mover, with which a sequence can subsequently be programmed in the MAIN:
CASE state OF
 0:
 environment.AddStator(0,-120.0,-120.0);

https://infosys.beckhoff.com/content/1033/tc3plclib_tc3_physics/index.html?id=4696947420018373671

Planar Motion components

TF5430 117Version: 1.4.1

 environment.CreateBoundary(0);
 state := 1;
 1:
 mover.Enable(0);
 group.Enable(0);
 state := 2;
 2:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled AND
 group.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := 3;
 ENDIF
 3:
 mover.AddToGroup(0,group);
 environment.AddToGroup(0,group);
 state := 4;
 4:
 IF mover.MCTOPLC.STD.GroupOID > 0 AND
 environment.MCTOPLC_STD. GroupOID > 0 THEN
 state := 5;
 ENDIF
 5:
 target_position.SetValuesXY(100, 100);
 mover.MoveToPosition(feedback, target_position, 0, 0);
 state := 6;
END_CASE

This program code activates the mover and creates an environment from a tile on which the mover is
located. An attempt is then made to move the mover to the position x = 100 and y = 100.

Sending the command
7. In order to issue the command and monitor the feedback, you must call the objects cyclically with their

update methods after the END_CASE:
mover.Update();
environment.Update();
group.Update();
feedback.Update();

When creating the PLC, a symbol of the "PLC Mover" is created, which can then be linked to the mover
instance in the MC project.

1. To build, use the path PLC > Untitled1 > Untitled1 Project > Build.

ð Subsequently, the Planar mover in the "MC Project" (double-click) can be linked with the Link To
PLC... button on the Settings tab.

Planar Motion components

TF5430118 Version: 1.4.1

ð Subsequently, the Planar environment can be linked via the following dialog boxes in the "MC
Project".

ð The group is linked in the same way.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

Planar Motion components

TF5430 119Version: 1.4.1

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

At the end of the state machine (state=6), the mover is in the desired position. The mover did not move
because the command was rejected. The feedback shows a collision error and the environment is specified
as the collision partner in the ObjectInfo.

6.7.3 Specialized feedback types
In addition to the general MC_PlanarFeedback type, which is accepted by most commands, certain
commands may require a specialized feedback type. Planar Feedback [} 112] that apply to the general
feedback also apply to these types.

Specialized feedbacks can have a subset of the outputs of the general feedback, depending on their type.
This includes information about whether a command is active or whether it caused an error, etc. In addition,
specialized feedback types may have other outputs or functions that correspond to their scope of application.

MC_PlanarFeedbackGearInPosOnTrack

This feedback type is accepted by a Example "Synchronizing a Planar mover on a track with one axis" [} 65].
It has an additional output inSync, which indicates whether the executing mover is synchronous with the
master axis.

Planar Motion components

TF5430120 Version: 1.4.1

MC_PlanarFeedbackGearInPosOnTrackWithMasterMover

This feedback type is accepted by a Example: "Synchronizing a Planar mover on a track with another Planar
mover" [} 72]. It has an additional output inSync, which indicates whether the executing mover is
synchronous with the Master Planar Mover.

6.8 Planar TrackTrail
The MC_PlanarTrackTrail [} 171] is an object that defines a path of contiguous Planar tracks in a network. In
contrast to the individual Planar tracks from which the Planar track trail is built, the Planar track trail has no
fixed equivalent in a TCOM object on the MC side, but is declared solely in the PLC, similar to a Planar
feedback [} 112].

A Planar track trail can be used to define a path of Planar tracks via which a synchronization movement of a
Slave Planar Mover with a master axis [} 65] or with a Master Planar Mover [} 72] should take place (if this
path consists of more than the current Planar track of the Slave Planar Mover).

The Planar-TrackTrail offers methods for adding a Planar track to its end and for emptying its configuration.
These methods only modify the Planar-TrackTrail and leave the underlying Planar tracks and the network
untouched.

When adding a Planar track, make sure that it connects to the end of the current last Planar track in the
Planar-TrackTrail. It is also impossible to add a Planar track more than once.

Planar Motion components

TF5430 121Version: 1.4.1

6.8.1 Example "Synchronization movement over two Planar tracks"
This example is an extension of the example Example "Synchronizing a Planar mover on a track with one
axis" [} 65], in which the synchronization movement of the Planar mover takes place over two Planar tracks.
The above example is modified so that two Planar tracks are created in the MC Configuration. The Solution
Explorer then has the following entries:

Customizing the PLC project
1. Add the libraries Tc3_Mc3PlanarMotion, Tc3_Physics and Tc2_MC2 to the PLC project; see Inserting

libraries [} 125].
2. Declare the following variables in MAIN:

PROGRAM MAIN
VAR
 mover : MC_PlanarMover;
 track1 : MC_PlanarTrack;
 track2 : MC_PlanarTrack;
 trail : MC_PlanarTrackTrail;
 axis : AXIS_REF;
 power_axis : MC_Power;
 move_axis : MC_MoveAbsolute;
 state : UDINT;
 pos1, pos2 : PositionXYC;
END_VAR

Planar Motion components

TF5430122 Version: 1.4.1

3. Configure the PLC to create symbols of the "PLC mover", the "PLC tracks" and the "PLC axis".

4. Link the Planar movers, Planar tracks (see example "Example: "Creating and moving Planar movers"
[} 22]") and the axis (see example "Example "Synchronizing a Planar mover on a track with one axis"
[} 65]").

All the steps so far, except for doubling the number of Planar tracks and the slightly modified code,
are identical to those in the example Example "Synchronizing a Planar mover on a track with one
axis" [} 65].

Programming state machines

The next step is to modify the program code so that the Planar TrackTrail is passed to the
GearInPosOnTrack command. Before that the Planar TrackTrail is populated with both Planar tracks,
which in this example form a simple Example "Connecting Planar tracks to a network" [} 75], consisting of an
L-configuration with a loop piece:
CASE state OF
 0:
 pos1.SetValuesXYC(100, 100, 0);
 pos2.SetValuesXYC(400, 100, 0);
 track1.AppendLine(0, pos1, pos2);
 track1.Enable(0);
 state := state + 1;
 1:
 IF track1.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 2:
 track2.StartFromTrack(0, track1);
 state := state + 1;
 3:
 pos1.SetValuesXYC(500, 100, 0);
 pos2.SetValuesXYC(860, 100, 0);
 track2.AppendLine(0, pos1, pos2);
 track2.Enable(0);
 state := state + 1;
 4:
 IF track2.MCTOPLC_STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 5:
 mover.Enable(0);
 state := state + 1;
 6:
 IF mover.MCTOPLC.STD.State = MC_PLANAR_STATE.Enabled THEN
 state := state + 1;
 END_IF
 7:
 mover.JoinTrack(0, track1, 0, 0);
 state := state + 1;
 8:
 IF mover.MCTOPLC.STD.CommandMode =
 MC_PLANAR_MOVER_COMMAND_MODE.OnTrack THEN
 state := state + 1;
 END_IF
 9:
 power_axis(Axis := axis,
 Enable := TRUE,
 Enable_Positive := TRUE);
 IF power_axis.Status THEN

Planar Motion components

TF5430 123Version: 1.4.1

 move_axis(Axis := axis, Execute := FALSE);
 state := state + 1;
 END_IF
 10:
 move_axis(Axis := axis,
 Position := 700,
 Velocity := 30,
 Acceleration := 100,
 Deceleration := 100,
 Jerk := 100,
 Execute := TRUE);
 state := state + 1;
 11:
 trail.AddTrack(track1);
 trail.AddTrack(track2);
 mover.GearInPosOnTrack(0, axis.DriveAddress.TcAxisObjectId, trail, 100, 100, track1, 0, 0);
 state := state + 1;
END_CASE

mover.Update();
track1.Update();
track2.Update();
power_axis(Axis := axis);
move_axis(Axis := axis);
axis.ReadStatus();

The two Planar tracks are added to the Planar TrackTrail in State 11. The order is crucial here, since
track2 follows track1 and not vice versa. The Planar TrackTrail is passed as the third argument to the
GearInPosOnTrack command.

Activating and starting the project

1. Activate the configuration via the button in the menu bar .

2. Set the TwinCAT system to the "Run" state via the button.

3. Log in the PLC via the button in the menu bar .
4. Start the PLC via the Play button in the menu bar.

Observe the process in the online view
5. Note in the online view how the Planar mover initially moves along the first Planar track towards its end:

6. You will then see it switch to the subsequent Planar track (note the TrackOIDs):

Planar Motion components

TF5430124 Version: 1.4.1

7. Finally, you can see how it comes to a standstill on the second Planar track:

ð Also in this example, the Planar mover will abort its synchronization movement if the behavior of the
master axis should require it to pass over the end of the second Planar track (e.g. by making the target
position of the master axis greater than the sum of the lengths of the two Planar tracks). In this case the
Planar mover comes to a halt at the end of the second track, loses its potential synchronization status
and reports an error.

If another Planar track is added to the end of the first track so that a switch is created at its end, the
Planar mover "knows" unambiguously through the Planar TrackTrail to which of the two Planar tracks it
should turn and thus continue its synchronization movement (after all, the master axis produces its
setpoints independently of Planar tracks). In this way, a Planar TrackTrail can be used to perform a
synchronization movement through track networks of any complexity on a unique path of any length.

