BECKHOFF

TX1200

TwinCAT 2 | PLC Library: TcSystem

"_F—F:E PLC Libraries

2022-10-11 | Version: 1.1

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 7
1.1 Notes on the doCUMENTALION ... e e e e e 7
1.2 SafEtY INSITUCHIONS ...ttt e e e e e e e e e e eeeaaeeeeesesannsanrnneeaeaeens 8
1.3 Notes on infOrmation SECUNITYcooi i 9

B © 1Y =Y VT 10

B 1T 4o e T o Lo o €= 14
3.1 ADS FUNCHON BIOCKS ...ttt ettt e e st e e e ettt e e e s te e e e e nnnneeeas 14

3.1.1 ADSREAD ...ttt e e e e e e —— e e e e e e b r e e e e e a—aeaeeearrreeeeanaes 14
3.1.2 ADSWRITE ..ottt e e e ettt e e e e s bt e e e e e antee e e e e e nbeeeeeeansaeeeeeannees 15
3.1.3 ADSRDWRT ..ottt e e e e e e e e e e et e e e e e e e e e e e e e e et aeeeeeaares 17
3.1.4 ADSRDSTATE ...ttt e et e e e e e e e e e e e e e e e e e e e reaeeeannnes 19
3.1.5 ADSWRT CTL ettt ettt et e e et e e e et e e e e et e e e e st e e e e e nbbeeeeeenbeeeeeeannees 20
3.1.6 ADSRDDEVINFO ...ttt e e e e e e et e e e e s e e e e e b e e e e e ennnes 22
3.1.7 ADSREADEX ... eeeiee ettt — e e e e e e e e e e e e e e nbreaeeaaraeeeeeannes 23
3.1.8 ADSRDWRTEX ...ttt ittt ettt ettt e e e e ettt e e e e e e e e e e st e e e e e nbae e e e e anbeeeeeeannees 25
3.2 Expanded ADS FUNCHON BIOCKSoiiiiiiiiiiiiiiie et 26
3.2.1 ADSREADIND. ...ttt e e e e e e e e e e e e e e b e e e e e b aeeeeeanaes 27
3.2.2 ADSWRITEIND ...coiiiitiiiee ettt e e e e e e et e e e e e e e e e e e abreaeeeennees 28
3.2.3 ADSRDWRTIND ...ciiiiitiiee ettt ettt e e e e ettt e e e e e sstae e e e e sanbeeaeeessaeeaeeaansseeeeennnnes 29
3.24 ADSREADRES ...ttt ettt a e e e e e e e e e anees 31
3.2.5 ADSWRITERESottt e e e e e et e e e e e e e e e e ab e e e e e eanees 32
3.2.6 ADSRDWRTRESttt e ettt e e e et e e e e e st e e e e s esbeeeeeessaeeaesaansaeeeeennnees 33
3.2.7 Example 1: Expanded ADS function bBIOCKS............cccooiiiiiiiiiiiiiiicce e 34
3.2.8 Example 2: Expanded ADS function BIOCKS............coooiiiiiiiiiiii e 36
3.3 General FUNCHON BIOCKSciiiiiiieiiiiiie ettt e ettt e e e e sttt e e e sttt e e s ensn e e e e s nnnseeeeesnnnneeeas 39
3.3.1 DIRAND .ttt ettt e et e e e ettt e e e bt et e e e e e be e e e e e e n b et e e e e abbe e e e e e antaeeeeean 39
3.3.2 GETCURTASKINDEX.......uttiiieiiiiiiteeeeiiee e e e ettt ee e e e sttt e e e s esseeeeessssaeeaesanssseeassnsssaeeesannsneeens 39
3.4 TIiMeE FUNCHON BIOCKS ...ttt e e e e e e e e e eeeeaeaeeas 40
3.4.1 GETSYSTEMTIME ..ottt e et e e e e e e e e et e e e e ae e e e e ensrneens 40
3.4.2 GETTASKTIMEottt e st e e e st e e e s et e e e s anssaeeeseansneeeas 41
3.4.3 GETCPUCOUNTER ..ottt ettt e et e e st e e e s st e e e e e nnneeees 42
3.4.4 GETCPUACCOUNT ..ttt e et e e ettt e e e e e e e e e e e e e senssaeeesensnneens 42
3.5 Watchdog FUNCHON BIOCKS.......coiiiiiii et e e e e e e e e e e e as 43
3.5.1 FB PCWatChAOQG ...cooiiieeeiiie ettt e e e e e e e e e 43
G TG I 1 1= o T £ o] o T =1 (oo SO 45
3.6.1 = T =L TP 45
3.6.2 FB _FIlECIOSE.uviiiee ettt ettt ettt e et e e e e e e e e e et e e e e e ebre e e e e nres 46
3.6.3 FB_FIlEDEIETE ...ttt e e e e e e 47
3.6.4 FB_FlEGELS ..ot a e 49
3.6.5 = 1 5T o= o PSPPSR 50
3.6.6 FB _FIlEPULS. ..ottt e e e e et e e e et e e e e e et e e e e ae e e e e ennees 53
3.6.7 = 1 =T Lo PP PSR 54
3.6.8 = T 11T =T g =T o1 SO PEE 56
3.6.9 FB RIS EEK. ...t e e e enees 57

TX1200

Version: 1.1 3

Table of contents BEGKHOFF

G 0 O T o = T o ISR 59
3.6.11 FB _FIlEWIILE ..ot e et e e e e e e e e e enbae e e e e nnees 60
3.6.12 Example: File access fromthe PLC ...t 62
NG Ty I B o = T @7 (=Y | (=1 I 1 PRSPPI 65
3.6.14 FB _REMOVEDII. ...ttt e e e e e e e e e e e aae s 67
3.6.15 TwinCAT 2.7 file funCtion DIOCKSccoiiiiiiiieiiiiii e 68

3.7 |IEC steps/ SFC flags funCtion DIOCKSeeiiiiiiiiiiei it 75
3.71 STl O e 1o 170 o 1o U S 75

3.7.2 ANAIYZEEXPIESSION.....cciiiiieiiieitt et e et e e e e e e e et et ettt s e e s e e e e e e aeaaeaaeaaeeeeeeeaaaanan 75

3.7.3 AnalyzeEXpressionCombiNedoiiiiiiiiiiii e 76

3.74 P o] 01T aTe | =ty o] 53 {4 oV SRR 76

3.8 Eventlogger fuNCHON BIOCKSooiiiiiieee et e e e e e e e e e e rreaaaae s 77
3.8.1 ADSLOGEVENT .ottt et e e e e ettt e e e e st ae e e e e e st e e e e e ssbeeeeseansseeeeeennees 77

3.8.2 ADSCLEAREVENTS ..ottt et e e e e e e e e et e e e e e nbee e e e e enbeeee e e nnnees 80

L O U T T o T 82
S B € 1Y o 1= T | U T 1T 1 PSSP 82
411 F_SPIitPatNAME ...t 82

4.1.2 O (== (=T Y27 o o | SRR 83

41.3 F _SCanIPVAAAAIIASccoooiiiiieeeeee et e e e e e e 83

414 T 11 =] S 7SSO PPRTRRPORI 84

415 (ORI = PR 85

4.1.6 LT I =] N 15 7 PR 86

4.1.7 CLEARBIT B2, ..ottt ettt e et e e e et e e e s et e e e s ssse e e e s essseeeeeanssaeeeeensnneeas 86

4.1.8 LPTSIGNAL .ttt ettt ettt e e e ettt e e e e sttt e e e e e anbeeeeeessbeeeeeeansaeeeeeaanneeeaenans 87

419 F_GetStructMemberAlIigNMENT..........ooii i 88
4110 F_GetVersioNTCSYSIEMciiiiiiiiii et 90

N (O I o To 4 = Tt ol =T OO P U P PR TR RRRRROTPPP 91
421 F IOPOIMREAAceii ittt e e e e e e et e e e e e enbrn e e e e ennees 91

422 e (@] o AT (= SRRSO 91

I B N 1 ¥ [T (o o PO PRR 93
4.3.1 ADSLOGDINT ...ttt e e e e e e e e e e e e e st e e e e e aa e e e e e e e e e e e e b reaeeeanees 93

4.3.2 ADSLOGLREALcoiiiitete ettt ettt e e ettt e e e e st e e e e e nb e e e e e et e e e e e b e e e e e anees 95

4.3.3 ADSLOGSTR ...ttt ettt e et e e ettt e e e st e e e e b et e e e e e e e e e nbae e e e e annees 96

434 F _Create AMSNELI ... e e 98

4.3.5 F SCaNAMSNELIAScoooiiieeeeee e e e e e e e e 98

4.4 MEMORY fUNCHONSciiii ittt ettt e e e e e e s e ee et e e aaeeeeessaaaasstananaeeeaeaeeeeesannnnsennnees 99
441 MEIMOCMP ...ttt e e ettt e e e e ettt e e e e s tae e e e e e antseeeeeassseeeesansaeeeeeaansneeeeeans 99

442 1Y O S EPRP 100

443 MEIM S E T ...ttt e e et e e e et e e e e ettt e e e e e eaaa e e e e e anarae e e e e nnarne e e e e nareeans 101

444 MEMMONVE ...ttt e e e et e e e et e e e e st eeeeenssaeeeeannseneeesannneeans 102

4.5 Character fUNCHIONSco.eiiiee ittt ettt e e e e ettt e e e e et e e e e e anbee e e e e anbeeeeeennnees 103
451 e oL@ o 1 PP PPPRPPPRPRR 103

45.2 F TOASKC .ot e et e e et e e e a et e e e e et et e e e e e br e e e e e arreaeaean 104

L = T 41T 0 = 106
5.1 SYSTEMINFOTYPE..... .ottt et e e e e e et e e e et e e e e nsae e e e e e nteeeeeaensbeeeeeeannees 106

Version: 1.1 TX1200

BEGKHOFF Table of contents

5.2 SYSTEMTASKINFOTYPEottt e e e e e e e et e e e e e e e e e nnees 107
5.3 T AMSNELIA oot e e e e e e a e e e e ar e e e e anres 107
B4 T AMSNEIAAIT ettt e e e e e e e e e e e e e et et e e e e e e e e e e e aaaaaaas 108
LT B V1 4 T=] o] o S USROS PP 108
TG I B |V =4S 1 {4 T T PRSP PRT 109
LT A W | Y27 7o o [SRS 109
B.8 T IPVAAAAIAIT ..ottt et e e e e e e et e e e e e et e e e e e et e e e e e e anbr e e e e e eabaeeeeeennres 109
LS S B B V0 057 AN o [S SUPRRR 110
B.A0 B _OPENPATN....cooi e e e e e e e e e e e e ————aaaaaaas 110
ST I B S T=T o (@ T 1o I PR PRR 110
B2 B T CEVENICIASS. ...ttt et e e e e e e e e e e ettt aaaaaaaas 111
513 E_TCEVENICIEANMOUESoveeiiiiiie ittt e e e e e e e e et e e e e e e e e e e s e e st abrnaeeeeaaaeeens 111
514 E_TCEVENTPIIONTY ..eeiiiiiieiee ettt e e e e e e e 111
5.15 E_TCEVENTSIIEAMTYPE ..oeiiiieiieiiie ettt et e e e et e e e et e e e e et e e e e e ennreeeeeennnees 112
5.6 E_TOACCESSSIZE ...eeiieiiiiiieee ettt ettt ettt e e et e e e e e e e e e e nnees 112
LSt A I =T o | SO 112
LT T Y | RSP 113
LT I U) | OSSPSR PP 113
LI 0 |\ SRS PRR 114
B5.2T XWORD ...ttt ettt e e et e e e ettt e e e et e e e e e R b et e e e e e b be e e e e e b be e e e e e nreeeeeeannees 114
L 0T =3 - 01 115
TX1200 Version: 1.1 5

Table of contents BECKHOFF

6 Version: 1.1 TX1200

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

——
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TX1200 Version: 1.1 7

Foreword BECKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

Version: 1.1 TX1200

0]

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TX1200 Version: 1.1 9

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

BECKHOFF

2 Overview

Not all those function blocks and functions that are often needed in PLC applications are standardized in
IEC61131-3. The system library contains such functions and function blocks for the TwinCAT system which
do not belong to the standard scope of IEC61131-3, and which are therefore manufacturer-specific.

Function blocks

ADS function blocks

Name

Description

ADSREAD [»_14]

Reading data via ADS.

ADSWRITE [P _15]

Writing data via ADS.

ADSRDWRT [r 17]

Reading and writing data via ADS.

ADSRDSTATE [» 19]

Read the state of a device via ADS.

ADSWRTCTL [r_20]

Write control words to a device via ADS.

ADSRDDEVINFO [» 22]

Read device information via ADS.

ADSREADEX [r 23]

Reading data via ADS and returning the number of read data
bytes.

ADSRDWRTEX [» 25]

Writing data via ADS and reaturning the number of read data
bytes

Extended ADS function blocks

Name

Description

ADSREADIND [r 27]

ADSREAD-Indication.

ADSWRITEIND [r 28]

ADSWRITE-Indication

ADSRDWRTIND [» 29]

ADSRDWRT-Indication

ADSREADRES [» 31]

ADSREAD-Response

ADSWRITERES [P _32]

ADSWRITE-Response

ADSRDWRTRES [33]

ADSRDWRT-Response

General function blocks

Name

Description

DRAND [r 39]

Random number generator.

GETCURTASKINDEX [»_39]

Determines the index of the current task.

Time function blocks

Name

Description

GETSYSTEMTIME [» 40]

Read the operating system time stamp.

GETTASKTIME [» 41]

Read the target start time of the task.

GETCPUCOUNTER [» 42]

Read the CPU cycle counter.

GETCPUACCOUNT [P 42]

Read the PLC task cycle counter.

10

Version: 1.1 TX1200

BECKHOFF

Overview

Watchdog function blocks

Name Description

FB PcWatchdog [» 43] Activate or Deactivate the PC Watchdog.
Is only available on IPCs with the mainboards: IP-4GVI163,
CB1050, CB2050, CB3050, CB1051, CB2051, CB3051!

F unction blocks for data access

The function blocks can be used to process files from the PLC locally on the PC. The TwinCAT target system
is identified by the AMS network address. This mechanism makes it possible, amongst other things, to store
or to edit files on other TwinCAT systems in the network. Access to files consists of three sequential phases:

1. Opening the file.
2. Read or write access to the opened file.

3. Closing the file.

Opening the file has the purpose of establishing a temporary connection between the external file, whose
name is all that initially is known, and the running program. Closing the file has the purpose of indicating the
end of the processing and placing it in a defined output state for processing by other programs.

Name Description
FB FileOpen [» 501 Open afile.
FB FileClose [P 46] Close afile.

FB FileWrite [» 60]

Write to a file.

FB FileRead [» 54]

Read from a file.

FB FileSeek [» 571

Move the file pointer.

FB FileTell [» 59]

Get the file pointer position.

FB FilePuts [» 53]

Put string to a file.

FB FileGets [» 49]

Get string from a file.

FB EOF [» 45]

Check the end of file.

FB FileDelete [P 47]

Delete a file.

FB FileRename [P 56]

Rename a file.

FB CreateDir [» 65]

Create new directory.

FB RemoveDir [P 67]

Remove directory.

TwinCAT 2.7 function blocks for data access

These function blocks are contained only for compatibility reasons in the library and should not not be used

in new projects.

Name Description
FILEOPEN [»_ 68] Open a file.
FILECLOSE [»_70] Close a file.
FILEWRITE [71] Write to a file.

FILEREAD [» 72]

Read from a file.

FILESEEK [» 74]

Move the file pointer.

IEC SFC functions

These functions / function blocks are required to use IEC steps or SFC flags in SFC programs /projects.

Name

Description

SFCActionControl [P 75]

Enables the using of IEC steps.

TX1200

Version: 1.1

11

Overview

BECKHOFF

Name

Description

AnalyzeExpression [P 75]
AnalyzeExpressionCombined [P 76]

Is required for using SFC flags.

AppendErrorString [P 76]

Is required for using SFC flags, to format strings with error
description.

Event logger function blocks

The TwinCAT Eventlogger manages all occurring messages (events) in the TwinCAT System. It transfers the
data and writes them into the TwinCAT log file.

Name

Description

ADSLOGEVENT [» 77]

Sending and acknowledgement of messages to the TwinCAT
Eventlogger.

ADSCLEAREVENTS [»_80]

Sending and acknowledgement of messages to the TwinCAT
Eventlogger.

For further information see the TwinCAT Event Logger documentation.

Functions

General functions

Name

Description

F SplitPathName [P 82]

Splits a path name into components.

F CreatelPv4Addr [P 83]

Converts address bytes to IPv4 address string.

F ScanlPv4Addrlds [» 83]

Converts IPv4 address string to address bytes..

SETBIT32 [» 84]

Sets a bit in a DWORD.

CSETBIT32 [r 85]

Sets/resets a bit in a DWORD.

GETBIT32 [r_86]

Reads a bit from a DWORD.

CLEARBIT32 [»_86]

Clears a bit in a DWORD.

LPTSIGNAL [» 87]

Outputs a signal on one of the parallel port pins.

F GetStructMemberAlignment [» 88]

Reads data struct member alignment information.

F GetVersionTcSystem [P 90]

Returns the library version info

1/0 port access

Name

Description

F 10PortRead [P 91]

Reads from 1/O Port

F 1OPortWrite [P 91]

Writes to 1/O Port

ADS functions

Functions are described below which, with the aid of the ADS interface makes some of the functions of the
Windows-NT operating system (such as the output of message boxes) accessible through PLC calls.

Name

Description

ADSLOGDINT [P 93]

Log a DINT variable into NT Eventlog and/or Messagebox.

ADSLOGLREAL [» 95]

Log a (L)REAL variable into NT Eventlog and/or Messagebox.

ADSLOGSTR [P 96]

Log a STRING variable into NT Eventlog and/or Messagebox.

F CreateAmsNetld [P 98]

Creates AmsNetld string

12

Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/tceventlogger/index.html

BEGKHOFF Overview

Name Description
F ScanAmsNetlds [» 98] Converts AmsNetld string to array of address bytes

MEMORY functions
Number of functions which provide direct access to memory areas in the PLC runtime system.
Comment

The fact that these functions allow direct access to the physical memory means that special care is called for
in applying them! Incorrect parameter values can result in a system crash, or in access to forbidden memory
areas.

Name Description

MEMCMP [» 99] Compares the values of variables in two memory areas
MEMCPY [» 100] Copies the values of variables from one memory area to another
MEMSET [» 101] Sets the variables in a memory area to a particular value
MEMMOVE [» 102] Copies the values from overlapping memory areas

Character functions

Name Description
F ToASC [» 104] Converts string character to ASCIl number
F ToCHR [» 103] Converts ASCII number to string character

TX1200 Version: 1.1 13

Function blocks BEGKHOFF

3 Function blocks
3.1 ADS Function Blocks
3.1.1 ADSREAD
ADSREAD

—MNETID BIJSY—

—FORT ERR—

—ID=ERF ERRID—

—ID=0FFS

—LEM

—DESTADDR

—READ

— TROUT

This function block allows execution of an ADS read command, to request data from an ADS device.

VAR_INPUT

VAR INPUT
NETID : T AmsNetId;
PORT : T_AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LEN : UDINT;
DESTADDR : DWORD;
READ : BOOL;
TMOUT : TIME;

END VAR

NETID : Is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

PORT : Contains the port number [» 108] of the ADS device.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service. This value is
to be found in the ADS table of the addressed device.

LEN : Contains the number, in bytes, of the data to be read.

DESTADDR : Contains the address of the buffer which is to receive the data that has been read. The
programmer is himself responsible for dimensioning the buffer to a size that can accept ‘LEN’ bytes. The
buffer can be a single variable, an array or a structure, whose address can be found with the ADR operator.

READ : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

VAR _OUTPUT

VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;

END VAR

14 Version: 1.1 TX1200

BEGKHOFF Function blocks

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Example of calling the block in FBD:

AdsRBead 1
ADR ADSREAD
dataArr-| T 1127 1H{HETID BUSY
R00-PORT ERRBbEmr I—hEusﬂ

16400004006 -IDXGRP ERRID el dl
16400000001 4 IDX0FFS

4 -{LEN
DESTADDR
bRead-READ

TIME#01:{THOUT

Here the error status of axis no. 6, as an element with a size of 4 bytes, is interrogated and written into the
‘dataArr’ buffer. The IDXGRP 00004006 (hex) and the IDXOFFS 00000001 (hex) can be found in the NC-
ADS documentation.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.1.2 ADSWRITE

ADSWRITE

—NETID BLISY—
—FORT ERR—
—ID=GRF ERRID—
—{ID=0OFFS
—LEM
—SRCADDR
—wWRITE
—{THOUT

This block permits execution of an ADS write command, for the transfer of data to an ADS device.

VAR_INPUT

VAR _INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LEN : UDINT;
SRCADDR : DWORD;

TX1200 Version: 1.1 15

Function blocks BEGKHOFF

WRITE : BOOL;
TMOUT : TIME;
END VAR

NETID : Is a string containing the AMS network identifier [P_107] of the target device to which the ADS
command is directed.

PORT : Contains the port number [»_108] of the ADS device.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service. This value is
to be found in the ADS table of the addressed device.

LEN : Contains the number, in bytes, of the data to be read.

SRCADDR : Contains the address of the buffer from which the data to be written is to be fetched. The
programmer is himself responsible for dimensioning the buffer to such a size that ‘LEN’ bytes can be taken
from it. The buffer can be a single variable, an array or a structure, whose address can be found with the
ADR operator.

WRITE : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

VAR_OUTPUT

VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;

END VAR

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Example of calling the block in FBD:

Adswrite_1
ADSWRITE
T11.2.7.1'HHETID BUSY | ——
R00PORT ERB bErr2

16400004201 IDXGRP ERRID —errldl
168400000050 1DX0FFS
0-LEN
0 SRCADDR
bwirite_1{WRITE
TIME®#0. 1:THOUT

NC axis no. 1 is here deactivated through a write instruction with IDXGRP 00004201 (hex) and the IDXOFFS
00000050 (hex). To activate the axis another write instruction with the IDXOFFS 00000051 (hex) must be
given. Since this write instruction does not require any parameters, the inputs LEN and SRCADDR have no
significance, but must nevertheless be set to zero.

16 Version: 1.1 TX1200

BECKHOFF Function blocks

Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.1.3 ADSRDWRT

ADSROWET

—{MNETID BUSY—
—{FORT ERR—
—{ID=GEF ERRID—
—{ID=0FFS
—{WRITELEM
—{READLEM
—=RCADDR
—DESTADDR
—{WRTRD
—{ThOUT

This block allows execution of a combined ADS write/read instruction. Data is transmitted to an ADS device
(write) and its response data read with one call.

VAR_INPUT

VAR_INPUT
NETID : T_AmsNetId;
PORT : T _AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
WRITELEN : UDINT;
READLEN : UDINT;
SRCADDR : DWORD;
DESTADDR : DWORD;
WRTRD : BOOL;
TMOUT : TIME;

END_ VAR

NETID : Is a string containing the AMS network identifier [>_107] of the target device to which the ADS
command is directed.

PORT : Contains the port number [»_108] of the ADS device.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service. This value is
to be found in the ADS table of the addressed device.

WRITELEN : Contains the number, in bytes, of the data that is to be written.
READLEN : Contains the number, in bytes, of the data to be read.

SRCADDR : Contains the address of the buffer from which the data to be written is to be fetched. The
programmer is himself responsible for dimensioning the buffer to such a size that ‘WRITELEN’ bytes can be
taken from it. The buffer can be a single variable, an array or a structure, whose address can be found with
the ADR operator.

TX1200 Version: 1.1 17

Function blocks BEGKHOFF

DESTADDR : Contains the address of the buffer which is to receive the data that has been read. The
programmer is himself responsible for dimensioning the buffer to a size that can accept ‘READLEN’ bytes.
The buffer can be a single variable, an array or a structure, whose address can be found with the ADR
operator.

WRTRD : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

VAR_OUTPUT

VAR _OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;

END VAR

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘“Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Example of calling the block in FBD:
1234 567 alReal¥ar=1234.57

*alRealyar aBuf="_alLReal¥ar

AdsReadwrite_1

Adr ADSRDWRT
aBuf="_al Real¥ar T 11271 HHETID BUSY
&014{PORT ERRbErk
ADR 16HFO04IDXGRP ERRID Henlde=16#0
resultyar=1234_57 - O-{IDX0FF5
10-{WRITELEN

G-{READLEN
SRCADDR
DESTADDR
bwrtRd1 \wWRTRD

Ti#i={THOUT

The value of the variable with the name ‘aLRealVar’ is here read from the PLC which is running on the
computer with the Net-ld ‘1.1.1.2.7.1’. For this purpose, the computer address mentioned, the port number of
the PLC’s first run-time system, the index group, and the index offset for reading the variable by name (FO04
hex, 0) are given. The name of the variable is to be supplied to the PLC server; it is placed for this purpose in
a buffer. Since the variable is global, it has a leading dot. This makes the length of the data to be written 10
characters (1 dot and 9 letters). Since the variable to be read is of type LREAL, the number of bytes to be
read is 8. The address of the name buffer is given as the address for the data to be written, while for the
receive data the address of an LREAL variable (‘resultVar’) is given. The diagram shows the state of the
block in flow control after execution of the WriteRead instruction: the value 1234.567, which was previously
contained in aLRealVar is now also contained in resultVar.

18 Version: 1.1 TX1200

BECKHOFF Function blocks

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.1.4 ADSRDSTATE
ADSROSTATE
—HETID BLUSY—
—FORT ERR—

—RDSTATE ERRID—
—THOUT ADSSTATE—
DEYVSTATE—

This block permits the state of an ADS device to be requested.

VAR_INPUT
VAR_INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;
RDSTATE : BOOL;
TMOUT : TIME;
END_VAR

NETID : Is a string containing the AMS network identifier [P_107] of the target device to which the ADS
command is directed.

PORT : Contains the port number [» 108] of the ADS device.

RDSTATE : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

VAR _OUTPUT

VAR _OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
ADSSTATE : UINT;
DEVSTATE : UINT;

END VAR

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

ADSSTATE : Contains the state identification code of the ADS target device. The codes returned here are
specified for all ADS servers:

+ ADSSTATE_INVALID =0 ;

+ ADSSTATE_IDLE =1;

TX1200 Version: 1.1 19

Function blocks BEGKHOFF

+ ADSSTATE_RESET =2 ;

+ ADSSTATE_INIT =3 ;

+ ADSSTATE_START =4 ;

+ ADSSTATE_RUN =5;

+ ADSSTATE_STOP =6 ;

+ ADSSTATE_SAVECFG =7 ;

+ ADSSTATE_LOADCFG =8 ;

+ ADSSTATE_POWERFAILURE =9 ;
+ ADSSTATE_POWERGOOD =10 ;
+ ADSSTATE_ERROR =11;

DEVSTATE : Contains the specific state identification code of the ADS target device. The codes returned
here are supplementary information specific to the ADS device.

Example of calling the block in FBD:

AdsReadState_1

ADSRDSTATE
11127 1" JNETID BUSY
801 4PORT ERR—bErr4

bReadStatel {RDSTATE ERRBID -errld4=0
TH1:TMOUT ADSSTATE|-adsStatel=1
DEVSTATE -devState1=0

In this example the PLC run-time system 1 (port no. 801) on the computer with network address “1.1.1.2.7.1’
is asked about its state. The answer is adsState = 1 (IDLE) without supplementary code devState=0.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.1.5 ADSWRTCTL

ADSWRTCTL

—HETID BUSY—

—FORT ERR—

—ADSETATE ERRID—

—DEYSTATE

—LEM

—=RCADDR

—WRITE

— TROUT

This block permits the execution of an ADS control command to affect the state of an ADS device, e.g. to
start, stop or reset a device.

20 Version: 1.1 TX1200

BEGKHOFF Function blocks

VAR_INPUT

VAR_INPUT
NETID : T_AmsNetId;
PORT : T AmsPort;
ADSSTATE : UINT;
DEVSTATE : UINT;
LEN : UDINT;
SRCADDR : DWORD;
WRITE : BOOL;
TMOUT : TIME;

END_VAR

NETID : Is a string containing the AMS network identifier [P_107] of the target device to which the ADS
command is directed.

PORT : Contains the port number [»_108] of the ADS device.

ADSSTATE : Contains the state identification code of the ADS target device. The codes shown here are
specified for all ADS servers:

+ ADSSTATE_IDLE =1 ;

+ ADSSTATE_RESET =2 ;

+ ADSSTATE_INIT =3 ;

* ADSSTATE_START =4 ;

+ ADSSTATE_RUN=5;

+ ADSSTATE_STOP =6 ;

+ ADSSTATE_SAVECFG =7 ;
+ ADSSTATE_LOADCFG =8;

DEVSTATE : Contains the specific state identification code of the ADS target device. The codes given here
are supplementary information which is specific to the ADS device.

LEN : Contains the number, in bytes, of the data that is to be written.

SRCADDR : Contains the address of the buffer from which the data to be written is to be fetched. The
programmer is himself responsible for dimensioning the buffer to such a size that ‘LEN’ bytes can be taken
from it. The buffer can be a single variable, an array or a structure, whose address can be found with the
ADR operator.

WRITE : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

VAR_OUTPUT

VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;

END VAR

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘“Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Example of calling the block in FBD:

TX1200 Version: 1.1 21

Function blocks

BECKHOFF

ADR

alUDINTV ar=168AFFE -

1.1.1.2.7.1'NETID

AdswniteCtl_1

ADSWRTLCTL
BUSY
300qPORT ERR
2ADSSTATE ERRID
0 DEVSTATE
4-LEN
SRCADDR

bwiriteCH1 {'WRITE

T#1sTHOUT

—bErr5
—errlld5=16#0

In the example a reset command (ADSSTATE=2) is sent to the 1/O server (Port300), along with
supplementary data hex.AFFE. As a result the 1/0 server executes a bus reset.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.1.6 ADSRDDEVINFO

ADSRODEYINFO

—NETID BLSY—

—FORT ERR—

—RDOINFD ERRID—

—THOUT DEYMNAME—

DENVYERE—

The general device information can be read with this block.

VAR_INPUT
VAR_INPUT
NETID : T_AmsNetId;
PORT : T _AmsPort;
RDINFO : BOOL;
TMOUT : TIME;
END_VAR

NETID : Is a string containing the AMS network identifier [P_107] of the target device to which the ADS

command is directed.

PORT : Contains the port number [»_108] of the ADS device

RDINFO : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

VAR _OUTPUT
VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
DEVNAME : STRING(19) ;
DEVVER : UDINT;
END VAR
22 Version: 1.1 TX1200

BEGKHOFF Function blocks

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

DEVNAME : Contains the name of the ADS device.
DEVVER : Contains the version number of the ADS device.