Since the Planar TrackTrail is a pure PLC object that does not communicate via TCOM but only acts as a
container, no cyclic update, as for example for the Planar mover, the Planar tracks or Planar Feedback
[} 112] (which are not used in this example), is necessary, and a corresponding method is not available.

PLC Libraries

TF5430 125Version: 1.4.1

7 PLC Libraries

7.1 Inserting libraries
ü The libraries "Tc3_Physics" and "Tc3_Mc3PlanarMotion" must be integrated in order to control XPlanar

components.
1. Add the desired libraries to your project one after the other via References > Add library...

ð Once the libraries are integrated, you can program the rest of the process in the PLC.

To control a master axis, the library "Tc2_MC2" must also be included.

7.2 Tc3_Mc3PlanarMotion API

7.2.1 Data Types

7.2.1.1 Enums

7.2.1.1.1 EPlanarObjectType
Identifies a planar object type.

https://infosys.beckhoff.com/content/1033/tc3plclib_tc3_physics/index.html?id=4715843385614493280
https://infosys.beckhoff.com/content/1033/tf5430_tc3_xplanar/11303009291.html?id=1741056887350639095

PLC Libraries

TF5430126 Version: 1.4.1

Syntax

Definition:
TYPE EPlanarObjectType :
(
 Invalid := 0,
 None := 301,
 Mover := 302,
 Track := 303,
 Environment := 304
)UINT;
END_TYPE

Values

Name Description
Invalid Indicates invalid information, e.g. no connection or

component not yet ready.
None No planar object.
Mover Planar Mover.
Track Planar Track.
Environment Planar Environment.

7.2.1.1.2 MC_DIRECTION
Indicates the movement direction of the Planar Mover on a Planar Track.

Syntax

Definition:
TYPE MC_DIRECTION :
(
 mcDirectionNonModulo := 0,
 mcDirectionPositive := 1,
 mcDirectionShortestWay := 2,
 mcDirectionNegative := 3
)UINT;
END_TYPE

Values

Name Description
mcDirectionNonModulo The Planar Mover moves to the absolute value of the

target position. Depending on the current position,
this may induce forward or backward movement. On
looped tracks, multiple passes are possible.

mcDirectionPositive The Planar Mover moves to the target position in a
forward direction. No backward movement is allowed.

mcDirectionShortestWay The Planar Mover takes the shortest way to the
target position. May induce forward or backward
movement.

mcDirectionNegative The Planar Mover moves to the target position in a
backward direction. No forward movement is allowed.

In combination with the Tc2_MC2 library it is possible that the data type cannot be resolved
uniquely (ambiguous use of name 'MC_Direction'). In this case you have to specify the namespace
when using the data type (Tc3_Mc3PlanarMotion.MC_DIRECTION,
Tc3_Mc3Definitions.MC_DIRECTION or Tc2_MC2.MC_DIRECTION).

7.2.1.1.3 MC_SYNC_DIRECTIONS
Directions in which a slave is allowed to move during synchronizing phase.

PLC Libraries

TF5430 127Version: 1.4.1

Syntax

Definition:
TYPE MC_SYNC_DIRECTIONS :
(
 Positive := 1,
 Negative := 2,
 Both := 3
)UINT;
END_TYPE

Values

Name Description
Positive Movement is allowed only in positive direction while

synchronizing.
Negative Movement is allowed only in negative direction while

synchronizing.
Both Movement is allowed in any direction while

synchronizing.

7.2.1.2 Structs

7.2.1.2.1 CDT_MCTOPLC_PLANAR_MOVER
Contains the information of the Planar Mover passed from MC to PLC.

Syntax

Definition:
TYPE CDT_MCTOPLC_PLANAR_MOVER :
STRUCT
 STD : Reference To CDT_MCTOPLC_PLANAR_MOVER_STD;
 SET : Reference To CDT_MCTOPLC_PLANAR_MOVER_SET;
 ACT : Reference To CDT_MCTOPLC_PLANAR_MOVER_ACT;
 COORDMODE : Reference To CDT_MCTOPLC_PLANAR_MOVER_COORDMODE;
 SETONTRACK : Reference To CDT_MCTOPLC_PLANAR_MOVER_TRACK;
END_STRUCT
END_TYPE

Parameters

Name Type Description
STD Reference To

CDT_MCTOPLC_PLANAR_MOVE
R_STD

Mover standard data that is
transferred from the Planar Mover
to this function block.

SET Reference To
CDT_MCTOPLC_PLANAR_MOVE
R_SET

Mover setpoint data that is
transferred from the Planar Mover
to this function block.

ACT Reference To
CDT_MCTOPLC_PLANAR_MOVE
R_ACT

Mover actpoint data that is
transferred from the Planar Mover
to this function block.

COORDMODE Reference To
CDT_MCTOPLC_PLANAR_MOVE
R_COORDMODE

Mover coordinate mode information
that is transferred from the Planar
Mover to this function block.

SETONTRACK Reference To
CDT_MCTOPLC_PLANAR_MOVE
R_TRACK

Mover busy information that is
transferred from the Planar Mover
to this function block.

PLC Libraries

TF5430128 Version: 1.4.1

7.2.1.2.2 CDT_PLCTOMC_PLANAR_MOVER
Contains the information of the Planar Mover passed from PLC to MC.

Syntax

Definition:
TYPE CDT_PLCTOMC_PLANAR_MOVER :
STRUCT
 STD : Reference To CDT_PLCTOMC_PLANAR_MOVER_STD;
END_STRUCT
END_TYPE

Parameters

Name Type Description
STD Reference To

CDT_PLCTOMC_PLANAR_MOVE
R_STD

Mover standard data that is
transferred from this function block
to the Planar Mover.

7.2.1.2.3 PlanarObjectInfo
Identifies a planar object uniquely by object id and type.

Syntax

Definition:
TYPE PlanarObjectInfo :
STRUCT
 ObjectType : EPlanarObjectType;
 Id : UDINT;
END_STRUCT
END_TYPE

Parameters

Name Type Description
ObjectType EPlanarObjectType [} 125] Object type.
Id UDINT Object id.

7.2.1.2.4 ST_AdoptTrackOrientationOptions
Options for the "AdoptTrackOrientation" command of the Planar Mover.

Syntax

Definition:
TYPE ST_AdoptTrackOrientationOptions :
STRUCT
 additionalTurns : UDINT;
 direction : MC_DIRECTION;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
additionalTurns UDINT 0 Addition turns to move in

modulo movement
(positive or negative).

direction MC_DIRECTION [} 126] MC_DIRECTION.mcDirec
tionShortestWay

Direction in which the
target is approached.

PLC Libraries

TF5430 129Version: 1.4.1

7.2.1.2.5 ST_EndAtTrackAdvancedOptions
Options for the "EndAtTrackAdvanced" command of the Planar Track.

Syntax

Definition:
TYPE ST_EndAtTrackAdvancedOptions :
STRUCT
 thisTrackPartPositionIndex : UDINT;
 otherTrackPartPositionIndex : UDINT;
 linkOnlyInSpecifiedPartPositions : BOOL;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
thisTrackPartPositionInde
x

UDINT 0 The index of the position
in which the part of this
track is for track
connection.

otherTrackPartPositionInd
ex

UDINT 0 The index of the position
in which the part of the
other track is for track
connection.

linkOnlyInSpecifiedPartPo
sitions

BOOL FALSE If false the tracks are
connected not only in the
given positions
configuration of their parts
but also in all other
(geometrically compatible)
locations, otherwise only
the specified location is
connected.

7.2.1.2.6 ST_ExternalSetpointGenerationOptions
Options for the "ExternalSetpointGeneration" command of the Planar Mover.

Syntax

Definition:
TYPE ST_ExternalSetpointGenerationOptions :
STRUCT
 mode : MC_EXTERNAL_SET_POSITION_MODE;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
mode MC_EXTERNAL_SET_P

OSITION_MODE
MC_EXTERNAL_SET_P
OSITION_MODE.Absolut
e

Mode can be relative or
absolute, relative can be
used parallel to all other
commands, absolute only
alone.

7.2.1.2.7 ST_GearInPosOnTrackOptions
Options for the "GearInPosOnTrack" command of the Planar Mover.

PLC Libraries

TF5430130 Version: 1.4.1

Syntax

Definition:
TYPE ST_GearInPosOnTrackOptions :
STRUCT
 gap : LREAL;
 inSyncToleranceDistance : LREAL;
 directionSlaveSyncPosition : MC_DIRECTION;
 moduloToleranceSlaveSyncPosition : LREAL;
 allowedSlaveSyncDirections : MC_SYNC_DIRECTIONS;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
gap LREAL 200.0 Minimal distance to next

Planar Mover on track.
inSyncToleranceDistance LREAL 0.0 Tolerance in absolute

value of position
difference to master axis
for inSync flag.

directionSlaveSyncPositio
n

MC_DIRECTION [} 126] MC_DIRECTION.mcDirec
tionNonModulo

Direction in which the
slave sync position is
approached.

moduloToleranceSlaveSy
ncPosition

LREAL 0.0 Tolerance "window" for
slave sync position.

allowedSlaveSyncDirectio
ns

MC_SYNC_DIRECTIONS
[} 126]

MC_SYNC_DIRECTIONS
.Positive

Directions in which the
slave is allowed to move
while in synchronizing
phase.

7.2.1.2.8 ST_GearInPosOnTrackWithMasterMoverOptions
Options for the "GearInPosOnTrackWithMasterMover" command of the Planar Mover.