Example of calling the block in FBD:

ADSRDDEYINFO_1
ADSRDDEYINFO
"1.1.1.2.7.1'JHETID BUSY

801 -PORT EBRR|-bEr8
bRdinfoRDINFO ERRID —errld8=16#0
TH1sTMOUT DEYHAME |-devHame="PLC Server'
DEVYYER dev¥er=16#70002

In the example, the device information of the first PLC run-time system (port 801) on computer ‘1.1.1.2.7.1" is
read. As a result the name ‘PLC Server’ and the version number 02.00.7 are received.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.1.7 ADSREADEX
ADSREADEX

—MNETID BlUSYT—

—PORT ERR—

—IDXGRF ERRID—

—ID£0FFS COUNT_Ri—

—LEM

—DESTADDR

—READ

— ThOUT

This function block allows execution of an ADS read command, to request data from an ADS device. The
function block has the same functionality as the ADSREAD function block. It returns the delivery additionally
also the number of actually read data bytes as parameter.

VAR_INPUT

VAR_INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;

TX1200 Version: 1.1 23

Function blocks BEGKHOFF

LEN : UDINT;
DESTADDR : DWORD;
READ : BOOL;
TMOUT : TIME;

END VAR

NETID : Is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

PORT : Contains the port number [» 108] of the ADS device.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service. This value is
to be found in the ADS table of the addressed device.

LEN : Contains the number, in bytes, of the data to be read.

DESTADDR : Contains the address of the buffer which is to receive the data that has been read. The
programmer is himself responsible for dimensioning the buffer to a size that can accept ‘LEN’ bytes. The
buffer can be a single variable, an array or a structure, whose address can be found with the ADR operator.

READ : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

VAR _OUTPUT

VAR _OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
COUNT_R : UDINT;

END VAR

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘“Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

COUNT_R: Number of successfully returned data bytes.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

24 Version: 1.1 TX1200

BECKHOFF Function blocks

3.1.8 ADSRDWRTEX
ADSRDWRTEX
—NETID BUSYH—
—PORT ERR—
—{IDXGRP ERRID|—
—IDXOFFS COUNT_Rf—

—WRITELEN

—READLEN
—SRCADDR
—DESTADDR
—'WRTRD
—TMOUT

This block allows execution of a combined ADS write/read instruction. Data is transmitted to an ADS device
(write) and its response data read with one call. Contrary to the ADSRDWRT function block ADSRDWRTEX
supplys the number of actually read data bytes as parameter.

VAR_INPUT

VAR INPUT
NETID : T AmsNetId;
PORT : T _AmsPort;
IDXGRP : UDINT;
IDXOFFS : UDINT;
WRITELEN : UDINT;
READLEN : UDINT;
SRCADDR : DWORD;
DESTADDR : DWORD;
WRTRD : BOOL;
TMOUT : TIME;

END VAR

NETID : Is a string containing the AMS network identifier [P_107] of the target device to which the ADS
command is directed.

PORT : Contains the port number [» 108] of the ADS device.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service. This value is to
be found in the ADS table of the addressed device.

IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service. This value is
to be found in the ADS table of the addressed device.

WRITELEN : Contains the number, in bytes, of the data that is to be written.
READLEN : Contains the number, in bytes, of the data to be read.

SRCADDR : Contains the address of the buffer from which the data to be written is to be fetched. The
programmer is himself responsible for dimensioning the buffer to such a size that ‘WRITELEN’ bytes can be
taken from it. The buffer can be a single variable, an array or a structure, whose address can be found with
the ADR operator.

DESTADDR : Contains the address of the buffer which is to receive the data that has been read. The
programmer is himself responsible for dimensioning the buffer to a size that can accept ‘READLEN’ bytes.
The buffer can be a single variable, an array or a structure, whose address can be found with the ADR
operator.

WRTRD : The ADS command is triggered by a rising edge at this input.

TMOUT : States the time before the function is cancelled.

TX1200 Version: 1.1 25

Function blocks BEGKHOFF

VAR _OUTPUT

VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;
COUNT R : UDINT;

END VAR

BUSY : This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘Timeout’ input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

COUNT_R: Number of successfully read data bytes.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.2 Expanded ADS Function Blocks

The expanded ADS function blocks make it possible to create a client-server communication between an
ADS device and a PLC task. With the ADS device it can be a case of a Windows application (uses the
AdsDLL/AdsOcx) or another PLC run-time system. Communication between the ADS device and the PLC
task is processed using the following service primitives:

* Request

* Indication

* Response

+ Confirmation

Communication between an ADS device and a PLC task proceeds as follows: an ADS device sends a
request to the target device (PLC task). This request is registered in the target device by an indication. The
target device (PLC task) thereupon carries out a corresponding service. The service to be carried out is
encoded via the index-group/offset parameter. Next the PLC sends a response to the ADS device. The
response is registered as confirmation by the ADS source device.

Only one instance of the indication and response function block can meaningfully be used per PLC task (one
instance of ADSREADIND, ADSREADRES, ADSWRITEIND, ADSWRITERES, ADSRDWRTIND and
ADSRDWRTRES). Corresponding with the available ADS services: READ, WRITE and READ & WRITE
there is an appropriate indication or response function block for each service.

Expanded ADS function blocks

Service Name Description

READ ADSREADIND [27] ADSREAD-Indication.
ADSREADRES [» 31] ADSREAD-Response

WRITE ADSWRITEIND [> 28] ADSWRITE-Indication
ADSWRITERES [»_32] ADSWRITE-Response

READ & WRITE ADSRDWRTIND [»_29] ADS-READ & WRITE-Indication
ADSRDWRTRES [b_33] ADS-READ & WRITE-Response

26 Version: 1.1 TX1200

BEGKHOFF Function blocks

The ADS devices are addressed via a port address and a network address (NETID). The target address of
the PLC task is formed in the following manner:

Port address of the PLC task = port number of the run-time system + task number, which should be
addressed.

The current task number can be ascertained with the GETCURTASKINDEX function block.

Example:

The first PLC task of the first PLC run-time system on a local computer should be addressed. The port
number of the PLC task is shown by:

PORT =801 + 1 =802
NETID =" (empty string)

Comments:

 In order for a request to be routed to the PLC task, the highest-value bit, e.g. |G:=0x80000001, must be
entered in the index group parameter when the request is made.

+ Each PLC task has 3 Fifos (ADSREADIND Fifo, ADSWRITEIND Fifo and ADSRDWRTIND Fifo), in
which incoming requests (indications) are stored temporarily.
Each Fifo can store up to 10 indications until they have been processed (until a response was sent). If,
for example, 12 ADSREAD requests are sent to a PLC task simultaneously, 10 requests are stored in
the Fifo as indications and two are acknowledged (discarded) with ADS error message 1814 (0x716).
In this case, the error code should be analysed and the two failed ADSREAD requests repeated if
necessary. The indications are retrieved individually from the associated Fifo by calling the
ADSxxxxxxIND instance. Only then can new indications be stored successfully in the Fifo.

3.21 ADSREADIND

ADSREADIMD

—CLEAR WALID—
METID—
FORTH—
IMNYOREID—
|DGRF—
ID-0OFFS—
LENGTH—

The function block registers ADSREAD-Requests at a PLC task as indications and allows them to be
processed. The queuing of an indication is reported at the VALID output port by means of a rising edge. The
indication is shown to have been processed by a rising edge at the CLEAR in put. A falling edge at the
CLEAR input releases the function block for processing further indications. After an indication has been
processed a response must be sent to the source device via the ADSREADRES [P_31] function block. The
PORT and NETID parameters can be used to address the source device for this purpose. The INVOKEID
parameter sorts the responses to the requests for the source device and is also sent back as parameter to
the source device.

VAR_INPUT

VAR INPUT
CLEAR : BOOL;
END VAR

TX1200 Version: 1.1 27

Function blocks BEGKHOFF

CLEAR : With a rising edge at this input an indication is reported as processed and the outputs of the
ADSREADIND function block are reset. A falling edge releases the function block for the processing of
further indications.

VAR_OUTPUT

VAR OUTPUT
VALID : BOOL;
NETID : T _AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LENGTH : UDINT;

END VAR

VALID : The output is set if an indication was registered from the function block and remains set until the
latter was reported as processed by a raising edge at the CLEAR input.

NETID : Is a string, which contains the AMS network identifier [P_107] of the source device, from which the
ADS command was sent.

PORT : Contains the port number [» 108] of the ADS source device, from which the ADS command was
sent.

INVOKEID : Contains a handle of the command, which was sent. The Invokeld is specified from the source
device and serves to identify the commands.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service.
IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service.
LENGTH : Contains the number, in bytes, of the data to be read.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.2.2 ADSWRITEIND

ADSWRITEIND

—CLEAR WALID—
METID—
FORTH—
IMNYOREID—
ID=GRP—
IDOFFS—
LEMGTH—

DATAADDR—

The function block registers ADSWRITE-Requests to a PLC task as indications and allows them to be
processed. The queuing of an indication is reported at the VALID output port by means of a rising edge. The
indication is shown to have been processed by a rising edge at the CLEAR in put. A falling edge releases the
function block for the processing of further indications. After an indication has been processed a response
must be sent to the source device via the ADSWRITERES [P_32] function block. The PORT and NETID
parameters can be used to address the source device for this purpose. The INVOKEID parameter sorts the
responses to the requests for the source device and is also sent back as parameter to the source device.

28 Version: 1.1 TX1200

BECKHOFF

Function blocks

VAR_INPUT

VAR INPUT
CLEAR : BOOL;
END VAR

CLEAR : With a rising edge at this input an indication is reported as processed and the outputs of the
ADSWRITEIND function block are reset (DATAADDR = 0, LENGTH = 0!). A falling edge releases the
function block for the processing of further indications.

VAR_OUTPUT

VAR _OUTPUT
VALID : BOOL;
NETID : T AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
LENGTH : UDINT;
DATAADDR : DWORD;

END_ VAR

VALID : The output is set if an indication was registered from the function block and remains set until the
latter was reported as processed by a raising edge at the CLEAR input.

NETID : Is a string, which contains the AMS network identifier [P_107] of the source device, from which the
ADS command was sent.

PORT : Contains the port number [»_108] of the ADS source device, from which the ADS command was
sent.

INVOKEID : Contains a handle of the command, which was sent. The Invokeld is specified from the source
device and serves to identify the commands.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service.
IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service.
LENGTH : Contains the length, in bytes, of the data to be written.

DATAADDR : Contains the address of the data buffer, in which the data written is located.

Requirements

Development environment

Target system type

PLC libraries to include

TwinCAT v2.7.0

PC or CX (x86)

PLCSystem.Lib

TwinCAT v2.8.0

PC or CX (x86)

TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301

CX (ARM)

TcSystem.Lib

3.2.3 ADSRDWRTIND

ADSRDWRETIMD

—CLEAR WALID—
METID—
FORTH—

IMYOREID—
IDGRF—
IDOFFS—
FOLEMGTH—
WRETLEMGTH—
OATAADDR—

TX1200

Version: 1.1

29

Function blocks

BECKHOFF

The function block registers ADSRDWRT-Requests to a PLC task as indications and allows them to be
processed. The queuing of an indication is reported at the VALID output port by means of a rising edge. The
indication is shown to have been processed by a rising edge at the CLEAR in put. A falling edge releases the
function block for the processing of further indications. After an indication has been processed a response
must be sent to the source device via the ADSRDWRTRES [P_33] function block. The PORT and NETID
parameters can be used to address the source device for this purpose. The INVOKEID parameter sorts the
responses to the requests for the source device and is also sent back as parameter to the source device.

VAR_INPUT

VAR_INPUT
CLEAR : BOOL;
END VAR

CLEAR : With a rising edge at this input an indication is reported as processed and the outputs of the
ADSRDWRTIND function block are reset. A falling edge releases the function block for the processing of
further indications.

VAR_OUTPUT

VAR _OUTPUT
VALID : BOOL;
NETID : T AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
IDXGRP : UDINT;
IDXOFFS : UDINT;
RDLENGTH : UDINT;
WRTLENGTH : UDINT;
DATAADDR : DWORD;

END VAR

VALID : The output is set if an indication was registered from the function block and remains set until the
latter was reported as processed by a raising edge at the CLEAR input.

NETID : Is a string, which contains the AMS network identifier [»_107] of the source device, from which the
ADS command was sent.

PORT : Contains the port number [» 108] of the ADS source device, from which the ADS command was
sent.

INVOKEID : Contains a handle of the command, which was sent. The Invokeld is specified from the source
device and serves to identify the commands.

IDXGRP : Contains the index group number (32 bit, unsigned) of the requested ADS service.
IDXOFFS : Contains the index offset number (32 bit, unsigned) of the requested ADS service.
RDLENGTH : Contains the length, in bytes, of the data to be read.

WRTLENGTH : Contains the length, in bytes, of the data to be written.

DATAADDR : Contains the address of the data buffer, in which the data written is located.

Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

30 Version: 1.1 TX1200

BECKHOFF Function blocks

3.24 ADSREADRES

ADSREADRES

—METID
—FORET
—IMWOKEID
—RESULT
—LEM
—DATAADDR
—RESFOND

The ADSREADRES function block is used to acknowledge indications of a PLC task. A response is sent to
the ADS source device via a rising edge on the RESPOND input. The source device is addressed via the
PORT and NETID parameters. The INVOKEID parameter sorts the responses to the requests for the source
device and is adopted by the output of the ADSREADIND [P _27] function block. An error code can be returned
to the ADS source device via the RESULT parameter.

VAR_INPUT

VAR_INPUT
NETID : T_AmsNetId;
PORT : T _AmsPort;
INVOKEID : UDINT;
RESULT : UDINT;
LEN : UDINT;
DATAADDR : DWORD;
RESPOND : BOOL;

END VAR

NETID : Is a string, which contains the AMS network identifier [_107] of the source device, to which the ADS
command should be sent.

PORT : Contains the port number [»_108] of the ADS source device, to which the response should be sent.

INVOKEID : Contains a handle of the command, which was sent. The Invokeld is specified from the source
device and serves to identify the commands.

RESULT : Contains the error code, which should be sent to the source device.
LEN : Contains the number, in bytes, of the data to be read.

DATAADDR : Contains the address of the data buffer, which should be read.
RESPOND : The function block is activated by a positive edge at this input.
VAR_OUTPUT

(*none¥*)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

TX1200 Version: 1.1 31

Function blocks BEGKHOFF

3.2.5 ADSWRITERES

ADSWRITERES

—MNETID
—FPORT
—INYOKEID
—RESLILT
—RESFOND

The ADSWRITERES function block is used to acknowledge indications of a PLC task. A response is sent to
the ADS source device via a rising edge on the RESPOND input. The source device is addressed via the
PORT and NETID parameters. The INVOKEID parameter sorts the responses to the requests for the source
device and is adopted by the output of the ADSWRITEIND [»_27] function block. An error code can be
returned to the ADS source device via the RESULT parameter.

VAR_INPUT

VAR_INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
RESULT : UDINT;
RESPOND : BOOL;

END_VAR

NETID : Is a string, which contains the AMS network identifier [P_107] of the source device, to which the ADS
command should be sent.

PORT : Contains the port number [»_108] of the ADS source device, to which the ADS command should be
sent.

INVOKEID : Contains a handle of the command, which was sent. The Invokeld is specified from the source
device and serves to identify the commands.

RESULT : Contains the error code, which should be sent to the source device.

RESPOND : The function block is activated by a positive edge at this input.

VAR_OUTPUT

(*none*)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

32 Version: 1.1 TX1200

BECKHOFF Function blocks

3.2.6 ADSRDWRTRES

ADSROWRTRES

—NETID
—FORT
—INWOKEID
—RESLILT
—LEM
—DATAADDR
—RESFOMND

The ADSRDWRTRES function block is used to acknowledge indications of a PLC task. A response is sent to
the ADS source device via a rising edge on the RESPOND input. The source device is addressed via the
PORT and NETID parameters. The INVOKEID parameter sorts the responses to the requests for the source
device and is adopted by the output of the ADSRDWRTIND [»_29] function block. An error code can be
returned to the ADS source device via the RESULT parameter.

VAR_INPUT

VAR_INPUT
NETID : T _AmsNetId;
PORT : T AmsPort;
INVOKEID : UDINT;
RESULT : UDINT;
LEN : UDINT;
DATAADDR : DWORD;
RESPOND : BOOL;

END VAR

NETID : Is a string, which contains the AMS network identifier [>_107] of the source device, to which the ADS
command should be sent.

PORT : Contains the port number [»_108] of the ADS source device, to which the ADS command should be
sent.

INVOKEID : Contains a handle of the command, which was sent. The Invokeld is specified from the source
device and serves to identify the commands.

RESULT : Contains the error code, which should be sent to the source device.
LEN : Length, in bytes, of the read data.

DATAADDR : Address of the data buffer, in which the read data is located.
RESPOND : The function block is activated by a positive edge at this input.
VAR _OUTPUT

(*none¥*)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

TX1200 Version: 1.1 33

Function blocks BEGKHOFF

3.2.7 Example 1: Expanded ADS function blocks

In the example application, READ-Requests are sent from a VB application to the PLC task in order to
increment/decrement or reset a PLC counter variable. If successful the value of the counter variables is sent
back to the VB application and outputted on the form. In order to communicate with the PLC task the VB
application uses the ActiveX control: AdsOcx.

iw. ¥b Sample [_ (O] x|

Increment counker

Decrement counter

Reset counter

Ads result: 0 PLC data: 7

Here you can unpack the complete sources relating to the example application: https://infosys.beckhoff.com/
content/1033/tcplclibsystem/Resources/11828002187/.exe

The VB application
A connection to the PLC task is constructed in the Form_Load-Routine (port 802 on the local computer). The
required service in the PLC task is encoded in the index group parameter:

+ 1G:0x80000001 -> increment the counter variable;

* |G:0x80000002 -> decrement the counter variable;

+ 1G:0x80000003 -> set the counter variable = 0;
So that the requests can be routed to the PLC task, the highest value bit must be set in the index group
parameter. The index offset parameter is zero.

Option Explicit

Dim tmpData(l) As Integer
Dim AdsResult As Integer

Private Sub Commandl Click ()

AdsResult = AdsOcxl.AdsSyncReadReq (&H80000001, &HO, 2, tmpData)
Labell.Caption = "Ads result:" & AdsResult & " PLC data:" & tmpData (0)

End Sub

Private Sub Command2 Click()
AdsResult = AdsOcxl.AdsSyncReadReq (&H80000002, &HO, 2, tmpData)
Labell.Caption = "Ads result:" & AdsResult & " PLC data:" & tmpData(0)

End Sub

Private Sub Command3 Click ()
AdsResult = AdsOcxl.AdsSyncReadReq(&H80000003, &HO, 2, tmpData)
Labell.Caption = "Ads result:" & AdsResult & " PLC data:" & tmpData(0)

End Sub

Private Sub Form Load()
AdsOcxl.AdsAmsServerNetId = AdsOcxl.AdsAmsClientNetId
AdsOcxl.AdsAmsServerPort = 802 'PLC task number'

End Sub

34 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe
https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe

BEGKHOFF Function blocks

The PLC program

The requests are intercepted as indications in the PLC task by an instance of the ADSREADIND [P 27]
function block. Next the index group and index offset parameters and the required data length and validity
are checked. In the CASE instruction the desired operation is implemented on the PLC variables. If
successful a response is sent back by an instance of the ADSREADRES [P_31] function block to the caller with
the current value of the PLC variables. In the case of an error an appropriate error message. At the end the
CLEAR and RESPOND flags are reset in order to be able to process further indications.

PROGRAM MAIN

VAR
fbReadInd : ADSREADIND; (* Indication function block instance *)
fbReadRes : ADSREADRES; (* Response function block instance *)
sNetId : T AmsNetID;
nPort : T _AmsPort;
nInvokeId : UDINT;
nIdxGrp : UDINT;
nIdxOffs : UDINT;
cbLength : UDINT; (* Requested read data/buffer byte size *)
cbRead : UDINT; (* Returned read data/buffer byte size *)
pRead : POINTER TO BYTE; (* Pointer to returned read data/buffer *)
nErrID : UDINT; (* Read indication result error code *)
nCounter : INT; (* Server data ¥*)
END_ VAR
fbReadRes (RESPOND := FALSE); (* Reset response function block *)
fbReadInd(CLEAR := FALSE); (* Trigger indication function block *)

IF fbReadInd.VALID THEN (* Check for new indication *)

sNetID := fbReadInd.NETID;

nPort := fbReadInd.PORT;

nInvokeID := fbReadInd.INVOKEID;

nIdxGrp := fbReadInd.IDXGRP;

nIdxOffs := fbReadInd.IDXOFFS;

cbLength := fbReadInd.LENGTH;

cbRead := 0;

pRead := 0;

nErrID = 16#701; (* ADS error: Service not supported by server *)

CASE nIdxGrp OF

16#80000001:
CASE nIdxOffs OF
0: (* Increment counter value *)
IF cbLength >= SIZEOF (nCounter) THEN

nCounter := nCounter + 1;
cbRead := SIZEOF (nCounter);
pRead := ADR(nCounter);
nErrID := 0;
ELSE (* ADS error (example): Invalid size *)
nErrID := 16#705;
END IF
ELSE (* ADS error (example): Invalid index offset *)
nErrID := 16#703;
END CASE
(* __ *)
16#80000002:

CASE nIdxOffs OF
0: (* Decrement counter value *)
IF cbLength >= SIZEOF (nCounter) THEN

nCounter := nCounter - 1;
cbRead := SIZEOF (nCounter) ;
pRead := ADR(nCounter);
nErrID := 0;
ELSE (* ADS error (example): Invalid size ¥*)
nErrID := 16#705;
END IF
ELSE (* ADS error (example): Invalid index offset *)
nErrID := 16#703;
END_CASE

TX1200 Version: 1.1 35

Function blocks BEGKHOFF

16#80000003:
CASE nIdxOffs OF
0: (* Reset counter value *)
IF cbLength >= SIZEOF (nCounter) THEN

nCounter := 0;
cbRead := SIZEOF (nCounter) ;
pRead := ADR(nCounter);
nErrID := 0O;
ELSE (* ADS error (example): Invalid size *)
nErrID := 16#705;
END IF
ELSE (* ADS error (example): Service is not supported by server *)
nErrID := 16#701; (* ADS error: Service not supported *)
END_CASE
ELSE (* ADS error (example): Invalid index group *)
nErrID := 16#702;
END_CASE
fbReadRes (NETID := sNetID,
PORT := nPort,
INVOKEID := nInvokelID,
LEN := cbRead,
DATAADDR := pRead,
RESULT := nErrID,
RESPOND := TRUE); (* Send read response *)
fbReadInd(CLEAR := TRUE); (* Clear indication entry *)

END_IF

Here you can unpack the complete sources relating to the example application: https://infosys.beckhoff.com/
content/1033/tcplclibsystem/Resources/11828002187/.exe

3.2.8 Example 2: Expanded ADS function blocks

The VB application sends an array containing integer values to a PLC task. The most recently sent values
are added to a list, and are copied into a corresponding array variable in the PLC. The VB application uses a
WRITE request to send the data. The ADSWRITEIND function block is used in the PLC in order to receive
the data, while the ADSWRITERES function block is used to acknowledge the WRITE request. In order to
communicate with the PLC task the VB application uses the ActiveX control: AdsOcx.

36 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe
https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe

BEGKHOFF Function blocks

ii. ¥b Sample § =10 %]

Wfrite integer array to PLC
Adz rezult: 0
arnlDratall] =1 -
anData(1] =2
anlDatal?] = 3
anData3) =4
anDatald] =5 ;I

Here you can unpack the complete sources relating to the example application: https://infosys.beckhoff.com/
content/1033/tcplclibsystem/Resources/11828002187/.exe

The VB application

A connection to the PLC task is constructed in the Form_Load-Routine (port 802 on the local computer). The
desired service from the PLC task is encoded in the index group and index offset parameters. E.g.:
 1G:0x80000005 and
* 10:0x00000007-> Copy the sent data into the array in the PLC.

So that the requests can be routed to the PLC task, the highest value bit must be set in the index group
parameter.

Option Explicit

Dim AdsResult As Integer
Dim arrData (0 To 9) As Integer

Private Sub cmdWrite Click()
CallN TS EINCllean

Dim i As Long

For i = LBound(arrData) To UBound (arrData)

arrData (i) = arrData(i) + 1 'change values

Call Listl.AddItem("arrData(" & i & ") = " & arrData(i))
Next 1

'calculate the byte length parameter
Dim cbWriteSize As Long
cbWriteSize = (UBound(arrData) - LBound(arrData) + 1) * LenB (arrData (LBound (arrData)))

AdsResult = AdsOcxl.AdsSyncWriteReq (&H80000005, &H7, cbWriteSize, arrData) 'send data to PLC
Labell.Caption = "Ads result: " & AdsResult

End Sub
Private Sub Form Load()
AdsOcxl.AdsAmsServerNetId = AdsOcxl.AdsAmsClientNetId

AdsOcxl.AdsAmsServerPort = 802 'PLC task number’

Dim i As Long

For i = LBound(arrData) To UBound(arrData)
arrData (i) = i 'init data
Next i

End Sub

The PLC program

The requests are intercepted as indications in the PLC task by an instance of the ADSWRITEIND [P 28]
function block. Following this, the index group, index offset and transmitted data length parameters are
checked for validity, and the desired operation is carried out on the PLC variable. The next step is for a
response to be returned to the caller (including an error code, if appropriate) by an instance of the
ADSWRITERES [r_32] function block. At the end the CLEAR and RESPOND flags are reset in order to be able
to process further indications.

TX1200 Version: 1.1 37

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe
https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe

Function blocks BEGKHOFF

@ \With the rising edge at the CLEAR input of the ADSWRITEIND function block the address pointer to
1 the most recently sent data becomes invalid (== NULL). For this reason the sent data is first

copied into the PLC variable before the CLEAR input is set to TRUE.

PROGRAM MAIN

VAR
fbWriteInd : ADSWRITEIND;
fbWriteRes : ADSWRITERES;
sNetId : T AmsNetID;
nPort : T _AmsPort;
nInvokeId : UDINT;
nIdxGrp : UDINT;
nIdxOffs : UDINT;
cbWrite : UDINT; (* Byte size of written data *)
pWrite : POINTER TO BYTE; (* Pointer to written data buffer *)
nResult : UDINT; (* Write indication result error code *)
arrInt : ARRAY[0..9] OF INT; (* Server data *)
END VAR
fbWriteRes (RESPOND := FALSE); (* Reset response function block *)
fbWriteInd(CLEAR := FALSE); (* Trigger indication function block ¥*)
IF (fbWriteInd.VALID) THEN
sNetId = fbWriteInd.NETID;
nPort = fbWriteInd.PORT;
nInvokeId := fbWriteInd.INVOKEID;
nIdxGrp := fbWriteInd.IDXGRP;
nIdxOffs := fbWriteInd.IDXOFFS;
cbWrite := fbWriteInd.LENGTH;
pWrite = fbWriteInd.DATAADDR;
nResult = 16#701; (* ADS error: Service not supported by server *)

CASE nIdxGrp OF
16#80000005:
CASE nIdxOffs OF
16#00000007:
IF cbWrite <= SIZEOF(arrInt) THEN
MEMCPY (ADR(arrInt), pWrite, MIN(cbWrite, SIZEOF (arrInt)));

nResult := 0;
ELSE (* ADS error (example): Invalid size *)
nResult := 16#705;
END IF
ELSE (* ADS error (example): Invalid index offset *)
nResult := 16#703;
END_CASE
ELSE (* ADS error (example): Invalid index group *)
nResult := 16#702;
END CASE
fbWriteRes (NETID := sNetId,
PORT := nPort,
INVOKEID := nInvokeId,
RESULT := nResult,
RESPOND := TRUE); (* Send write response *)
fbWriteInd(CLEAR := TRUE); (* Clear indication entry *)

END IF

Here you can unpack the complete sources relating to the example application: https://infosys.beckhoff.com/
content/1033/tcplclibsystem/Resources/11828002187/.exe

38

Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe
https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828002187.exe

BECKHOFF Function blocks

3.3 General Function Blocks
3.31 DRAND
DRAMD
—Zeed MNump—

Instances of function blocks are created according to IEC61131-3, and then called, or otherwise accessed,
from with the PLC program using the instance names.
The function block permits generation of a (pseudo-) random number of type LREAL.

VAR_INPUT

VAR INPUT
Seed : INT;
END VAR

Seed : Initial value for specification of the random number series.

VAR _OUTPUT

VAR OUTPUT
Num : LREAL;
END_VAR

Num : This output returns a pseudo-random number in the range 0.0 .. 1.0 with double accuracy. The
generator here creates a number series with 1075 stochastic values per period.

Example of calling the block in FBD:

Randomwiuanber

DRAND
iZeed=0-2eed Num

lrRandRes=0.643412

In the example the LREAL value 0.643412 is generated and returned. The input parameter "Seed" affects
the initial value of the series. If, for instance, a deterministically reproducible random number series is
desired in different sessions, and identical "Seed" value must be used.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.3.2 GETCURTASKINDEX

GETCURTASKINDEX

index—

TX1200 Version: 1.1 39

Function blocks BEGKHOFF

This function block finds the task index of the task from which it is called.

VAR_INPUT

(*none¥*)

VAR _OUTPUT

VAR OUTPUT
index : BYTE;
END VAR

index : Returns the current task index of the calling task (1..4).

Example of calling the block in FBD:

GetThisTaskIdx
GETCURTASKINDEZX
index hyThisCurrTaskIdx=1
Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.4 Time Function Blocks
3.4.1 GETSYSTEMTIME
GETSYSTEMTIME
tirnelLoDWi—
tirmeHIDWr—

With this block the operating system time stamp can be read. The time stamp is a 64 bit integer value, with a
precision of 100ns, which is updated with every call of the PLC. Amongst other uses, it can be utilised for
timing tasks or time measurements. One unit is equivalent to 100 ns. The reason for which this service is
implemented as a block and not as a function is simply in the fact that two values must be returned, which,
by definition, cannot be done by a function.

VAR_INPUT

(*none*)

VAR_OUTPUT

VAR OUTPUT
timeLoDW : UDINT;
timeHiDW : UDINT;
END VAR

timeLoDW : Contains the low-value 4 bytes of the time stamp.

timeHiDW : Contains the high-value 4 bytes of the time stamp.

40 Version: 1.1 TX1200

BECKHOFF

Function blocks

Example of calling the block in FBD:

GetsystemTimel

GETSYSTEMTIME

timeLoDVY timelLoD¥W=16#B05C4E60
timeHiDW -timeHiDw=16# 1BCDGEA

The example illustrates calling the block via the instance ‘GetSystemTime1’, and delivers the 64 bit, integer
value (hex) 1BCD6EABO5C4E6O as the time stamp.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.4.2 GETTASKTIME
GETTASKTIME
timelLoDWWi—
tirneHiDWH—

This function supplies the task target start time. The returned time is the target time of the task where the
function block instance is called. The time stamp is a 64 bit integer value, with a precision of 100ns. Amongst
other uses, it can be utilised for timing tasks or time measurements. One unit is equivalent to 100ns and

epresents number of 100ns since 1 January 1601.