Syntax

Definition:
TYPE ST_GearInPosOnTrackWithMasterMoverOptions :
STRUCT
 gap : LREAL;
 inSyncToleranceDistance : LREAL;
 directionSlaveSyncPosition : MC_DIRECTION;
 moduloToleranceSlaveSyncPosition : LREAL;
 directionMasterSyncPosition : MC_DIRECTION;
 moduloToleranceMasterSyncPosition : LREAL;
 allowedSlaveSyncDirections : MC_SYNC_DIRECTIONS;
 followMover : BOOL;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
gap LREAL 200.0 Minimal distance to next

Planar Mover on track.
inSyncToleranceDistance LREAL 0.0 Tolerance in absolute

value of position
difference to master axis
for inSync flag.

PLC Libraries

TF5430 131Version: 1.4.1

Name Type Default Description
directionSlaveSyncPositio
n

MC_DIRECTION [} 126] MC_DIRECTION.mcDirec
tionNonModulo

Direction in which the
slave sync position is
approached.

moduloToleranceSlaveSy
ncPosition

LREAL 0.0 Tolerance "window" for
slave sync position.

directionMasterSyncPositi
on

MC_DIRECTION [} 126] MC_DIRECTION.mcDirec
tionNonModulo

Direction in which the
master sync position is
approached.

moduloToleranceMasterS
yncPosition

LREAL 0.0 Tolerance "window" for
master sync position.

allowedSlaveSyncDirectio
ns

MC_SYNC_DIRECTIONS
[} 126]

MC_SYNC_DIRECTIONS
.Positive

Directions in which the
slave is allowed to move
while in synchronizing
phase.

followMover BOOL FALSE If true, the slave
PlanarMover will proceed
to follow the master
PlanarMover after the
latter has traversed the
masterSyncPosition. In
this case the
PlanarTrackTrail
describes the slave's path
towards the
masterSyncPosition. If
false, the slave moves
exclusively on the
PlanarTrackTrail
specified.

7.2.1.2.9 ST_JoinTrackOptions
Options for the "JoinTrack" command of the Planar Mover.

Syntax

Definition:
TYPE ST_JoinTrackOptions :
STRUCT
 useOrientation : BOOL;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
useOrientation BOOL TRUE If true, the target

orientation is also reached
at the end of the
movement.

7.2.1.2.10 ST_LeaveTrackOptions
Options for the "LeaveTrack" command of the Planar Mover.

Syntax

Definition:

PLC Libraries

TF5430132 Version: 1.4.1

TYPE ST_LeaveTrackOptions :
STRUCT
 useOrientation : BOOL;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
useOrientation BOOL TRUE If true, the target

orientation is also reached
at the end of the
movement.

7.2.1.2.11 ST_MoveCOptions
Options for the "MoveC" command of the Planar Mover.

Syntax

Definition:
TYPE ST_MoveCOptions :
STRUCT
 additionalTurns : UDINT;
 direction : MC_DIRECTION;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
additionalTurns UDINT 0 Addition turns to move in

modulo movement
(positive or negative).

direction MC_DIRECTION [} 126] MC_DIRECTION.mcDirec
tionNonModulo

Direction in which the
target is approached.

7.2.1.2.12 ST_MoveOnTrackOptions
Options for the "MoveOnTrack" command of the Planar Mover.

Syntax

Definition:
TYPE ST_MoveOnTrackOptions :
STRUCT
 gap : LREAL;
 direction : MC_DIRECTION;
 additionalTurns : UDINT;
 moduloTolerance : LREAL;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
gap LREAL 200.0 Minimal distance to next

Planar Mover on track.
direction MC_DIRECTION [} 126] MC_DIRECTION.mcDirec

tionNonModulo
Direction in which the
target is approached.

additionalTurns UDINT 0 Addition turns to move in
modulo movement
(positive or negative).

PLC Libraries

TF5430 133Version: 1.4.1

Name Type Default Description
moduloTolerance LREAL 0.0 Tolerance "window" in

modulo movement.

7.2.1.2.13 ST_MoveToPositionOptions
Options for the "MoveToPosition" command of the Planar Mover.

Syntax

Definition:
TYPE ST_MoveToPositionOptions :
STRUCT
 useOrientation : BOOL;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
useOrientation BOOL TRUE If true, the target

orientation is also reached
at the end of the
movement.

7.2.1.2.14 ST_StartFromTrackAdvancedOptions
Options for the "StartFromTrackAdvanced" command of the Planar Track.

Syntax

Definition:
TYPE ST_StartFromTrackAdvancedOptions :
STRUCT
 thisTrackPartPositionIndex : UDINT;
 otherTrackPartPositionIndex : UDINT;
 linkOnlyInSpecifiedPartPositions : BOOL;
END_STRUCT
END_TYPE

Parameters

Name Type Default Description
thisTrackPartPositionInde
x

UDINT 0 The index of the position
in which the part of this
track is for track
connection.

otherTrackPartPositionInd
ex

UDINT 0 The index of the position
in which the part of the
other track is for track
connection.

linkOnlyInSpecifiedPartPo
sitions

BOOL FALSE If false the tracks are
connected not only in the
given positions
configuration of their parts
but also in all other
(geometrically compatible)
locations, otherwise only
the specified location is
connected.

PLC Libraries

TF5430134 Version: 1.4.1

7.2.2 Function Blocks

7.2.2.1 MC_PlanarEnvironment
A Planar Environment object specifies the environment that Planar Movers can move in. It contains
information about the stator objects and boundaries of the movement area.

Do not call the main FB directly. Only use the available methods.

 Methods

Name Description
Clear [} 134] Clears the Planar Environment (stators and boundary).

AddStator [} 135] Adds a stator to the Planar Environment.

CreateBoundary [} 135] Creates a boundary for the Planar Environment based on the previously
added stator information or hardware information.

Update [} 135] Updates internal state of the object, must be triggered each cycle.

AddToGroup [} 136] Adds the Planar Environment to the given Planar Group.

RemoveFromGroup [} 136] Removes the Planar Environment from its current Planar Group, i.e.
disables collision checks.

GetPlanarObjectInfo [} 137] Returns environment object info (type: environment, id: OID of nc
environment).

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

7.2.2.1.1 Clear
Clear

commandFeedback Reference To MC_PlanarFeedback

Clears the Planar Environment (stators and boundary).

Syntax

Definition:
METHOD Clear
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

PLC Libraries

TF5430 135Version: 1.4.1

7.2.2.1.2 AddStator
AddStator

commandFeedback Reference To MC_PlanarFeedback
lowerX LREAL
lowerY LREAL

Adds a stator to the Planar Environment.

Syntax

Definition:
METHOD AddStator
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 lowerX : LREAL;
 lowerY : LREAL;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

lowerX LREAL The lower x position of the stator.
lowerY LREAL The lower y position of the stator.

7.2.2.1.3 CreateBoundary
CreateBoundary

commandFeedback Reference To MC_PlanarFeedback

Creates a boundary for the Planar Environment based on the previously added stator information or
hardware information.

Syntax

Definition:
METHOD CreateBoundary
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.1.4 Update
Update

Updates internal state of the object, must be triggered each cycle.

PLC Libraries

TF5430136 Version: 1.4.1

Syntax

Definition:
METHOD Update

7.2.2.1.5 AddToGroup
AddToGroup

commandFeedback Reference To MC_PlanarFeedback
↔ group MC_PlanarGroup

Adds the Planar Environment to the given Planar Group.

Syntax

Definition:
METHOD AddToGroup
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 group : MC_PlanarGroup;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

 In/Outputs

Name Type Description
group MC_PlanarGroup [} 141] The Planar Group that the mover joins.

7.2.2.1.6 RemoveFromGroup
RemoveFromGroup

commandFeedback Reference To MC_PlanarFeedback

Removes the Planar Environment from its current Planar Group, i.e. disables collision checks.

Syntax

Definition:
METHOD RemoveFromGroup
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

PLC Libraries

TF5430 137Version: 1.4.1

7.2.2.1.7 GetPlanarObjectInfo
GetPlanarObjectInfo

PlanarObjectInfo GetPlanarObjectInfo

Returns environment object info (type: environment, id: OID of nc environment).

Syntax

Definition:
METHOD GetPlanarObjectInfo : PlanarObjectInfo

 Return value

PlanarObjectInfo [} 128]

7.2.2.2 MC_PlanarFeedback
MC_PlanarFeedback

BOOL Active
BOOL Busy

BOOL Aborted
BOOL Error

UDINT ErrorId
PlanarObjectInfo objectInfo

BOOL Done

Displays specific command status information for an associated command, given back by the MC Project.

Syntax

Definition:
FUNCTION_BLOCK MC_PlanarFeedback
VAR_OUTPUT
 Active : BOOL;
 Busy : BOOL;
 Aborted : BOOL;
 Error : BOOL;
 ErrorId : UDINT;
 objectInfo : PlanarObjectInfo;
 Done : BOOL;
END_VAR

 Outputs

Name Type Description
Active BOOL Indicates an active command, i.e. command was accepted and

is being executed.
Busy BOOL Indicates a busy command, i.e. command is being processed,

waiting for execution, or already executing (= also active).
Aborted BOOL Indicates the command is aborted, i.e. execution of the

command finished due the start of other commands.
Error BOOL Indicates the command has an error.
ErrorId UDINT Indicates the error id of the command error.
objectInfo PlanarObjectInfo [} 128] Indicates which object one would collide with.
Done BOOL Indicates the command is done, i.e. execution of the command

finished successfully.