VAR_INPUT

(*none*)

VAR_OUTPUT

VAR OUTPUT
timeLoDW : UDINT;
timeHiDW : UDINT;
END VAR

timeLoDW : Contains the low-value 4 bytes of the time stamp.

timeHiDW : Contains the high-value 4 bytes of the time stamp.

Requirements

Development environment

Target system type

PLC libraries to include

TwinCAT v2.11.0 Build >= 1524

PC or CX (x86, ARM)

TcSystem.Lib

TX1200

Version: 1.1

41

Function blocks BEGKHOFF

3.43 GETCPUCOUNTER
GETCRUCOUNTER
cpuCntLo Dy —
cpuCntHIDW—

The CPU cycle counter can be read with this function block. The numerical value is a relative 64 bit integer,
which, independently of the CPU’s internal clock rate, is output in a form converted into 100ns ticks. The
number is refreshed to a precision of 100ns with every call by the PLC system, and can be used, for
instance, for timing tasks. One unit is equivalent to 100 ns. The reason for which this service is implemented
as a block and not as a function is simply in the fact that two values must be returned, which, by definition,
cannot be done by a function.

VAR_INPUT

(*none¥*)

VAR_OUTPUT

VAR OUTPUT
cpuCntLoDW : UDINT;
cpuCntHiDW : UDINT;
END VAR

cpuCntLoDW : Contains the low-value 4 bytes of the numerical value.

cpuCntHiDW : Contains the high-value 4 bytes of the numerical value.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.44 GETCPUACCOUNT

This functionality is not available on PLC runtime system under Windows CE!

GETCRUACCOUNT

cpuAccountDWvy—

The PLC task cycle ticker can be read with this function block. The PLC task cycle ticker is only incremented
while the task is being executed. The numerical value is a 32 bit integer, which, independently of the CPU's
internal clock rate, is output in a form converted into 100ns ticks. The number is refreshed to a precision of
100ns every time the PLC task is called, and can be used, for instance, for timing purposes. One unit is
equivalent to 100 ns.

VAR_INPUT

(*none*)

42 Version: 1.1 TX1200

BECKHOFF

Function blocks

VAR_OUTPUT
VAR _OUTPUT

CpuAccountDW :UDINT;

END VAR

cpuAccountDW: the current value of the PLC task ticker;

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

3.5 Watchdog Function Blocks

3.5.1 FB_PcWatchdog

This functionality is only available on IPCs with the following mainboards: IP-4GVI63, CB1050,
CB2050, CB3050, CB1051, CB2051, CB3051.

FE PeWatchdog
tTimeCut hEnshledf—
bEnable hbBusyl—

hbErrorq—
nErrId—

The function block FB_PcWatchdog enables a hardware watchdog on the PC. The watchdog is enabled via
bEnable = TRUE and the timeout period. The timeout time can range between 1 and 255 seconds. The

watchdog is enabled via bEnable = TRUE and tTimeOut >= 1 s.

Once the watchdog has been activated, the function block must be called cyclically at shorter intervals than
tTimeOut, since the PC restarts automatically when tTimeOut has elapsed. The watchdog can therefore be
used to automatically reboot systems, which have entered an infinite loop or where the PLC has become

stuck.

The watchdog can be disabled via bEnable = FALSE or tTimeOut = 0.

TX1200

Version: 1.1

43

Function blocks BEGKHOFF

@ The watchdog must be disabled before breakpoints are used, before a PLC reset or an overall re-
set, before a TwinCAT stop, before switching to Config mode or before the configuration is enabled,
because otherwise the PC would reboot immediately once the timeout has elapsed.

VAR_INPUT

VAR INPUT
tTimeOut : TIME;
bEnable : BOOL;

END VAR

tTimeOut: watchdog time, after which a restart is performed.

bEnable: error when enabling or disabling the watchdog.

VAR _OUTPUT

VAR OUTPUT
bEnabled : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR

bEnabled : TRUE enables the K-bus Watchdog, FALSE disables the K-bus Watchdog.
bBusy : this output remains TRUE until the function block has executed a command.

bError: this output is set to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in 'nErrld". Is reset to FALSE by the execution of a command at the inputs.

nErrid: contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Sample of calling the function block in ST:

VAR
fbPcWatchDog : FB_PcWatchdog;
tWDTime

TIME := T#10s;
bEnableWD : BOOL;
bWDActive : BOOL;

END VAR

IF bEnableWD OR bWDActive THEN

fbPcWatchDog (tTimeOut := tWDTime, bEnable :=
bEnableWD) ;

bWDActive := fbPcWatchDog.bEnabled;
END IF

Requirements

Development environment Target platform PLC libraries to include

TwinCAT v2.9.0 from Build 1004 |PC with mainboards: IP-4GV163, |TcSystem.Lib
CB1050, CB2050, CB3050,
CB1051, CB2051, CB3051

44 Version: 1.1 TX1200

BECKHOFF Function blocks

3.6 File Function Blocks

3.6.1 FB_EOF

FE_ECF

—=NetId bBusv—
— hFile bErrorf—
—bExecutes nErrId—
—tTimeout BEOF—

The function block "FB_EOF" tests for the end-of-file.

VAR_INPUT

VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
bExecute : BOOL;
tTimeout : TIME;

END_ VAR

sNetld :Is a string containing the AMS network identifier [P_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle already created by FB_FileOpen.
bExecute : The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
bEOF : BOOL;

END_VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

bEOF: This output is switched to TRUE if the end of file is reached.

Function specific ADS error code Possible reason

0x703 Invalid or unknown file handle.

0x70E File was opened with wrong method (e.g. with
'obsolete' FILEOPEN function block).

Example of calling the block in FBD:

PROGRAM Test

VAR
fbEOF : FB _EOF;
hFile : UINT;

TX1200 Version: 1.1 45

BECKHOFF

Function blocks

bFileEOF : BOOL;
bEOFBusy : BOOL;
bEOFError : BOOL;
nEOFErrorId : UDINT;
bISEOF : BOOL;
END VAR
tbEQOF
FB_EOF
''H=NetId bBBu=v BECOFBEu=y
hFile—qhFile bError—bEOFError
bFileEQFqbExecute nErrId—nEOFErrId
t#2=—tTimeout BEOF—bI=EQF
Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.2 FB_FileClose

FE_FILECLOSE

—=HetId bBusvy—
— hFile bErrorft—
—bEzecute nErrId—
—tTimeout

With this function block the file can be closed, and thereby placed into a defined state for further processing
by other programs.

VAR_INPUT

VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
bExecute : BOOL;
tTimeout : TIME;

END VAR

sNetld : Is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle created with FB_FileOpen.
bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

46 Version: 1.1

TX1200

BECKHOFF

Function blocks

nErrld: Contains the command-specific ADS error code of the most recently executed command.

Function specific ADS error code

Possible reason

0x703

Invalid or unknown file handle.

0x70E

File was opened with wrong method (e.g. with
‘obsolete' FILEOPEN function block).

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileClose : FB FileClose;
hFile : UINT;
bFileClose : BOOL;
bFileCloseBusy : BOOL;
bFileCloseError : BOOL;

nFileCloseErrorId: UDINT;
END VAR

fbFileClose

FE FileClo=se

''"q=HetId bBus=w
hFileqhFile BError
bFileCloze-{bExzecute nErrId

t#3i=qtTimeout

bFileClo=zeBusy
—bFileCloseError
FnFileCloseErrId

Here the file associated with the file handle (which was itself generated by "FB_FileOpen") is closed again.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.6.3 FB_FileDelete
FBE_FILEDELETE
—=HetId bBusyi—
—=PathNamne= BErrorf—
—eFPath nErrId—
—bEzxecute
— tTimeout

With this function block the existing file can be deleted.

VAR_INPUT
VAR INPUT
sNetId : T AmsNetId;
sPathName : T_MaxString; (* file path and name *)
ePath : E OpenPath := PATH GENERIC;
bExecute : BOOL;
tTimeout : TIME;
END VAR

sNetld :Is a string containing the AMS network identifier [P_107] of the target device to which the ADS

command is directed.

TX1200

Version: 1.1 47

Function blocks BEGKHOFF

sPathName : Contains the path and filename [»_109] for the file to be deleted.

ePath : The variable of this type selects generic or one of the TwinCAT system paths [P_110] on the target
device to perform the file open operation.

bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

Function specific ADS error code Possible reason
0x70C File not found. Invalid sPathName or ePath
parameter.

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileDelete : FB FileDelete;
bFileDelete : BOOL;
bFileDeleteBusy : BOOL;
bFileDeleteError: BOOL;
nFileDeleteErrId: UDINT;

END_ VAR
fbFileDelete
FB_FileDelete
"—sMetld hBuUsy hFileDeleteBusy
‘T OldFile tt'<sPathMame hErrar—hbFileDeleteErrar
FATH_GEMERIC—ePath nErfld—nFileCeleteErrld
hFileDelate—bExecute
#FesAtTimeout

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

48 Version: 1.1 TX1200

BECKHOFF Function blocks

3.6.4 FB_FileGets
FE_FILECGETS
—=HetId bBusvi—
—hFile bErrorf—
—bExecute nErrId—
—tTimeout =Linse—
bEOF—

The function block "FB_FileGets" reads zero terminated strings from a file. The string is read up to the line
feed character and inclusive the line feed character, or to the end of the file, or until the number of
characters read is equal to max.length of sLine. The result stored in sLine is appended with a null character.
The line feed character, if read, is included in the string. The file must previously have been opened in the
text mode.

VAR_INPUT

VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
bExecute : BOOL;
tTimeout : TIME;

END VAR

sNetld :Is a string containing the AMS network identifier [P_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle already created by FB_FileOpen.
bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sLine : T MaxString;
bEOF : BOOL;
END VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.
sLine : Contains the read string [»_109].

bEOF : This output is switched to TRUE if the end of file is reached and no more data bytes could be read
(cbRead=0). This output is not set if some data bytes could be read (cbRead>0).

Function specific ADS error code Possible reason

0x703 Invalid or unknown file handle.

0x70A No memory for read buffer.

0x70E File was opened with wrong method (e.g. with
'obsolete' FILEOPEN function block).

TX1200 Version: 1.1 49

Function blocks BEGKHOFF

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileGets : FB FileGets;
hFile : UINT;
bFileGets : BOOL;
bFileGetsBusy : BOOL;
bFileGetsError : BOOL;
nFileGetsErrorId: UDINT;
strBuffer : STRING;
bFileGetsEOF :BOOL;

END_ VAR

fbFileGet=s
FB _FileGet=
"'H=NetId bBu=v bFileset=Busy
hFile—qhFile bError—>bFileGetsError
bFilebGet=-bExecute nkErrId—mFileGet=Err+Id
t#2=—4tTimecut s=Linet—=trBuffer
BECF—DbFileGet=EQF

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.5 FB_FileOpen

FBE_FILEOPEN

—=HetId bBusvy—
—|=PathHan= bError—
—nMode nErrId—
—=eFath hFile—
—bEzecutes
—tTimeout

With this function block a new file can be created, or a closed existing file can be re-opened for further
processing.

VAR_INPUT
VAR INPUT
sNetId : T AmsNetId;
sPathName : T_MaxString;
nMode : DWORD;
ePath : E OpenPath := PATH GENERIC;
bExecute : BOOL;
tTimeout : TIME;
END VAR

sNetld :is a string containing the AMS network identifier [>_107] of the target device to which the ADS
command is directed.

sPathName : contains the path and file name [P_109] of the file to be opened.

@® The path can only point to the local computer’s file system. This means that network paths cannot

1 be used here!

50 Version: 1.1 TX1200

BECKHOFF Function blocks

nMode : contains the mode in which the file is to be opened. The codes listed below are the various
opening modes which are already pre-defined as constants in the library and which can accordingly be
passed symbolically to the function block. The opening modes can be ORed. The opening modes can be
combined, similar to the opening modes of the fopen function in C or C++.

Modes Description

FOPEN_MODEREAD "r'": opens a file for reading. An error is returned if the file cannot be
found or does not exist.

FOPEN_MODEWRITE "w": opens an empty file for writing. If the file already exists, it is
overwritten.

FOPEN_MODEAPPEND "a": opens a file for writing at the end of the file (append). If the file
does not exist, a new file is created.

FOPEN_MODEREAD OR "r+": opens a file for reading and writing. The file must exist.

FOPEN_MODEPLUS

FOPEN_MODEWRITE OR "w+"; opens an empty file for reading and writing. If the file already

FOPEN_MODEPLUS exists, it is overwritten.

FOPEN_MODEAPPEND OR "a+": opens a file for reading and writing at the end of the file

FOPEN_MODEPLUS (append). If the file does not exist, a new file is created. For this, the
memory path must be known, otherwise error 1804 appears.
All write operations are always performed at end of a file, if the file
was opened in the modes "a" or "a+". The file pointer can be moved
with FB_FileSeek, although for writing it is moved to the end of the file
by default, i.e. existing data cannot be overwritten.

FOPEN_MODEBINARY "b": opens the file in binary mode

FOPEN_MODETEXT "t": opens the file in text mode

ePath : this input can be used to select a TwinCAT system path [»_110] on the target device for opening the
file.

bExecute : the function block is enabled by a rising edge at this input.

tTimeout : states the timeout period that must not be exceeded when executing the ADS command.

Function specific ADS error code Possible cause
0x703 Unknown or invalid nMode or ePath parameter.
0x70C File not found. Invalid file name or file path.
0x716 No further free file handles.
VAR_OUTPUT
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hFile : UINT; (* file handle *)
END VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

hFile: Contains the file handle created for the file when opening has been successful.

TX1200 Version: 1.1 51

Function blocks

BECKHOFF

Function specific ADS error code Possible reason

0x703 Unknown or invalid nMode or ePath parameter.
0x70C File not found. Invalid file name or file path.
0x716 No more free file handles.

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileOpen
bFileOpen
bFileOpenBusy
bFileOpenError
nFileOpenErrId
hFile

END VAR

: FB FileOpen;
: BOOL;

: BOOL;

: BOOL;

: UDINT;

: UINT;

fbFileCpen

''H=NetId

'c:~TestFilel txt'{=PathNamnes

FOFEH_MODEVRITE OR FOPEH_MODETEETnMode
FATH GEMERICqeFath

bFile0OpenqbExecute
tTimeout

L 3=

FE FileUOpen

bBu=vy bFile0penBusy
bError—bFilelpenError
nErrId—nFileOpenErrId

hFile—hFile

This should create (or overwrite) the file "TestFile2.txt" in the root directory of drive "C:" in the text mode.

For the opening mode a maximum of 3 parameters may be ORed:

1 Mode = [Parameter1] OR [Parameter2] OR [Paramerter3]

Parameter1 may have only one subordinate value:
« FOPEN_MODEREAD
+ FOPEN_MODEWRITE
« FOPEN_MODEAPPEND

Parameter2 may have only one subordinate value:
« FOPEN_MODEPLUS

Parameter3 may have only one subordinate value:

+ FOPEN_MODEBINARY
+ FOPEN_MODETEXT

If no binary or text mode is specified, the file opens in a mode defined by an operating system variable. In
most cases, the file will then open in text mode. However, it is not possible to make a clear statement. It is
useful to always specify the text or binary mode. This system variable cannot be changed in the PLC!