PLC Libraries

TF5430138 Version: 1.4.1

 Methods

Name Description
Update [} 138] Updates internal state of the object.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

7.2.2.2.1 Update
Update

Updates internal state of the object.

Syntax

Definition:
METHOD Update

7.2.2.3 MC_PlanarFeedbackBase
Displays general command status information for an associated command, given back by the MC Project.

Do not call the main FB directly. Only use the available methods.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

7.2.2.4 MC_PlanarFeedbackGearInPosOnTrack
MC_PlanarFeedbackGearInPosOnTrack

BOOL Active
BOOL Busy

BOOL Aborted
BOOL Error

UDINT ErrorId
PlanarObjectInfo objectInfo

BOOL inSync

Displays specific command status information for an associated GearInPosOnTrack command, given back
by the MC Project.

PLC Libraries

TF5430 139Version: 1.4.1

Syntax

Definition:
FUNCTION_BLOCK MC_PlanarFeedbackGearInPosOnTrack
VAR_OUTPUT
 Active : BOOL;
 Busy : BOOL;
 Aborted : BOOL;
 Error : BOOL;
 ErrorId : UDINT;
 objectInfo : PlanarObjectInfo;
 inSync : BOOL;
END_VAR

 Outputs

Name Type Description
Active BOOL Indicates an active command, i.e. command was accepted and

is being executed.
Busy BOOL Indicates a busy command, i.e. command is being processed,

waiting for execution, or already executing (= also active).
Aborted BOOL Indicates the command is aborted, i.e. execution of the

command finished due the start of other commands.
Error BOOL Indicates the command has an error.
ErrorId UDINT Indicates the error id of the command error.
objectInfo PlanarObjectInfo [} 128] Indicates which object one would collide with.
inSync BOOL Indicates whether the mover is currently in sync with the master

(within tolerance specified in the command options).

 Methods

Name Description
Update [} 139] Updates internal state of the object.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

7.2.2.4.1 Update
Update

Updates internal state of the object.

Syntax

Definition:
METHOD Update

PLC Libraries

TF5430140 Version: 1.4.1

7.2.2.5 MC_PlanarFeedbackGearInPosOnTrackWithMasterMover
MC_PlanarFeedbackGearInPosOnTrackWithMasterMover

BOOL Active
BOOL Busy

BOOL Aborted
BOOL Error

UDINT ErrorId
PlanarObjectInfo objectInfo

BOOL inSync

Displays specific command status information for an associated GearInPosOnTrack command, given back
by the MC Project.

Syntax

Definition:
FUNCTION_BLOCK MC_PlanarFeedbackGearInPosOnTrackWithMasterMover
VAR_OUTPUT
 Active : BOOL;
 Busy : BOOL;
 Aborted : BOOL;
 Error : BOOL;
 ErrorId : UDINT;
 objectInfo : PlanarObjectInfo;
 inSync : BOOL;
END_VAR

 Outputs

Name Type Description
Active BOOL Indicates an active command, i.e. command was accepted and

is being executed.
Busy BOOL Indicates a busy command, i.e. command is being processed,

waiting for execution, or already executing (= also active).
Aborted BOOL Indicates the command is aborted, i.e. execution of the

command finished due the start of other commands.
Error BOOL Indicates the command has an error.
ErrorId UDINT Indicates the error id of the command error.
objectInfo PlanarObjectInfo [} 128] Indicates which object one would collide with.
inSync BOOL Indicates whether the mover is currently in sync with the master

(within tolerance specified in the command options).

 Methods

Name Description
Update [} 141] Updates internal state of the object.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

PLC Libraries

TF5430 141Version: 1.4.1

7.2.2.5.1 Update
Update

Updates internal state of the object.

Syntax

Definition:
METHOD Update

7.2.2.6 MC_PlanarFeedbackInSync
Base class for all specialized feedbacks featuring an inSync output.

Do not call the main FB directly. Only use the available methods.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

7.2.2.7 MC_PlanarGroup
A Planar Group object. Planar Movers and other objects added to the group perform collision checks against
each other.

Do not call the main FB directly. Only use the available methods.

 Methods

Name Description
Enable [} 142] Starts enabling the Planar Group.

Disable [} 142] Starts disabling the Planar Group.

Reset [} 142] Starts resetting the Planar Group.

Update [} 143] Updates internal state of the object, must be triggered each cycle.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

PLC Libraries

TF5430142 Version: 1.4.1

7.2.2.7.1 Enable
Enable

commandFeedback Reference To MC_PlanarFeedback

Starts enabling the Planar Group.

Syntax

Definition:
METHOD Enable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.7.2 Disable
Disable

commandFeedback Reference To MC_PlanarFeedback

Starts disabling the Planar Group.

Syntax

Definition:
METHOD Disable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.7.3 Reset
Reset

commandFeedback Reference To MC_PlanarFeedback

Starts resetting the Planar Group.

Syntax

Definition:

PLC Libraries

TF5430 143Version: 1.4.1

METHOD Reset
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.7.4 Update
Update

Updates internal state of the object, must be triggered each cycle.

Syntax

Definition:
METHOD Update

7.2.2.8 MC_PlanarMover
A Planar Mover object capable of moving within a plane. Limited movement vertical to the plane is available.

Do not call the main FB directly. Only use the available methods.

 Methods

Name Description
MoveToPosition [} 144] Initiates a direct movement to the specified position.

JoinTrack [} 145] Initiates a direct movement to the specified track. At the end of the
movement the mover joins the track.

LeaveTrack [} 146] Initiates a direct movement to the specified position. At the beginning of the
movement the track is left.

MoveOnTrack [} 146] Initiates a movement on the track to the specified position and returns
command ID.

GearInPosOnTrack [} 147] Initiates a GearInPos movement along a specified trail.

GearInPosOnTrackWithMasterM
over [} 148]

Initiates a GearInPos movement along a specified trail, in which the master
setpoints are provided by another PlanarMover.

MoveZ [} 149] Initiates a movement for the z component.

MoveA [} 150] Initiates a movement for the a component.

MoveB [} 150] Initiates a movement for the b component.

MoveC [} 151] Initiates a movement for the c component.

AdoptTrackOrientation [} 151] Initiates a movement for the c component.

Halt [} 152] Initiates a halt.

Enable [} 152] Starts enabling the Planar Mover.

Disable [} 153] Starts disabling the Planar Mover.

Reset [} 153] Starts resetting the Planar Mover.

Update [} 154] Updates internal state of the object, must be triggered each cycle.

PLC Libraries

TF5430144 Version: 1.4.1

Name Description
SetPosition [} 154] Sets the position of the Planar Mover. Only possible if the Planar Mover is

disabled.

StartExternalSetpointGeneratio
n [} 154]

Starts the external setpoint generation, the user must supply setpoints from
this PLC cycle on in every PLC cycle.

StopExternalSetpointGeneration
[} 155]

Ends the external setpoint generation, called after last SetExternalSetpoint
(in the same PLC cycle).

SetExternalSetpoint [} 155] Sets the external setpoint for the Planar Mover without ref sys id (for
relative mode), must be called each PLC cycle during external setpoint
generation.

SetExternalSetpointReferenceId
[} 156]

Sets the external setpoint for the Planar Mover with corresponing reference
system id, must be called each PLC cycle during external setpoint
generation.

AddToGroup [} 156] Adds the Planar Mover to the given Planar Group.

RemoveFromGroup [} 157] Removes the Planar Mover from its current Planar Group, i.e. disables
collision checks.

GetPositionOnCurrentPart
[} 157]

Sets the values of the given position to the movers position values on the
current part.

GetPlanarObjectInfo [} 158] Returns mover object info (type: mover, id: OID of nc mover).

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

7.2.2.8.1 MoveToPosition
MoveToPosition

commandFeedback Reference To MC_PlanarFeedback
↔ targetPosition PositionXYC

constraint Reference To IPlcDynamicConstraint
options Reference To ST_MoveToPositionOptions

Initiates a direct movement to the specified position.

Syntax

Definition:
METHOD MoveToPosition
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 targetPosition : PositionXYC;
END_VAR
VAR_INPUT
 constraint : Reference To IPlcDynamicConstraint;
 options : Reference To ST_MoveToPositionOptions;
END_VAR

PLC Libraries

TF5430 145Version: 1.4.1

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

constraint Reference To
IPlcDynamicConstraint

Dynamic constraints for this movement.

options Reference To
ST_MoveToPositionOption
s [} 133]

Options for the movement.

 In/Outputs

Name Type Description
targetPosition PositionXYC Target position for the movement.

7.2.2.8.2 JoinTrack
JoinTrack

commandFeedback Reference To MC_PlanarFeedback
↔ targetTrack MC_PlanarTrack

constraint Reference To IPlcDynamicConstraint
options Reference To ST_JoinTrackOptions

Initiates a direct movement to the specified track. At the end of the movement the mover joins the track.

Syntax

Definition:
METHOD JoinTrack
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 targetTrack : MC_PlanarTrack;
END_VAR
VAR_INPUT
 constraint : Reference To IPlcDynamicConstraint;
 options : Reference To ST_JoinTrackOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

constraint Reference To
IPlcDynamicConstraint

Dynamic constraints for this movement.

options Reference To
ST_JoinTrackOptions
[} 131]

Options for the movement.

PLC Libraries

TF5430146 Version: 1.4.1

 In/Outputs

Name Type Description
targetTrack MC_PlanarTrack [} 161] Target track for the movement.

7.2.2.8.3 LeaveTrack
LeaveTrack

commandFeedback Reference To MC_PlanarFeedback
↔ targetPosition PositionXYC

constraint Reference To IPlcDynamicConstraint
options Reference To ST_LeaveTrackOptions

Initiates a direct movement to the specified position. At the beginning of the movement the track is left.

Syntax

Definition:
METHOD LeaveTrack
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 targetPosition : PositionXYC;
END_VAR
VAR_INPUT
 constraint : Reference To IPlcDynamicConstraint;
 options : Reference To ST_LeaveTrackOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

constraint Reference To
IPlcDynamicConstraint

Dynamic constraints for this movement.

options Reference To
ST_LeaveTrackOptions
[} 131]

Options for the movement.

 In/Outputs

Name Type Description
targetPosition PositionXYC Target position for the movement.

7.2.2.8.4 MoveOnTrack
MoveOnTrack

commandFeedback Reference To MC_PlanarFeedback
targetTrack Reference To MC_PlanarTrack
targetPositionOnTrack LREAL
constraint Reference To DynamicConstraint_PathXY
options Reference To ST_MoveOnTrackOptions

Initiates a movement on the track to the specified position and returns command ID.

PLC Libraries

TF5430 147Version: 1.4.1

Syntax

Definition:
METHOD MoveOnTrack
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 targetTrack : Reference To MC_PlanarTrack;
 targetPositionOnTrack : LREAL;
 constraint : Reference To DynamicConstraint_PathXY;
 options : Reference To ST_MoveOnTrackOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

targetTrack Reference To
MC_PlanarTrack [} 161]

Target track for the movement. If none is specified, this defaults
to the current track.

targetPositionO
nTrack

LREAL Target position on the target track.

constraint Reference To
DynamicConstraint_PathX
Y

Constraint on maximal dynamics during the movement
(V,A,D,J).

options Reference To
ST_MoveOnTrackOptions
[} 132]

Options for the movement.

7.2.2.8.5 GearInPosOnTrack
GearInPosOnTrack

commandFeedback Reference To MC_PlanarFeedbackGearInPosOnTrack
masterAxis OTCID
trackTrail Reference To MC_PlanarTrackTrail
masterSyncPosition LREAL
slaveSyncPosition LREAL

↔ slaveSyncPositionTrack MC_PlanarTrack
constraint Reference To DynamicConstraint_PathXY
options Reference To ST_GearInPosOnTrackOptions

Initiates a GearInPos movement along a specified trail.

Syntax

Definition:
METHOD GearInPosOnTrack
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedbackGearInPosOnTrack;
 masterAxis : OTCID;
 trackTrail : Reference To MC_PlanarTrackTrail;
 masterSyncPosition : LREAL;
 slaveSyncPosition : LREAL;
END_VAR
VAR_IN_OUT
 slaveSyncPositionTrack : MC_PlanarTrack;
END_VAR
VAR_INPUT
 constraint : Reference To DynamicConstraint_PathXY;
 options : Reference To ST_GearInPosOnTrackOptions;
END_VAR

PLC Libraries

TF5430148 Version: 1.4.1

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedbackGearI
nPosOnTrack [} 138]

The command specific feedback object for the command.

masterAxis OTCID Master axis being followed.
trackTrail Reference To

MC_PlanarTrackTrail
[} 171]

Track trail determining along which tracks the GearInPos
movement is allowed to proceed.

masterSyncPo
sition

LREAL Position of the master axis at which the slave is inSync.

slaveSyncPosit
ion

LREAL Arc length on track given by slaveSyncPositionTrackOID at
which the slave is inSync. Possibly interpreted in modulo
fashion, depending on options.

constraint Reference To
DynamicConstraint_PathX
Y

Constraint on maximal dynamics during the movement
(V,A,D,J).

options Reference To
ST_GearInPosOnTrackOpti
ons [} 129]

Options for the movement.

 In/Outputs

Name Type Description
slaveSyncPosit
ionTrack

MC_PlanarTrack [} 161] Track on which the slave is inSync.

7.2.2.8.6 GearInPosOnTrackWithMasterMover
GearInPosOnTrackWithMasterMover

commandFeedback Reference To MC_PlanarFeedbackGearInPosOnTrackWithMasterMover
↔ masterMover MC_PlanarMover

trackTrail Reference To MC_PlanarTrackTrail
masterSyncPosition LREAL

↔ masterSyncPositionTrack MC_PlanarTrack
slaveSyncPosition LREAL

↔ slaveSyncPositionTrack MC_PlanarTrack
constraint Reference To DynamicConstraint_PathXY
options Reference To ST_GearInPosOnTrackWithMasterMoverOptions

Initiates a GearInPos movement along a specified trail, in which the master setpoints are provided by
another PlanarMover.

Syntax

Definition:
METHOD GearInPosOnTrackWithMasterMover
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedbackGearInPosOnTrackWithMasterMover;
END_VAR
VAR_IN_OUT
 masterMover : MC_PlanarMover;
END_VAR
VAR_INPUT
 trackTrail : Reference To MC_PlanarTrackTrail;
 masterSyncPosition : LREAL;
END_VAR
VAR_IN_OUT
 masterSyncPositionTrack : MC_PlanarTrack;
END_VAR
VAR_INPUT

PLC Libraries

TF5430 149Version: 1.4.1

 slaveSyncPosition : LREAL;
END_VAR
VAR_IN_OUT
 slaveSyncPositionTrack : MC_PlanarTrack;
END_VAR
VAR_INPUT
 constraint : Reference To DynamicConstraint_PathXY;
 options : Reference To ST_GearInPosOnTrackWithMasterMoverOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedbackGearI
nPosOnTrackWithMaster
Mover [} 140]

The command specific feedback object for the command.

trackTrail Reference To
MC_PlanarTrackTrail
[} 171]

Track trail determining along which tracks the GearInPos
movement is allowed to proceed.

masterSyncPo
sition

LREAL Position of the master axis at which the slave is inSync.

slaveSyncPosit
ion

LREAL Arc length on track given by slaveSyncPositionTrackOID at
which the slave is inSync. Possibly interpreted in modulo
fashion, depending on options.

constraint Reference To
DynamicConstraint_PathX
Y

Constraint on maximal dynamics during the movement
(V,A,D,J).

options Reference To
ST_GearInPosOnTrackWith
MasterMoverOptions
[} 130]

Options for the movement.

 In/Outputs

Name Type Description
masterMover MC_PlanarMover [} 143] Master mover being followed.
masterSyncPo
sitionTrack

MC_PlanarTrack [} 161] Track on which the master is inSync.

slaveSyncPosit
ionTrack

MC_PlanarTrack [} 161] Track on which the slave is inSync.

7.2.2.8.7 MoveZ
MoveZ

commandFeedback Reference To MC_PlanarFeedback
targetPosition LREAL
constraint Reference To IPlcDynamicConstraint

Initiates a movement for the z component.

Syntax

Definition:
METHOD MoveZ
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;

PLC Libraries

TF5430150 Version: 1.4.1

 targetPosition : LREAL;
 constraint : Reference To IPlcDynamicConstraint;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

targetPosition LREAL Target position for the movement.
constraint Reference To

IPlcDynamicConstraint
Dynamic constraints for this movement.

7.2.2.8.8 MoveA
MoveA

commandFeedback Reference To MC_PlanarFeedback
targetPosition LREAL
constraint Reference To IPlcDynamicConstraint

Initiates a movement for the a component.

Syntax

Definition:
METHOD MoveA
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 targetPosition : LREAL;
 constraint : Reference To IPlcDynamicConstraint;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

targetPosition LREAL Target position for the movement.
constraint Reference To

IPlcDynamicConstraint
Dynamic constraints for this movement.

7.2.2.8.9 MoveB
MoveB

commandFeedback Reference To MC_PlanarFeedback
targetPosition LREAL
constraint Reference To IPlcDynamicConstraint

Initiates a movement for the b component.

Syntax

Definition:

PLC Libraries

TF5430 151Version: 1.4.1

METHOD MoveB
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 targetPosition : LREAL;
 constraint : Reference To IPlcDynamicConstraint;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

targetPosition LREAL Target position for the movement.
constraint Reference To

IPlcDynamicConstraint
Dynamic constraints for this movement.

7.2.2.8.10 MoveC
MoveC

commandFeedback Reference To MC_PlanarFeedback
targetPosition LREAL
constraint Reference To IPlcDynamicConstraint
options Reference To ST_MoveCOptions

Initiates a movement for the c component.

Syntax

Definition:
METHOD MoveC
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 targetPosition : LREAL;
 constraint : Reference To IPlcDynamicConstraint;
 options : Reference To ST_MoveCOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

targetPosition LREAL Target position for the movement.
constraint Reference To

IPlcDynamicConstraint
Dynamic constraints for this movement.

options Reference To
ST_MoveCOptions [} 132]

Options for the rotation.

7.2.2.8.11 AdoptTrackOrientation
AdoptTrackOrientation

commandFeedback Reference To MC_PlanarFeedback
constraint Reference To IPlcDynamicConstraint
options Reference To ST_AdoptTrackOrientationOptions

Initiates a movement for the c component.

PLC Libraries

TF5430152 Version: 1.4.1

Syntax

Definition:
METHOD AdoptTrackOrientation
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 constraint : Reference To IPlcDynamicConstraint;
 options : Reference To ST_AdoptTrackOrientationOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

constraint Reference To
IPlcDynamicConstraint

Dynamic constraints for this movement.

options Reference To
ST_AdoptTrackOrientation
Options [} 128]

Options for the rotation.