This results in the following permissible combinations:

Text file opening modes

Binary file opening modes

FOPEN_MODEREAD OR FOPEN_MODETEXT

FOPEN_MODEREAD OR FOPEN_MODEBINARY

FOPEN_MODEWRITE OR FOPEN_MODETEXT

FOPEN_MODEWRITE OR FOPEN_MODEBINARY

FOPEN_MODEAPPEND OR FOPEN_MODETEXT

FOPEN_MODEAPPEND OR
FOPEN_MODEBINARY

FOPEN_MODEREAD OR FOPEN_MODEPLUS OR
FOPEN_MODETEXT

FOPEN_MODEREAD OR FOPEN_MODEPLUS OR
FOPEN_MODEBINARY

FOPEN_MODEWRITE OR FOPEN_MODEPLUS OR
FOPEN_MODETEXT

FOPEN_MODEWRITE OR FOPEN_MODEPLUS OR
FOPEN_MODEBINARY

52

Version: 1.1

TX1200

BECKHOFF Function blocks

Text file opening modes Binary file opening modes
FOPEN_MODEAPPEND OR FOPEN_MODEPLUS |FOPEN_MODEAPPEND OR FOPEN_MODEPLUS
OR FOPEN_MODETEXT OR FOPEN_MODEBINARY

All other combinations are wrong. Examples of invalid opening modes:
FOPEN_MODEBINARY OR FOPEN_MODETEXT
FOPEN_MODEWRITE OR FOPEN_MODEAPPEND

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.6 FB_FilePuts

FB_FILEFUTS

—=HetId bBu=v—
—hFile bErrorf—
—=Line nExrrId—
— bEzecute
— tTimeout

The function block "FB_FilePuts" writes strings to the file. The string’s terminating null character ('$00') will
not be written. The file must previously have been opened in the text mode.

VAR_INPUT
VAR _INPUT
sNetId : T AmsNetId;
hFile : UINT;
sLine : T MaxString; (* string to write *)
bExecute : BOOL;
tTimeout : TIME;
END VAR

sNetld : Is a string containing the AMS network identifier [>_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle already created by FB_FileOpen.
sLine : Contains the PLC string [»_109] to write.
bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

TX1200 Version: 1.1 53

Function blocks BEGKHOFF

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

Function specific ADS error code Possible reason

0x703 Invalid or unknown file handle.

0x70E File was opened with wrong method (e.g. with
'obsolete' FILEOPEN function block).

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFilePuts : FB FilePuts;
hFile : UINT;
bFilePuts : BOOL;
bFilePutsBusy : BOOL;
bFilePutsError : BOOL;
nFilePutsErrorId: UDINT;
END VAR
fbFilePut=
FB FileFPuts
''H=NetId bBBu=v bFilePut=Busy
hFileqhFile bError—bFilePut=Error
'"Put thi= linel!3L'H=Lines nErrId—nFilePut=ErrId
bFilePut=-bExzecute
t#Z=4tTimeout

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.6.7 FB_FileRead
FE_FILEREAD
—=HetId bBusvwi—
—hFi1le bErrorf—
—|pReadBuf £ nErrId—
—cbEeadlen chRead—
—bExecute BEOF—
— tTimeout

With this function block the contents of an already opened file can be read. The file must have been already
opened for read access.

VAR_INPUT

VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
pReadBuff : DWORD;
cbReadLen : UDINT;
bExecute : BOOL;
tTimeout : TIME;

END_ VAR

54 Version: 1.1 TX1200

BEGKHOFF Function blocks

sNetld :Is a string containing the AMS network identifier [>_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle already created by FB_FileOpen.

pReadBuff : Contains the address of the buffer for the read data. The buffer can be a single variable, an
array or a structure, whose address can be found with the ADR operator.

cbReadLen : Contains the number of bytes to be read.
bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
cbRead : UDINT;
bEOF : BOOL;

END_VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.
cbRead : Contains the number of bytes currently read.

bEOF : This output is switched to TRUE if an end of file is reached and no more data bytes could be read
(cbRead=0). This output is not set if some data bytes could be read (cbRead>0).

Function specific ADS error code Possible reason

0x703 Invalid or unknown file handle.

0x70A No memory for read buffer.

0x70E File was opened with wrong method (e.g. with
‘obsolete' FILEOPEN function block).

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileRead : FB _FileRead;
hFile : UINT;
bFileRead : BOOL;
bFileReadBusy : BOOL;
bFileReadError : BOOL;
nFileReadErrorId: UDINT;
nFileReadCount : UDINT;
bFileReadEOF : BOOL;
FILEDATA : ARRAY[0..9] OF BYTE;

END VAR

TX1200 Version: 1.1 55

Function blocks

BECKHOFF

fbFileR=ad
FB _FileRead
"'"q=HetId bBu=w
hFileqhFile bError—bFileReadError
ADR(FILEDATA) pEeadbBuf £ nErrId—mnFileReadErrId
SIZECF(FILEDATA) HchReadlen chReadl—nFileReadCount
bFilekFead-HbExecute bBEOF—LbFileReadEOF
t#2=—tTimeout

bF1leReadBusy

After a rising edge at "bFileRead" and successful execution of the read instruction the currently read bytes
from the file are found in "FILEDATA". The number of bytes actually read in the previous read procedure can

be determined from the parameter "cbRead".

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.8 FB_FileRename
FBE FILERENAME

—=HetId BEBu=v—
—=01dHamn= bBErrorf—
—=HewHans nErrId—
—=Path

— bExecute

—tTimeout

With this function block the existing file can be renamed.

VAR_INPUT
VAR INPUT
sNetId : T AmsNetId;
sOldName : T _MaxString;
sNewName : T MaxString;
ePath : E OpenPath := PATH GENERIC;
bExecute : BOOL;
tTimeout : TIME;
END VAR
sNetld

command is directed.

(* Default:

generic file path*)

sOldName : Contains the old path and filename [»_109] for the file to be renamed.

sNewName : Contains the new path and filename for the file to be renamed.

: Is a string containing the AMS network identifier [>_107] of the target device to which the ADS

ePath : The variable of this type selects generic or one of the TwinCAT system paths [P_110] on the target
device to perform the file open operation.

bExecute :The ADS command is triggered by a rising edge at this input.
tTimeout : States the time before the function is cancelled.
56 Version: 1.1 TX1200

BECKHOFF

Function blocks

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END_ VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrld’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

Possible reason

File not found. Invalid sOldName, sNewName or
ePath parameter.

Function specific ADS error code
0x70C

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileRename : FB_FileRename;
bFileRename : BOOL;
bFileRenameBusy : BOOL;
bFileRenameError: BOOL;
nFileRenameErrId: UDINT;
END VAR
fhFileRename
FB_FileRename
"—sMetld hBusy hFileRenameBusy
'CAMyFile dat'qsOldMame hErrar—nbFileRenameError
'CADldFile. dat'HsMewkame nErfld—nFileRenameErrld
FATH_GEMERICqePath
hFileRename—hExecute
#2sfTimeout
Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.9 FB_FileSeek
FE_FILESEEEK

—=NetId bBu=syi—

— hFile bErrorf—

— nSeekPo= nExrrId—
—elrigin

— hExecute

— tTimeout

With this function block the file pointer of an opened file can be set to a definable position.

TX1200

Version: 1.1 57

Function blocks BEGKHOFF

VAR_INPUT
VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
nSeekPos : DINT; (* new seek pointer position *)
eOrigin : E SeekOrigin:= SEEK SET;
bExecute : BOOL;
tTimeout : TIME;
END VAR

sNetld : Is a string containing the AMS network identifier [>_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle already created by FB_FileOpen

nSeekPos : Contains the desired (new) target position of the file pointer.

eOrigin : Contains the relative position [»_110] for the move.

bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END_ VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

Function specific ADS error code Possible reason

0x703 Invalid or unknown file handle.

0x70E File was opened with wrong method (e.g. with
'obsolete' FILEOPEN function block).

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileSeek : FB FileSeek;
hFile : UINT;
nSeekPos : DINT;
bFileSeek : BOOL;
bFileSeekBusy : BOOL;
bFileSeekError : BOOL;
nFileSeekErrorId: UDINT;

END_ VAR

58 Version: 1.1 TX1200

BECKHOFF Function blocks

fhFileSeek
FB_FileSeek
"sMetld bBuUsy hFileSeekBusy
hFile—hFile hError—hFileSeekErrar
nSeekPosqnSeekPos nErrld—nFileSeekErrarld

SEEk_CLRE—erigin
hFileSeek—hExecute
#letTimeaout

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.10 FB_FileTell

FBE_FILETELL

—=NetId bBBusv—
— hFile bError—
—bExecutes nExrrId—

—tTimeout nSeskPos—

The function block "Fb_FileTell" gets the current position of the file pointer. The position is expressed as an
offset relative to the beginning of the stream.

Note that when a file is opened for appending data, the current file position is determined by the last I/0
operation, not by where the next write would occur. For example, if a file is opened for an append and the
last operation was a read, the file position is the point where the next read operation would start, not where
the next write would start. (When a file is opened for appending, the file position is moved to end of file
before any write operation.) If no I/O operation has yet occurred on a file opened for appending, the file
position is the beginning of the file.

VAR_INPUT

VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
bExecute : BOOL;
tTimeout : TIME;

END VAR

sNetld : Is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle already created by FB_FileOpen.
bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR_OUTPUT
VAR OUTPUT

bBusy : BOOL;

bError : BOOL;

nErrId : UDINT;

nSeekPos : DINT; (* On error, nSEEKPOS returns -1 *)
END VAR

TX1200 Version: 1.1 59

Function blocks

BECKHOFF

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The

command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

nSeekPos : This output returns the actual position of the file pointer.

Function specific ADS error code

Possible reason

0x703

Invalid or unknown file handle.

0x70E

File was opened with wrong method (e.g. with
'obsolete' FILEOPEN function block).

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileTell : FB FileTell;
hFile : UINT;
bFileTell : BOOL;
bFileTellBusy : BOOL;
bFileTellError : BOOL;

nFileTellErrorId: UDINT;
nFileTellSeekPos: DINT;

END VAR
ftbFileTell
FB FileTell
"'"q=HetId bBu=w
hFileqhFile bBError—bFileTel l1Error

bFileTellH{bExecute nErrId—nFileTel l1ExrrId
t#Z=dtTimeout nSeskPos—nFileTell1SseskPo=

bF1leTellBusy

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.11 FB_FileWrite

FE_FILEWRITE
—=NetId bBusv—
— hFile bErrorf—
—pWriteBuff nErrId—
—chlritelen chlirite—
—bExecute
— tTimeout

Data can be written into a file with this function block. The file must previously have been created and

opened in the write mode.

60

Version: 1.1

TX1200

BEGKHOFF Function blocks

VAR_INPUT

VAR INPUT
sNetId : T AmsNetId;
hFile : UINT;
pWriteBuff : DWORD;
cbWriteLen : UDINT;
bExecute : BOOL;
tTimeout : TIME;

END VAR

sNetld : Is a string containing the AMS network identifier [>_107] of the target device to which the ADS
command is directed.

hFile :Is occupied by the file handle already created by FB_FileOpen.

pWriteBuff : Contains the address of the buffer containing the data to be written. The buffer can be a single
variable, an array or a structure, whose address can be found with the ADR operator.

cbWriteLen : Contains the number of bytes to be written.
bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR_OUTPUT

VAR _OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
cbWrite : UDINT;

END_ VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.
cbWrite : Contains the number of bytes successfully written.

If a write error occurs the number of successful written data bytes is smaller than the requested length
(cbWriteLen) or zero. A write error occurs e.g. if the data medium is full. The outputs bError and nErrlD are
not set if write error occur. Because the PLC application knows the number of data bytes to be written, the
real written length is compared with the requested length and write errors can be found. If a write error
occurs the internal data pointer has an undefined position.

Function specific ADS error code Possible reason

0x703 Invalid or unknown file handle.

0x70E File was opened with wrong method (e.g. with
'obsolete’ FILEOPEN function block).

Example of calling the block in FBD:

PROGRAM Test

VAR
fbFileWrite : FB FileWrite;
hFile : UINT;
bFileWrite : BOOL;
bFileWriteBusy : BOOL;
bFileWriteError : BOOL;

nFileWriteErrorId: UDINT;

TX1200 Version: 1.1 61

Function blocks BEGKHOFF

nFileWriteCount : UDINT;
FILEDATA :ARRAY[0..9] OF BYTE;
END VAR
fhFilellrite
FB Filellrite
"'H=NetId bBBEu=v bFilelriteBusy
hFileqhFile bErrort—bFilelriteError
ADR(FILEDATAYpWritebBuff nErrIdf—nFilelriteErrId

SIZECEF(FILEDATA){cbWritelen chbirite—nFilellriteCount
bFilellrite{bEzecutes
t#Z2=4tTimecut

In the example, after a rising edge at "bFileWrite", 10 bytes of the array "FILEDATA " are written to the file.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.12 Example: File access from the PLC

System requirements:

- TwinCAT 2.9;

This example illustrates use of the PLC function blocks from the TcSystem.Lib for file access. A new function
block, FB_FileCopy, is implemented with the aid of the existing function blocks. This block can be used, for
instance, to copy binary data on the local TwinCAT PC or from a remote TwinCAT PC to the local TwinCAT
PC. The function block cannot be used to access network drives. A rising edge at the bExecute input of the
FB_FileCopy block results in execution of the following steps.

a) Open the source and destination files;
b) Read the source file into a buffer;
c) Write the bytes that have been read from the buffer into the destination file;

d) Check whether the end of the source file has been reached. If not, then repeat b) and c). If yes, then jump
to e);

e) Close the source and destination files;

The file is copied one segment at a time. In this example, the size of the buffer has been specified as 1000
bytes, but this can be modified. The complete source code for the example project can be unpacked from
here: https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828003595/.exe.

The PLC program:

PROGRAM MAIN

VAR
fbFileCopy : FB FileCopy;
bCopy : BOOL;

62 Version: 1.1 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828003595.exe

BECKHOFF

Function blocks

bBusy BOOL;
bError BOOL;
nErrId UDINT;
END VAR
foFileCopy
FBE_FileCopy
"72I6.2.209.1. 1" 55N etld bBusy
'chTemp\Settings td'qsSrcPathMame bEror—HhkError
"<sDesthetld nErrld—nErrd
‘A TwinCATYNewSettings tt' qsDestFathMName
bCopy—{hExecute
T#ZetTimeOut

bBusy

In this example, the file Settings.txt is copied from the Temp directory of a remote TwinCAT PC having
network address "172.16.2.209.1.1" to the TwinCAT directory on the local TwinCAT PC.