7.2.2.8.12 Halt
Halt

commandFeedback Reference To MC_PlanarFeedback
constraint Reference To IPlcDynamicConstraint

Initiates a halt.

Syntax

Definition:
METHOD Halt
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 constraint : Reference To IPlcDynamicConstraint;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

constraint Reference To
IPlcDynamicConstraint

Dynamic constraints for this movement.

7.2.2.8.13 Enable
Enable

commandFeedback Reference To MC_PlanarFeedback

Starts enabling the Planar Mover.

Syntax

Definition:

PLC Libraries

TF5430 153Version: 1.4.1

METHOD Enable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.8.14 Disable
Disable

commandFeedback Reference To MC_PlanarFeedback

Starts disabling the Planar Mover.

Syntax

Definition:
METHOD Disable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.8.15 Reset
Reset

commandFeedback Reference To MC_PlanarFeedback

Starts resetting the Planar Mover.

Syntax

Definition:
METHOD Reset
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

PLC Libraries

TF5430154 Version: 1.4.1

7.2.2.8.16 Update
Update

Updates internal state of the object, must be triggered each cycle.

Syntax

Definition:
METHOD Update

7.2.2.8.17 SetPosition
SetPosition

commandFeedback Reference To MC_PlanarFeedback
↔ position PositionXYC

Sets the position of the Planar Mover. Only possible if the Planar Mover is disabled.

Syntax

Definition:
METHOD SetPosition
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 position : PositionXYC;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

 In/Outputs

Name Type Description
position PositionXYC New position of the Planar Mover.

7.2.2.8.18 StartExternalSetpointGeneration
StartExternalSetpointGeneration

commandFeedback Reference To MC_PlanarFeedback
options Reference To ST_ExternalSetpointGenerationOptions

Starts the external setpoint generation, the user must supply setpoints from this PLC cycle on in every PLC
cycle.

Syntax

Definition:

PLC Libraries

TF5430 155Version: 1.4.1

METHOD StartExternalSetpointGeneration
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 options : Reference To ST_ExternalSetpointGenerationOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

options Reference To
ST_ExternalSetpointGener
ationOptions [} 129]

Options for the movement.

7.2.2.8.19 StopExternalSetpointGeneration
StopExternalSetpointGeneration

commandFeedback Reference To MC_PlanarFeedback

Ends the external setpoint generation, called after last SetExternalSetpoint (in the same PLC cycle).

Syntax

Definition:
METHOD StopExternalSetpointGeneration
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.8.20 SetExternalSetpoint
SetExternalSetpoint

setPosition MoverVector
setVelocity MoverVector
setAcceleration MoverVector

Sets the external setpoint for the Planar Mover without ref sys id (for relative mode), must be called each
PLC cycle during external setpoint generation.

Syntax

Definition:
METHOD SetExternalSetpoint
VAR_INPUT
 setPosition : MoverVector;
 setVelocity : MoverVector;
 setAcceleration : MoverVector;
END_VAR

PLC Libraries

TF5430156 Version: 1.4.1

 Inputs

Name Type Description
setPosition MoverVector Position that is send to the Planar Mover.
setVelocity MoverVector Velocity that is send to the Planar Mover.
setAcceleration MoverVector Acceleration that is send to the Planar Mover.

7.2.2.8.21 SetExternalSetpointReferenceId
SetExternalSetpointReferenceId

commandFeedback Reference To MC_PlanarFeedback
setPosition MoverVector
setVelocity MoverVector
setAcceleration MoverVector
referenceSystemOid OTCID

Sets the external setpoint for the Planar Mover with corresponing reference system id, must be called each
PLC cycle during external setpoint generation.

Syntax

Definition:
METHOD SetExternalSetpointReferenceId
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 setPosition : MoverVector;
 setVelocity : MoverVector;
 setAcceleration : MoverVector;
 referenceSystemOid : OTCID;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

setPosition MoverVector Position that is send to the Planar Mover.
setVelocity MoverVector Velocity that is send to the Planar Mover.
setAcceleration MoverVector Acceleration that is send to the Planar Mover.
referenceSyste
mOid

OTCID Part or coordinate system id.

7.2.2.8.22 AddToGroup
AddToGroup

commandFeedback Reference To MC_PlanarFeedback
↔ group MC_PlanarGroup

Adds the Planar Mover to the given Planar Group.

Syntax

Definition:
METHOD AddToGroup
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

PLC Libraries

TF5430 157Version: 1.4.1

VAR_IN_OUT
 group : MC_PlanarGroup;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

 In/Outputs

Name Type Description
group MC_PlanarGroup [} 141] The Planar Group that the Planar Mover joins.

7.2.2.8.23 RemoveFromGroup
RemoveFromGroup

commandFeedback Reference To MC_PlanarFeedback

Removes the Planar Mover from its current Planar Group, i.e. disables collision checks.

Syntax

Definition:
METHOD RemoveFromGroup
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.8.24 GetPositionOnCurrentPart
GetPositionOnCurrentPart

↔ position PositionXYC

Sets the values of the given position to the movers position values on the current part.

Syntax

Definition:
METHOD GetPositionOnCurrentPart
VAR_IN_OUT
 position : PositionXYC;
END_VAR

PLC Libraries

TF5430158 Version: 1.4.1

 In/Outputs

Name Type Description
position PositionXYC The position on the planar part.

7.2.2.8.25 GetPlanarObjectInfo
GetPlanarObjectInfo

PlanarObjectInfo GetPlanarObjectInfo

Returns mover object info (type: mover, id: OID of nc mover).

Syntax

Definition:
METHOD GetPlanarObjectInfo : PlanarObjectInfo

 Return value

PlanarObjectInfo [} 128]

7.2.2.9 MC_PlanarPart
A Planar Part object represents the area that Planar Movers can move on. It contains information about the
stator objects.

Do not call the main FB directly. Only use the available methods.

 Methods

Name Description
Initialize [} 159] Initialize the Planar Part, i.e. connecting it to the MC via its OID.

ActivatePosition [} 159] Activates the position given by part position index.

AllowEnable [} 160] From now on the part can be enabled until ForceDisablePart is called.

ForceDisable [} 160] Disables the part and keeps it disabled until AllowEnabledPart is called.

Reset [} 160] Resets the part.

GetPosition [} 161] Sets the values of the given position to the parts position values.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.40
Advanced Motion Pack V3.2.60

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

PLC Libraries

TF5430 159Version: 1.4.1

7.2.2.9.1 Initialize
Initialize

commandFeedback Reference To MC_PlanarFeedback
partOID OTCID

↔ environment MC_PlanarEnvironment

Initialize the Planar Part, i.e. connecting it to the MC via its OID.

Syntax

Definition:
METHOD Initialize
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 partOID : OTCID;
END_VAR
VAR_IN_OUT
 environment : MC_PlanarEnvironment;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

partOID OTCID OID of the part.

 In/Outputs

Name Type Description
environment MC_PlanarEnvironment

[} 134]
Environment the part is in.

7.2.2.9.2 ActivatePosition
ActivatePosition

commandFeedback Reference To MC_PlanarFeedback
positionIndex UDINT

Activates the position given by part position index.

Syntax

Definition:
METHOD ActivatePosition
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
 positionIndex : UDINT;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

PLC Libraries

TF5430160 Version: 1.4.1

Name Type Description
positionIndex UDINT Index of the position.

7.2.2.9.3 AllowEnable
AllowEnable

commandFeedback Reference To MC_PlanarFeedback

From now on the part can be enabled until ForceDisablePart is called.

Syntax

Definition:
METHOD AllowEnable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.9.4 ForceDisable
ForceDisable

commandFeedback Reference To MC_PlanarFeedback

Disables the part and keeps it disabled until AllowEnabledPart is called.

Syntax

Definition:
METHOD ForceDisable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.9.5 Reset
Reset

commandFeedback Reference To MC_PlanarFeedback

Resets the part.

PLC Libraries

TF5430 161Version: 1.4.1

Syntax

Definition:
METHOD Reset
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.9.6 GetPosition
GetPosition

↔ position PositionXYC

Sets the values of the given position to the parts position values.

Syntax

Definition:
METHOD GetPosition
VAR_IN_OUT
 position : PositionXYC;
END_VAR

 In/Outputs

Name Type Description
position PositionXYC The position of the Planar Part.

7.2.2.10 MC_PlanarTrack
A track within a plane which Planar Movers can follow. Planar Movers on the track automatically avoid
collisions with each other. The Planar Track can consist of several consecutive segments and be joined with
other Planar Tracks at its start/end.

Do not call the main FB directly. Only use the available methods.

 Methods

Name Description
Clear [} 162] Clears the geometric information of the Planar Track.

AppendPosition [} 163] Appends a position to the Planar Track.

AppendLine [} 163] Appends a line to the Planar Track.

AppendCircle [} 164] Appends a circular arc to the Planar Track.

CloseLoop [} 164] Closes the loop of the Planar Track, no further part can be appended.

StartFromTrack [} 165] Sets the other Planar Track's endpoint as start point of this Planar Track,
transition is smooth. The other Planar Track is blocked for further changes
(until it is cleared).

PLC Libraries

TF5430162 Version: 1.4.1

Name Description
EndAtTrack [} 165] Appends a smooth transition from the end of this Planar Track to the other

Planar Track's start point. The Planar Track is blocked for further changes
(until it is cleared).