The FB_FileCopy Function Block

Interface:

FUNCTION BLOCK FB_FileCopy
VAR INPUT
sSrcNetId
sSrcPathName
sDestNetId
sDestPathName
bExecute
tTimeOut
END VAR
VAR _OUTPUT

bBusy :BOOL;

T MaxString;
BOOL;
TIME :=

(* TRUE => File copy execution in progress,

bError :BOOL; (* TRUE => Error,
nErrId :UDINT; (* Error code *)
END VAR
VAR
fbFileOpen :FB_FileOpen;
fbFileClose :FB_FileClose;
fbFileRead :FB_FileRead;
fbFileWrite :FB FileWrite;
hSrcFile :UINT = 05 (*
hDestFile :UINT = 0; (*
Step :DWORD;
RisingEdge :R_TRIG;
buffRead :ARRAY[1..1000]
cbReadLength :UDINT := 0;
END_VAR
Implementation:
RisingEdge (CLK:=bExecute) ;
CASE Step OF
0: (* Idle state *)
IF RisingEdge.Q THEN
bBusy := TRUE;
bError:= FALSE;
nErrId:=0;
Step := 1;
cbReadLength:=0;
hSrcFile:=0;
hDestFile:=0;
END IF
s (* Open source file *)
fbFileOpen (bExecute := FALSE);

T_AmsNetId; (* TwinCAT network address of the source file *)
T MaxString; (* Source file path and name *)
T AmsNetId; (* TwinCAT network address of the destination file *)
(* Destination file path and name *)

(* Rising edge start fb execution *)
DEFAULT ADS TIMEOUT; (* Max. ADS timeout time *)

FALSE => File copy execution idle *)
FALSE => No error *)

OF BYTE; (* Buffer ¥*)

File handle of the source file *)
File handle of the destination file *)

TX1200

Version: 1.1

63

Function blocks

BECKHOFF

3

53

fbFileOpen (sNetId := sSrcNetlId, sPathName := sSrcPathName,

nMode := FOPEN_MODEREAD OR FOPEN MODEBINARY,

ePath := PATH GENERIC, tTimeout := tTimeOut, bExecute := TRUE);
Step := Step + 1;

fbFileOpen (bExecute := FALSE);
IF NOT fbFileOpen.bBusy THEN
IF fbFileOpen.bError THEN
nErrId := fbFileOpen.nErrId;
bError := TRUE;
Step := 50;
ELSE
hSrcFile := fbFileOpen.hFile;
Step := Step + 1;
END IF
END IF

(* Open destination file *)

fbFileOpen (bExecute := FALSE);

fbFileOpen(sNetId := sDestNetlId, sPathName := sDestPathName,

nMode := FOPEN MODEWRITE OR FOPEN MODEBINARY,

ePath := PATH GENERIC, tTimeout := tTimeOut, bExecute := TRUE);
Step := Step+tl;

fbFileOpen(bExecute := FALSE);
IF NOT fbFileOpen.bBusy THEN
IF fbFileOpen.bError THEN
nErrId := fbFileOpen.nErrId;
bError := TRUE;
Step := 50;
ELSE
hDestFile := fbFileOpen.hFile;
Step := Step + 1;
END IF
END IF

(* Read data from source file *)

cbReadLength := 0;

7.

fbFileRead (bExecute:= FALSE);

fbFileRead (sNetId:=sSrcNetId, hFile:=hSrcFile,
pReadBuff:= ADR (buffRead), cbReadLen:= SIZEOF (buffRead),
bExecute:=TRUE, tTimeout:=tTimeOut) ;

Step := Step + 1;

fbFileRead (bExecute:= FALSE);
IF NOT fbFileRead.bBusy THEN
IF fbFileRead.bError THEN
nErrId := fbFileRead.nErrId;
bError := TRUE;
Step := 50;
ELSE
cbReadLength := fbFileRead.cbRead;
Step := Step + 1;
END IF
END IF

(* Write data to destination file *)

fbFileWrite (bExecute := FALSE);

30:

fbFileWrite (sNetId:=sDestNetId, hFile:=hDestFile,
pWriteBuff:= ADR (buffRead), cbWritelLen:= cbReadLength,
bExecute:=TRUE, tTimeout:=tTimeOut) ;

Step := Step + 1;

fbFileWrite (bExecute := FALSE);
IF NOT fbFileWrite.bBusy THEN
IF fbFileWrite.bError THEN
nErrId := fbFileWrite.nErrId;
bError := TRUE;
Step := 50;
ELSE
IF fbFileRead.bEOF THEN (* Check if the EOF flag ist set *)
Step := 50; (* Cleanup: close the destination and source files *)
ELSE
Step := 5; (* Repeat reading/writing *)
END IF
END IF
END IF

(* Close the destination file *)

fbFileClose (bExecute := FALSE);

64

Version: 1.1

TX1200

BECKHOFF

Function blocks

Step := Step + 1;
31:
fbFileClose (bExecute := FALSE);
IF NOT fbFileClose.bBusy THEN
IF fbFileClose.bError THEN
nErrId := fbFileClose.nErrId;
bError := TRUE;
END IF
Step := 50;
hDestFile := 0;
END IF
40: (* Close source file *)
fbFileClose (bExecute := FALSE);
fbFileClose (sNetId:=sSrcNetId, hFile:=hSrcFile,
Step := Step + 1;
41:
fbFileClose (bExecute := FALSE);
IF NOT fbFileClose.bBusy THEN
IF fbFileClose.bError THEN
nErrId := fbFileClose.nErrId;
bError := TRUE;
END IF
Step := 50;
hSrcFile := 0;
END IF
50: (* Error or ready => Cleanup *)
IF (hDestFile <> 0) THEN
Step := 30; (* Close the destination file*)
ELSIF (hSrcFile <> 0) THEN
Step := 40; (* Close the source file *)
ELSE
Step := 0; (* Ready *)
bBusy := FALSE;
END IF
END_CASE

fbFileClose (sNetId:=sDestNetId, hFile:=hDestFile,

bExecute:=TRUE,

bExecute:=TRUE,

tTimeout:=tTimeOut) ;

tTimeout:=tTimeOut);

The complete source code for the example project can be unpacked from here: https://infosys.beckhoff.com/
content/1033/tcplclibsystem/Resources/11828003595/.exe.

3.6.13 FB_CreateDir

FE Createlir
shetId bBusy
sPathMName bError—
eFPath nErrId-—
hEzecute
tTimeout

This functionblock creates new directories on the data medium.

VAR_INPUT
VAR INPUT
sNetId : T AmsNetId;
sPathName : T _MaxString;
ePath E_OpenPath := PATH GENERIC; (* Default:
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END_VAR
sNetld

command is directed.

generic file path¥*)

. Is a string containing the AMS network identifier [>_107] of the target device to which the ADS

sPathName : The name of the new directory as string [»_109]. The function block can create only one new
directory per call, so only the last component of sPathname can name a new directory.

TX1200

Version: 1.1

65

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828003595.exe
https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828003595.exe

Function blocks BEGKHOFF

ePath : The variable of this type selects one of the TwinCAT system paths [»_110] on the target device to
create a directory.

bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrid’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

Function specific ADS error code Possible reason

0x70C Folder is allready existing or invalid sPathName or
ePath parameter.

Example in ST:

By a rising edge at bCreate a new directory in the main directory 'C:\'named : 'PRJDATA' is created. By a
rising edge at bRemove a directory with the same name can be deleted.

At bBootFolder = TRUE a driectory in the .\TwinCAT\Boot directory can be created or deleted.

PROGRAM MAIN

VAR
sFolderName : STRING := 'PRJDATA'; (* folder name ¥*)
bBootFolder : BOOL;

ePath : E OpenPath; (* folders root path *)
sPathName : STRING;

fbCreateDir : FB_CreateDir;
bCreate : BOOL;

bCreate Busy : BOOL;
bCreate Error : BOOL;
nCreate ErrID : UDINT;

fbRemoveDir : FB RemoveDir;
bRemove : BOOL;

bRemove Busy : BOOL;
bRemove Error : BOOL;
nRemove ErrID : UDINT;

END_ VAR
ePath := SEL(bBootFolder, PATH GENERIC, PATH BOOTPATH)8
sPathName := SEL(bBootFolder, CONCAT('C:\', sFolderName), sFolderName) ;

IF bCreate THEN
bCreate := FALSE;
fbCreateDir (bExecute := FALSE);
fbCreateDir (sNetId:= "',
sPathName:= sPathName,
ePath:= ePath,
bExecute:= TRUE,
tTimeout:= DEFAULT ADS_ TIMEOUT,
bBusy=>bCreate Busy, bError=>bCreate Error, nErrId=>nCreate ErrID);
ELSE
fbCreateDir (bExecute := FALSE, bBusy=>bCreate Busy, bError=>bCreate Error, nErrId=>nCreate ErrlI
D);

66 Version: 1.1 TX1200

BEGKHOFF Function blocks

END IF

IF bRemove THEN
bRemove := FALSE;
fbRemoveDir (bExecute := FALSE);
fbRemoveDir (sNetId:= "',
sPathName:= sPathName,
ePath:= ePath,
bExecute:= TRUE,
tTimeout:= DEFAULT ADS_ TIMEOUT,
bBusy=>bRemove Busy, bError=>bRemove Error, nErrId=>nRemove ErrID) ;
ELSE
fbRemoveDir (bExecute := FALSE, bBusy=>bRemove Busy, bError=>bRemove Error, nErrId=>nRemove ErrI
D);
END IF

Requirements

Development Environment Target System PLC Libraries to include

TwinCAT v2.10.0 Build > 1310 (CE |PC or CX (x86, ARM) TcSystem.Lib
image v2.17d or higher)

3.6.14 FB_RemoveDir

FE_RemoveDir
-=HetId bBusv—
—sPathMame bError—
—=Fath nErrId—
—bhExzecute
—tTimeout

This functionblock removes a directory from the data medium. A directory containing data can not be
removed!

VAR_INPUT
VAR_INPUT
sNetId : T _AmsNetId;
sPathName : T MaxString;
ePath : E OpenPath := PATH GENERIC; (* Default: generic file path¥)
bExecute : BOOL;
tTimeout : TIME := DEFAULT ADS TIMEOUT;
END VAR

sNetld : Is a string containing the AMS network identifier [P_107] of the target device to which the ADS
command is directed.

sPathName : The directory [»_109] to be removed. The function block can remove only one directory per
call, so only the last component of sPathName can name the directory to be removed.

ePath : The variable of this type selects one of the TwinCAT system paths [»_110] on the target device to
delete a directory.

bExecute :The ADS command is triggered by a rising edge at this input.

tTimeout : States the time before the function is cancelled.

TX1200 Version: 1.1 67

Function blocks BEGKHOFF

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END_ VAR

bBusy: This output remains TRUE until the block has executed a command, but at the longest for the
duration supplied to the ‘tTimeout’ input. While bBusy = TRUE, no new command will be accepted at the
inputs.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in ‘nErrld’.

nErrld: Contains the command-specific ADS error code of the most recently executed command.

Function specific ADS error code Possible reason
0x70C Folder not found or invalid sPathName or ePath
parameter.

Example in ST: See description of FB_CreateDir [»_65].

Requirements

Development Environment Target System PLC Libraries to include

TwinCAT v2.10.0 Build > 1310 (CE |PC or CX (x86, ARM) TcSystem.Lib
image v2.17d or higher)

3.6.15 TwinCAT 2.7 file function blocks

3.6.15.1 FILEOPEN

FILEQFEM

—MNETID BUSY—
—FFATHMNAME ERR—
—OFENMODE ERRID—
—OFEM HFILE—
—THOUT

With this function block a new file can be created, or a closed existing file can be re-opened for further
processing.

VAR_INPUT
VAR INPUT
NETID : T AmsNetId; (* ams net id *)
FPATHNAME : T MaxString; (* default max filename length = 255 *)
OPENMODE : DWORD; (* open mode flags *)
OPEN : BOOL; (* open control input *)
TMOUT : TIME;
END_VAR

NETID : is a string containing the AMS network ID [»_107] of the target device to which the ADS command is
directed.

FPATHNAME : contains the path and file name [»_109] of the file to be opened.

68 Version: 1.1 TX1200

BECKHOFF Function blocks

@ The path can only point to the local file system of the computer. This means that network paths can-
1 not be used here!

OPENMODE : contains the mode in which the file is to be opened. The codes listed below are the various
opening modes which are already pre-defined as constants in the library and which can accordingly be
passed symbolically to the function block.

» FILE_OPENCREATE: create and open a file (already existing files are overwritten with this mode!).
FILE_OPENREAD: open a file for read access;

« FILE_OPENWRITE: when a file is opened for writing, the process starts at the beginning of the file.
OPEN : the ADS command is triggered by a rising edge at this input.
TMOUT : specifies the time until the abortion of the function.

VAR _OUTPUT
VAR OUTPUT

BUSY : BOOL;

ERR : BOOL;

ERRID : UDINT;

HFILE : UINT; (* file handle ¥*)
END VAR

BUSY : this output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs.

@ Itis not the execution of the service but its acceptance whose time is monitored.

ERR : this output is set to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in 'Errorld'. If the function block has a timeout error, 'Error' is TRUE and
'Errorld' is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : contains the instruction-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

HFILE : contains the file handle created for the file when opening has been successful.

Sample of calling the function block in FBD:

FilelOpen
FILEOPEN
strTargetimsNetID='"'qNETID BU3Y bhFiledpenBusy
'C:yTestFilez . txt' -{FPATHIAME EREbErrFiledpen
FILE OPENCREATE=1—OPENMODE ERRID—udiErrFileOpen=0
hOpen—OPEN HFILEFuiFileHandle=51447
THzZ=—THOUT

This should create (or overwrite) the file "TestFile2.txt" in the root directory of drive "C:". In the sample a
proper handle is created for the file. This handle is now passed to the file function blocks described below as
an identifier for the file to be processed.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

TX1200 Version: 1.1 69

Function blocks BEGKHOFF

3.6.15.2 FILECLOSE

FILECLOSE

—METIDD BUSY—
—HFILE ERR—
—CLOSE ERRID—
—{ThOUT

With this function block the file can be closed, and thereby placed into a defined state for further processing
by other programs.

VAR_INPUT
VAR _INPUT
NETID : T AmsNetId; (* ams net id *)
HFILE : UINT; (* file handle obtained through 'FILEOPEN' ¥*)
CLOSE : BOOL; (* close control input ¥*)
TMOUT : TIME;
END VAR

NETID : is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

HFILE : is occupied by the file handle already created by FILEOPEN.
CLOSE : the ADS command is triggered by a rising edge at this input.
TMOUT : specifies the time until the abortion of the function.

VAR_OUTPUT

VAR _OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;

END VAR

BUSY : this output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : this output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the function block has a timeout error, 'Error' is TRUE and
'Errorld' is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : contains the instruction-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Sample of calling the function block in FBD:

FilelClao=e
FILECLOSZE
strTarget imsNetID='"'NETID BUIY hFileCloseBusy
uiFileHandle=561447HFILE ERRhErrFileClose
hiZloseCLO3E ERRIDFudiErrFileClose=0
TH#2=s—4THOUT

Here the file associated with the file handle (which was itself generated by "File1Open") is closed again.

70 Version: 1.1 TX1200

BECKHOFF Function blocks

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.6.15.3 FILEWRITE

FILEWRITE
—NETID BUSY|—
—HFILE ERR—

—BUFADDR. ERRID—
—COUNT COUNT_Wi—
—wWRITE
—{TRMOUT

Data can be written into a file with this function block. For write access the file must previously have been
opened in the "FILE_ OPENCREATE" or "FILE_ OPENWRITE" mode, and closed again for further processing
by external programs.

VAR_INPUT

VAR INPUT
NETID : T_AmsNetId; (* ams net id *)
HFILE : UINT; (* file handle *)
BUFADDR : DWORD; (* buffer address for write ¥*)
COUNT : UDINT; (* count of bytes for write *)
WRITE : BOOL; (* write control input *)
TMOUT : TIME;

END_VAR

NETID : is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

HFILE : is occupied by the file handle already created by FILEOPEN.

BUFADDR : contains the address of the buffer containing the data to be written. The programmer is
responsible for dimensioning the buffer such that it can accommodate WRITELEN bytes.

COUNT : contains the number of bytes to be written.
WRITE : the ADS command is triggered by a rising edge at this input.

TMOUT : specifies the time until the abortion of the function.