StartFromTrackAdvanced
[} 166]

Sets the other Planar Track's endpoint as start point of this Planar Track,
transition is smooth. The other Planar Track is blocked for further
geometrical changes (until it is cleared).

EndAtTrackAdvanced [} 167] Appends a smooth transition from the end of this Planar Track to the other
Planar Track's start point. The Planar Track is blocked for further
geometrical changes (until it is cleared).

Enable [} 167] Starts enabling the Planar Track.

Disable [} 168] Starts disabling the Planar Track.

Reset [} 168] Starts resetting the Planar Track.

GetArcLengthClosestTo [} 168] Calculate the arc length value where the Planar Track is closest to a
geometry's center point.

GetPositionAt [} 169] Get a position on the Planar Track at a specific arc length value.

GetLength [} 169] Returns the Planar Track's length, -1 return value indicates no connection
to Nc Track.

GetPlanarObjectInfo [} 170] Returns track object info (type: track, id: OID of nc track).

Update [} 170] Updates internal state of the object, must be triggered each cycle.

AddToGroup [} 170] Adds the Planar Track to the given Planar Group.

RemoveFromGroup [} 171] Removes the Planar Track from its current Planar Group, i.e. disables
collision checks.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12
Advanced Motion Pack V3.1.10.11

PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

7.2.2.10.1 Clear
Clear

commandFeedback Reference To MC_PlanarFeedback

Clears the geometric information of the Planar Track.

Syntax

Definition:
METHOD Clear
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

PLC Libraries

TF5430 163Version: 1.4.1

7.2.2.10.2 AppendPosition
AppendPosition

commandFeedback Reference To MC_PlanarFeedback
↔ position PositionXYC

Appends a position to the Planar Track.

Syntax

Definition:
METHOD AppendPosition
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 position : PositionXYC;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

 In/Outputs

Name Type Description
position PositionXYC Position that is the new endpoint of the Planar Track.

7.2.2.10.3 AppendLine
AppendLine

commandFeedback Reference To MC_PlanarFeedback
↔ start PositionXYC
↔ end PositionXYC

Appends a line to the Planar Track.

Syntax

Definition:
METHOD AppendLine
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 start : PositionXYC;
 end : PositionXYC;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

PLC Libraries

TF5430164 Version: 1.4.1

 In/Outputs

Name Type Description
start PositionXYC Start position of the line.
end PositionXYC End position of the line, this position is the new endpoint of the

Planar Track.

7.2.2.10.4 AppendCircle
AppendCircle

commandFeedback Reference To MC_PlanarFeedback
↔ start PositionXYC
↔ end PositionXYC
↔ center PositionXY

clockwise BOOL

Appends a circular arc to the Planar Track.

Syntax

Definition:
METHOD AppendCircle
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 start : PositionXYC;
 end : PositionXYC;
 center : PositionXY;
END_VAR
VAR_INPUT
 clockwise : BOOL;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

clockwise BOOL Indicates if the clockwise circle is appended.

 In/Outputs

Name Type Description
start PositionXYC Start position of the circular arc.
end PositionXYC End position of the circular arc, this position is the new endpoint

of the Planar Track.
center PositionXY Center of the circular arc.

7.2.2.10.5 CloseLoop
CloseLoop

commandFeedback Reference To MC_PlanarFeedback

Closes the loop of the Planar Track, no further part can be appended.

PLC Libraries

TF5430 165Version: 1.4.1

Syntax

Definition:
METHOD CloseLoop
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.10.6 StartFromTrack
StartFromTrack

commandFeedback Reference To MC_PlanarFeedback
↔ track MC_PlanarTrack

Sets the other Planar Track's endpoint as start point of this Planar Track, transition is smooth. The other
Planar Track is blocked for further changes (until it is cleared).

Syntax

Definition:
METHOD StartFromTrack
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 track : MC_PlanarTrack;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

 In/Outputs

Name Type Description
track MC_PlanarTrack [} 161] The other Planar Track.

7.2.2.10.7 EndAtTrack
EndAtTrack

commandFeedback Reference To MC_PlanarFeedback
↔ track MC_PlanarTrack

Appends a smooth transition from the end of this Planar Track to the other Planar Track's start point. The
Planar Track is blocked for further changes (until it is cleared).

PLC Libraries

TF5430166 Version: 1.4.1

Syntax

Definition:
METHOD EndAtTrack
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 track : MC_PlanarTrack;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

 In/Outputs

Name Type Description
track MC_PlanarTrack [} 161] The other Planar Track.

7.2.2.10.8 StartFromTrackAdvanced
StartFromTrackAdvanced

commandFeedback Reference To MC_PlanarFeedback
↔ track MC_PlanarTrack

options Reference To ST_StartFromTrackAdvancedOptions

Sets the other Planar Track's endpoint as start point of this Planar Track, transition is smooth. The other
Planar Track is blocked for further geometrical changes (until it is cleared).

Syntax

Definition:
METHOD StartFromTrackAdvanced
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 track : MC_PlanarTrack;
END_VAR
VAR_INPUT
 options : Reference To ST_StartFromTrackAdvancedOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

options Reference To
ST_StartFromTrackAdvanc
edOptions [} 133]

Options for the connection, i.e. which connections are closed.

PLC Libraries

TF5430 167Version: 1.4.1

 In/Outputs

Name Type Description
track MC_PlanarTrack [} 161] The other Planar Track.

7.2.2.10.9 EndAtTrackAdvanced
EndAtTrackAdvanced

commandFeedback Reference To MC_PlanarFeedback
↔ track MC_PlanarTrack

options Reference To ST_EndAtTrackAdvancedOptions

Appends a smooth transition from the end of this Planar Track to the other Planar Track's start point. The
Planar Track is blocked for further geometrical changes (until it is cleared).

Syntax

Definition:
METHOD EndAtTrackAdvanced
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 track : MC_PlanarTrack;
END_VAR
VAR_INPUT
 options : Reference To ST_EndAtTrackAdvancedOptions;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

options Reference To
ST_EndAtTrackAdvancedO
ptions [} 129]

Options for the connection, i.e. which connections are closed.

 In/Outputs

Name Type Description
track MC_PlanarTrack [} 161] The other Planar Track.

7.2.2.10.10 Enable
Enable

commandFeedback Reference To MC_PlanarFeedback

Starts enabling the Planar Track.

Syntax

Definition:
METHOD Enable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

PLC Libraries

TF5430168 Version: 1.4.1

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.10.11 Disable
Disable

commandFeedback Reference To MC_PlanarFeedback

Starts disabling the Planar Track.

Syntax

Definition:
METHOD Disable
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.10.12 Reset
Reset

commandFeedback Reference To MC_PlanarFeedback

Starts resetting the Planar Track.

Syntax

Definition:
METHOD Reset
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.10.13 GetArcLengthClosestTo
GetArcLengthClosestTo

↔ geometry IPlcGeometry2D LREAL GetArcLengthClosestTo

PLC Libraries

TF5430 169Version: 1.4.1

Calculate the arc length value where the Planar Track is closest to a geometry's center point.

Syntax

Definition:
METHOD GetArcLengthClosestTo : LREAL
VAR_IN_OUT
 geometry : IPlcGeometry2D;
END_VAR

 In/Outputs

Name Type Description
geometry IPlcGeometry2D The geometry to check the arc length for.

 Return value

LREAL

7.2.2.10.14 GetPositionAt
GetPositionAt

arcLength LREAL
↔ position PositionXYC

Get a position on the Planar Track at a specific arc length value.

Syntax

Definition:
METHOD GetPositionAt
VAR_INPUT
 arcLength : LREAL;
END_VAR
VAR_IN_OUT
 position : PositionXYC;
END_VAR

 Inputs

Name Type Description
arcLength LREAL Arc length value where the position is evaluated.

 In/Outputs

Name Type Description
position PositionXYC The position at the specified arc parameter.

7.2.2.10.15 GetLength
GetLength

LREAL GetLength

Returns the Planar Track's length, -1 return value indicates no connection to Nc Track.

PLC Libraries

TF5430170 Version: 1.4.1

Syntax

Definition:
METHOD GetLength : LREAL

 Return value

LREAL

7.2.2.10.16 GetPlanarObjectInfo
GetPlanarObjectInfo

PlanarObjectInfo GetPlanarObjectInfo

Returns track object info (type: track, id: OID of nc track).

Syntax

Definition:
METHOD GetPlanarObjectInfo : PlanarObjectInfo

 Return value

PlanarObjectInfo [} 128]

7.2.2.10.17 Update
Update

Updates internal state of the object, must be triggered each cycle.

Syntax

Definition:
METHOD Update

7.2.2.10.18 AddToGroup
AddToGroup

commandFeedback Reference To MC_PlanarFeedback
↔ group MC_PlanarGroup

Adds the Planar Track to the given Planar Group.

Syntax

Definition:
METHOD AddToGroup
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR
VAR_IN_OUT
 group : MC_PlanarGroup;
END_VAR

PLC Libraries

TF5430 171Version: 1.4.1

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

 In/Outputs

Name Type Description
group MC_PlanarGroup [} 141] The Planar Group that the mover joins.

7.2.2.10.19 RemoveFromGroup
RemoveFromGroup

commandFeedback Reference To MC_PlanarFeedback

Removes the Planar Track from its current Planar Group, i.e. disables collision checks.

Syntax

Definition:
METHOD RemoveFromGroup
VAR_INPUT
 commandFeedback : Reference To MC_PlanarFeedback;
END_VAR

 Inputs

Name Type Description
commandFeed
back

Reference To
MC_PlanarFeedback
[} 137]

The feedback object for the command.

7.2.2.11 MC_PlanarTrackTrail
A list of distinct tracks each starting at the ending vertex of its predecessor.

Do not call the main FB directly. Only use the available methods.

 Methods

Name Description
Clear [} 172] Clears the TrackTrail.

AddTrack [} 172] Adds a track to the TrackTrail. The track should start at the end vertex of
the currently last track.

Required License

TC3 Planar Motion Base

System Requirements

Development environment Target system type PLC libraries to include
TwinCAT V3.1.4024.12 PC or CX (x64) Tc3_Mc3PlanarMotion, Tc3_Physics

PLC Libraries

TF5430172 Version: 1.4.1

Development environment Target system type PLC libraries to include
Advanced Motion Pack V3.1.10.11

7.2.2.11.1 Clear
Clear

Clears the TrackTrail.

Syntax

Definition:
METHOD Clear

7.2.2.11.2 AddTrack
AddTrack

↔ track MC_PlanarTrack

Adds a track to the TrackTrail. The track should start at the end vertex of the currently last track.

Syntax

Definition:
METHOD AddTrack
VAR_IN_OUT
 track : MC_PlanarTrack;
END_VAR

 In/Outputs

Name Type Description
track MC_PlanarTrack [} 161] The track to be added to the end of the TrackTrail.

Support and Service

TF5430 173Version: 1.4.1

8 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/TF5430

mailto:info@beckhoff.de?subject=TF5430
https://www.beckhoff.com
https://www.beckhoff.com/TF5430

	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	 Table of contents
	2 Overview of the new functions
	3 Introduction
	4 States and modes
	4.1 Planar objects state diagram
	4.2 Planar mover command diagram
	4.3 Planar track operation modes

	5 Parts
	5.1 Parts and coordinate systems
	5.2 Configuration
	5.3 Positions with ReferenceId

	6 Planar Motion components
	6.1 Planar mover
	6.1.1 Configuration
	6.1.2 Creating a PLC
	6.1.3 Example: "Creating and moving Planar movers"
	6.1.4 Example "Moving a Planar mover to Planar parts"
	6.1.5 Example: "Creating and moving a Planar mover with auxiliary axes"
	6.1.6 Example "Creating and moving a Planar mover with External Setpoint Generation"
	6.1.7 Example "Moving a Planar mover with External Setpoint Generation to Planar parts"
	6.1.8 Example "Moving the Planar mover in CRotationFreeMovement mode"
	6.1.9 Limits and options of the motion commands

	6.2 Planar track
	6.2.1 Configuration
	6.2.2 Track networks and collision avoidance
	6.2.3 Tracks and parts
	6.2.4 Example "Joining and moving a Planar mover on the track"
	6.2.5 Example "Moving Planar movers on tracks with Planar parts"
	6.2.6 Example "Coupling a Planar mover to a track and moving it in CRotationOnTrack mode"
	6.2.7 Example "Coupling a Planar mover to a track and moving it with AdoptTrackOrientation"
	6.2.8 Example "Synchronizing a Planar mover on a track with one axis"
	6.2.9 Example: "Synchronizing a Planar mover on a track with another Planar mover"
	6.2.10 Example "Connecting Planar tracks to a network"
	6.2.11 Example "Connecting Planar tracks to network on Planar parts"
	6.2.12 Example: "Following a Planar mover through a Track Network"
	6.2.13 Options for the "StartFromTrackAdvanced" and "EndAtTrackAdvanced" commands

	6.3 Planar group
	6.3.1 Configuration
	6.3.2 Example: "Creating and moving Planar movers with group"

	6.4 Planar environment
	6.4.1 Configuration
	6.4.2 Example "Configuring the stator area and boundary"

	6.5 Example: "Creating and moving Planar movers with track and group"
	6.6 Planar part
	6.6.1 Example "Activating a Planar part position and moving a Planar mover"

	6.7 Planar Feedback
	6.7.1 Example "Creating a Planar mover and Planar Feedback"
	6.7.2 Example "Planar motion components: averting collision"
	6.7.3 Specialized feedback types

	6.8 Planar TrackTrail
	6.8.1 Example "Synchronization movement over two Planar tracks"

	7 PLC Libraries
	7.1 Inserting libraries
	7.2 Tc3_Mc3PlanarMotion API
	7.2.1 Data Types
	7.2.1.1 Enums
	7.2.1.1.1 EPlanarObjectType
	7.2.1.1.2 MC_DIRECTION
	7.2.1.1.3 MC_SYNC_DIRECTIONS

	7.2.1.2 Structs
	7.2.1.2.1 CDT_MCTOPLC_PLANAR_MOVER
	7.2.1.2.2 CDT_PLCTOMC_PLANAR_MOVER
	7.2.1.2.3 PlanarObjectInfo
	7.2.1.2.4 ST_AdoptTrackOrientationOptions
	7.2.1.2.5 ST_EndAtTrackAdvancedOptions
	7.2.1.2.6 ST_ExternalSetpointGenerationOptions
	7.2.1.2.7 ST_GearInPosOnTrackOptions
	7.2.1.2.8 ST_GearInPosOnTrackWithMasterMoverOptions
	7.2.1.2.9 ST_JoinTrackOptions
	7.2.1.2.10 ST_LeaveTrackOptions
	7.2.1.2.11 ST_MoveCOptions
	7.2.1.2.12 ST_MoveOnTrackOptions
	7.2.1.2.13 ST_MoveToPositionOptions
	7.2.1.2.14 ST_StartFromTrackAdvancedOptions

	7.2.2 Function Blocks
	7.2.2.1 MC_PlanarEnvironment
	7.2.2.1.1 Clear
	7.2.2.1.2 AddStator
	7.2.2.1.3 CreateBoundary
	7.2.2.1.4 Update
	7.2.2.1.5 AddToGroup
	7.2.2.1.6 RemoveFromGroup
	7.2.2.1.7 GetPlanarObjectInfo

	7.2.2.2 MC_PlanarFeedback
	7.2.2.2.1 Update

	7.2.2.3 MC_PlanarFeedbackBase
	7.2.2.4 MC_PlanarFeedbackGearInPosOnTrack
	7.2.2.4.1 Update

	7.2.2.5 MC_PlanarFeedbackGearInPosOnTrackWithMasterMover
	7.2.2.5.1 Update

	7.2.2.6 MC_PlanarFeedbackInSync
	7.2.2.7 MC_PlanarGroup
	7.2.2.7.1 Enable
	7.2.2.7.2 Disable
	7.2.2.7.3 Reset
	7.2.2.7.4 Update

	7.2.2.8 MC_PlanarMover
	7.2.2.8.1 MoveToPosition
	7.2.2.8.2 JoinTrack
	7.2.2.8.3 LeaveTrack
	7.2.2.8.4 MoveOnTrack
	7.2.2.8.5 GearInPosOnTrack
	7.2.2.8.6 GearInPosOnTrackWithMasterMover
	7.2.2.8.7 MoveZ
	7.2.2.8.8 MoveA
	7.2.2.8.9 MoveB
	7.2.2.8.10 MoveC
	7.2.2.8.11 AdoptTrackOrientation
	7.2.2.8.12 Halt
	7.2.2.8.13 Enable
	7.2.2.8.14 Disable
	7.2.2.8.15 Reset
	7.2.2.8.16 Update
	7.2.2.8.17 SetPosition
	7.2.2.8.18 StartExternalSetpointGeneration
	7.2.2.8.19 StopExternalSetpointGeneration
	7.2.2.8.20 SetExternalSetpoint
	7.2.2.8.21 SetExternalSetpointReferenceId
	7.2.2.8.22 AddToGroup
	7.2.2.8.23 RemoveFromGroup
	7.2.2.8.24 GetPositionOnCurrentPart
	7.2.2.8.25 GetPlanarObjectInfo

	7.2.2.9 MC_PlanarPart
	7.2.2.9.1 Initialize
	7.2.2.9.2 ActivatePosition
	7.2.2.9.3 AllowEnable
	7.2.2.9.4 ForceDisable
	7.2.2.9.5 Reset
	7.2.2.9.6 GetPosition

	7.2.2.10 MC_PlanarTrack
	7.2.2.10.1 Clear
	7.2.2.10.2 AppendPosition
	7.2.2.10.3 AppendLine
	7.2.2.10.4 AppendCircle
	7.2.2.10.5 CloseLoop
	7.2.2.10.6 StartFromTrack
	7.2.2.10.7 EndAtTrack
	7.2.2.10.8 StartFromTrackAdvanced
	7.2.2.10.9 EndAtTrackAdvanced
	7.2.2.10.10 Enable
	7.2.2.10.11 Disable
	7.2.2.10.12 Reset
	7.2.2.10.13 GetArcLengthClosestTo
	7.2.2.10.14 GetPositionAt
	7.2.2.10.15 GetLength
	7.2.2.10.16 GetPlanarObjectInfo
	7.2.2.10.17 Update
	7.2.2.10.18 AddToGroup
	7.2.2.10.19 RemoveFromGroup

	7.2.2.11 MC_PlanarTrackTrail
	7.2.2.11.1 Clear
	7.2.2.11.2 AddTrack

	8 Support and Service

		documentation@beckhoff.com
	2024-03-11T16:26:25+0100
	Beckhoff Automation, Verl
	Documentation Publishing