VAR_OUTPUT
VAR OUTPUT

BUSY : BOOL;

ERR : BOOL;

ERRID : UDINT;

COUNT W : UDINT; (* count of bytes actually written *)
END_ VAR

BUSY : this output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : this output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the function block has a timeout error, 'Error' is TRUE and
'Errorld’ is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

TX1200 Version: 1.1 71

Function blocks

BECKHOFF

ERRID : contains the instruction-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. If the error code is -1 (16#FFFF), the write operation cannot be
performed because, for example, the file was not opened correctly.

COUNT_W : contains the number of bytes currently written.

Sample of calling the function block in FBD:

FilelippendData
LDR FILEWRITE
bylirrTest— strTarget imsNetID="'"'—NETID BUST hFilellritebusy
_1 uiFileHandle=£1450-HFILE ERRB-bErrFilellrite

BUFADDR ERRIDudiErrFileWrite=0
udilataBytelen=5—4COUNT COUNT_W—udiMoCfictWritByces=0
hilriteTrig—{WEITE
T#z=s—-THOUT

In the sample, after a rising edge at "bWriteTrig", 9 bytes of the array "byArrTest" are written at the end of the
file with handle "61450".

Requirements

PLC libraries to include

Development environment

Target platform

TWinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TWInCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TWinCAT v2.10.0 Build >= 1301 |CX (ARM) TcSystem.Lib
3.6.15.4 FILEREAD
FILEREAD

—{NETID BUSY|—

—{HFILE ERRl—

—|BUFADDR ERRID|—

—|COUNT COUNT_Rl—

—{READ

—{TMOUT

With this function block the contents of an already opened file can be read. The file must have been opened
for read access in the "FILE_ OPENREAD" mode.

VAR_INPUT

VAR INPUT
NETID : T AmsNetId; (* ams net id *)
HFILE : UINT; (* file handle ¥*)
BUFADDR : DWORD; (* buffer address for read *)
COUNT : UDINT; (* count of bytes for read *)
READ : BOOL; (* read control input ¥*)
TMOUT : TIME;

END_ VAR

NETID : is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

HFILE : is occupied by the file handle already created by FILEOPEN.

BUFADDR : contains the address of the buffer into which the data are to be read. The programmer is
responsible for dimensioning the buffer such that it can accommodate WRITELEN bytes.

COUNT : contains the number of bytes to be read.

72 Version: 1.1 TX1200

BECKHOFF Function blocks

READ : the ADS command is triggered by a rising edge at this input.
TMOUT : specifies the time until the abortion of the function.

VAR_OUTPUT
VAR OUTPUT

BUSY : BOOL;

ERR : BOOL;

ERRID : UDINT;

COUNT_R : UDINT; (* count of bytes actually read *)
END VAR

BUSY : this output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : this output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the function block has a timeout error, 'Error' is TRUE and
'Errorld' is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : contains the instruction-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs. If the error code is -1 (16#FFFF), the write operation cannot be
performed because, for example, the file was not opened correctly.

COUNT_R : contains the number of currently read bytes.

Sample of calling the function block in FBD:

FilelReadData
ADER FILERELD
byhrrReadlata— strTargetimsNetID="'"'qNETID EUSY
_1 uiFileHandle=61450HFILE ERRhErrFileRead

BUFADDE ERRIDFudiErrFileRead=0
udibatabByrelen=5COUNT COUNT R—udiNoOfictReadEyres=3
hReadTrig—{RELD
T#Z=s-ATMOUT

After a rising edge at "bReadTrig" and successful execution of the read instruction the currently read bytes
from the file are found in "byArrReadData". The number of bytes actually read in the previous read procedure
can be determined from the parameter "COUNT_R". The sample shows that nine bytes were read.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

TX1200 Version: 1.1 73

Function blocks BEGKHOFF

3.6.15.5 FILESEEK

FILESEEK.
—MNETID BlUSY—
—HFILE ERR—
—SEEKFOE ERRID—
—SEEK
—THOUT

With this function block the file pointer of an opened file can be set to a definable position.

VAR_INPUT
VAR INPUT
NETID : T_AmsNetId; (* ams net id *)
HFILE : UINT; (* file handle *)
SEEKPOS : UDINT; (* new seek pointer position *)
SEEK : BOOL; (* seek control input *)
TMOUT : TIME;
END_VAR

NETID : is a string containing the AMS network identifier [»_107] of the target device to which the ADS
command is directed.

HFILE : is occupied by the file handle already created by FILEOPEN.

SEEKPOS : contains the desired (absolute) target position of the file pointer. The constants FILE_SEEKEND
and FILE_SEEKBEGIN can be used to set the file pointer to the end or to the beginning of the file.

SEEK : the ADS command is triggered by a rising edge at this input.
TMOUT : specifies the time until the abortion of the function.

VAR_OUTPUT

VAR OUTPUT
BUSY : BOOL;
ERR : BOOL;
ERRID : UDINT;

END VAR

BUSY : this output remains TRUE until the function block has executed a command, but at the longest for
the duration supplied to the 'Timeout' input. While Busy = TRUE, no new command will be accepted at the
inputs. Please note that it is not the execution of the service but its acceptance whose time is monitored.

ERR : this output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the function block has a timeout error, 'Error' is TRUE and
'Errorld' is 1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

ERRID : contains the instruction-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

74 Version: 1.1 TX1200

BECKHOFF

Function blocks

3.7 IEC steps / SFC flags function blocks

3.71 SFCActionControl

SFCACTIONCONTROL

—n ol—
—R0O
— 50
—L
—D
—F
— 5D
—D5
—5L
—T

This function is required to use IEC steps in SFC programs / projects. Only the library with the FB must be
included to the projec, but no instances are reqiured.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) lecSfc.Lib

TwinCAT v2.8.0 Build > 718 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

3.7.2 AnalyzeExpression

AHATYZEEXPRESSTION

— InputExp ExzpRe=szul t—
— DoAnalyze OutString—

This function block is required in PLC projects, which use the SFC flags.
the corresponding PLC library must be included to the project.

Requirements

No instances were created. Only

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) Analyzation.Lib

TwinCAT v2.8.0 Build > 718 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

TX1200 Version: 1.1 75

Function blocks BEGKHOFF

3.7.3 AnalyzeExpressionCombined

AMNALYZEEXFRESSIONCOMEBINED

—InputExp : BOOL ExpResult: BOOL—
—DoAnalyze : BOOL OutTahle : ARRAY [0.15] OF ExpressionResuli—
QutString . STRING(255)—

The function block is needed in PLC projects that uses sfc flags.No instances are created. The
corresponding PC library has to be included in the project.

Requirements

Development Environment Target system type PC Libraries to be linked
TwinCAT v2.8.0 Build > 718 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.7.4 AppendErrorString
APPENDERROESTRING
— =tridld AppendErrorString—
—=trNew

This function is required in PLC projects, which use the SFC flags. The function must not be called in the
project. Only the corresponding PLC library must be included to the project.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) Analyzation.Lib
TwinCAT v2.8.0 Build > 718 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

76 Version: 1.1 TX1200

BECKHOFF Function blocks

3.8 Eventlogger function blocks
3.8.1 ADSLOGEVENT
ADSLOGEVEMNT

—METID EventState—

—PORT Err—

—Ewent Errld—

—EventOuik Qi —

—EventConfighata

—EventDatanddress

—EwentDatalength

—FbCleanup

—{TMOUT

The function block permits the sending and the acknowledgement of messages to the TwinCAT Eventlogger.

VAR_INPUT

VAR INPUT
NETID : STRING(23);
PORT : UINT;
Event : BOOL;
EventQuit : BOOL;
EventConfigData : TcEvent;
EventDataAddress : UDINT;
EventDataLength : UDINT;
FbCleanup : BOOL;
TMOUT : TIME;

END VAR

NETID : Is a string containing the AMS network identifier of the target device to which the ADS command is
directed.

PORT : Contains the port number of the ADS device. The TwinCAT Eventlogger has the port number 110.
Event : With a rising edge the "coming" of the event is signaled, with a falling edge the "going" of the event.

EventQuit : With a rising edge the event is acknowledged.

EventConfigData : Data structure in the event parameters [_112].

EventDataAddress : Address with the data, which sould be sent with the event.
EventDatalLength : Length of the data, which should be sent with the event.
FbCleanup : At TRUE the function block is initialised completely.

TMOUT : States the time before the function is cancelled.

VAR_OUTPUT

VAR OUTPUT
EventState : UDINT;
Err : BOOL;
ErrId : UDINT;
Quit : BOOL;

END VAR

EventState : State of the events.

ERR : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘Errorld’. If the block has a timeout error, ‘Error’ is TRUE and ‘Errorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

TX1200 Version: 1.1 77

Function blocks BEGKHOFF

ERRID : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Quit : The Event is acknowledged.

Event without Acknowledgement

Event

active I‘ |\
Request Resg

Ewvent) 4

flag l/

Event with Acknowledgement {Scenario 1)

Event

active I\

adquest Igna
Event Reseg Sign Reset Rese
flag

Quit Confirm

flag

}J—

Event with Acknowledgement {(Scenario Z)

Event
active i\

Request Rese
Event

flag | ¢
&
Qult Confirm

flag —‘

The picture above shows the fundamental construction.

At non obligatory acknowledge messages, the event is reported with the rising edge at the event input of the
function block and therewith active in the Eventlogger. The falling edge at the event input triggers the reset.
With this signal the event is cancelled again in the Eventlogger.

At obligatory acknowledge messages the event is again activated wtih the rising edge at the event input. The
event can be deactivated

* with a falling edge at the event input (if before an acknowledgement signal has come from the PLC with
the quit input, or from the visualisation) or

* with a rising edge at the quit input (if before a reset was released by a falling edge at the event input)

If a reset occurs between event activation and occurence of the acknowledgement, the next occurence of the
event input is called "signal". Therewith a request is reported at already active event.

Stepwise flow:
« Configurate an Event:

Parameterise EventConfigData [P 112] sructure.

 transfer of parameter
Create an address to a structure, an array or a single variable with ADS to EventDataAddress.
Determine the length of the structure, the array or the single variable with the SIZEOF operator, and

78 Version: 1.1 TX1200

BEGKHOFF Function blocks

supply the length to the input EventDatalLength. If for example a structrue with an INT and LREAL
variable should be transferred with an event, a structure with these two components has to be created
and instantiated. The address and the length of this instance must be transferred.

Set an event:
Rising edge at the event input

Reset an event:
Falling edge at the event input

Acknowledge an event:
Rising edge at the quit input

Complete delete of the instance:
With the rising edge at the input FbCleanup the content of the instance is completely deleted.
Therewith not straight an existing event is deleted from the Eventlogger.

After an event was sent to the Eventlogger, the Status of the event [»_115] changes visibly at the eventstate
output.

Example:

Configuration of the event:

PROGRAM Config

VAR,

CfgEvent ; TcEvent;
TCEwentDakaFormatString ¢ STRING :="%f%d';
EMD_VAR

A

CfgEvent.Class :=TCEVEMTCLASS_ALARM;

CFaEvent,Prio 1= 2;

CfgEvent,Id :=;

CfFgEvent, bQuitRequired 1= FALSE;

ZfgEvent.DataFormatStraddress 1= ADR{TCEventDataFormatSkring);
CfaEvent,UserFlags 1= 16#0000_0000;

CfgEvent,Flags ;= TCEVEMTFLAG_LOG OR TCEYEMTFLAG_M3GECY OR TCEVEMTFLAG _SRCID;
CfgEvent, StreamType = TCEVENTSTREAM_SIMPLE;

ZfFgEwent. SourcesString ="}

CfFaEvent, Sourceld (= 100;

CfgEvent,Progld := 'TcEwentLogger, TcLogFormatker';

Call FB ADSLOGEVENT:

TX1200 Version: 1.1 79

Function blocks

BECKHOFF

0001 | PROGRAN MATN_DOkKU
0002|var
0003 fbEvent: ADSLOGEYEMT;
0004 CFgEwent : TcEvent;
jLau]uts) Ewventdata : ParaStruct;
O006| EventState : UDINT;
{0007 bEwent: BOOL;
ooog] bQuit: BOOL;
[0OEg|END_vaR
DO10fWAR COMSTAMT
o1l TCEventDataFormatSkring STRIMNG = "tf%d';
001ZE] TCEwentTimeout TIME :=L#1s;
oolE|END_var
o1 al
i ER
0oo1
FbEwent
ADR. ADSLOGEWENT |
Eventdata—| "METID EventState——FventState! !
BMIPORT _EVENTLOG—PORT Err—
SIZEQF bEwent—Ewvent ErrId—
Eventdata | b ik —E ventQuit ik —
CFgEvent —EventConfighata
EventDatasddress
EventDatalength
FalLsSE—FbCleanup
TCEventTimeut—TMOUT

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828005003/.zip

The sample consists of

* An Event Configuration.ecp which can be opened and activated using the TcEventConfigurator

* A PLC sample Program

Requirements

Development environment Target system type PLC libraires to include
TwinCAT v2.7.0 PC or CX (x86) PLCEvent.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
3.8.2 ADSCLEAREVENTS
ADSCLEAREVEMTS

MetID bBusy |—

bClear bErr—

itode iErrId—

ETirneout

The function block permits the sending and the acknowledge of messages to the TwinCAT Eventlogger.

80

Version: 1.1

TX1200

https://infosys.beckhoff.com/content/1033/tcplclibsystem/Resources/11828005003.zip
https://infosys.beckhoff.com/content/1033/tceventlogger/12332589963.html

BECKHOFF

Function blocks

VAR_INPUT

VAR INPUT
NETID : STRING(23);
bClear : BOOL;
iMode : UDINT;
tTimeout : TIME;

END_ VAR

NETID : Is a string containing the AMS network identifier of the target device to which the ADS command is

directed.

iMode : Mode to delete the events. Defined in the enum E_TcEventClearModes [» 111].

TMOUT : States the time before the function is cancelled.

VAR _OUTPUT

VAR OUTPUT
bBusy : BOOL;
bErr : BOOL;
iErrId : UDINT;

END VAR

bBusy : Is TRUE as long as the action is executed. In this time no new command is possible.

bErr : This output is switched to TRUE if an error occurs during the execution of a command. The command-
specific error code is contained in ‘iErrorld’. If the block has a timeout error, ‘bErr’ is TRUE and ‘iErrorld’ is
1861 (hexadecimal 0x745). Is reset to FALSE by the execution of a command at the inputs.

iErrld : Contains the command-specific error code of the most recently executed command. Is reset to 0 by
the execution of a command at the inputs.

Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) Standard.Lib, PLCEvent.Lib,
PLCSystem.Lib, TcPIcAds.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

TX1200 Version: 1.1 81

Functions BEGKHOFF

4 Functions

4.1 General Functions

411 F_SplitPathName
F_SplitPathHame

—sPathMName —

—sDrive &

—sDirt

—sFileMame &=

—sExzt &

This function splits a complete path name into its four components. These are stored in the strings named
sDrive, sDir, sFileName and sExt.

FUNCTION F_SplitPathName : BOOL

VAR_INPUT
sPathName : T MaxString;
END VAR

sPathName: Complete file name as string [P_109]: 'X:\DIR\SUBDIR\FILENAME.EXT".

VAR IN OUT
sDrive : STRING(3) ;
sDir : T_MaxString;
sFileName : T MaxString;
sExt : T _MaxString;
END VAR

sDrive: Drive name with a double point ('C:', 'A:' etc.).
sDir: Directory name inlusive the leading and ending backslash ("\BC \INCLUDEY\', \SOURCEY\' etc.).
sFileName: File name.

sExt: Contains the point that starts the name extension (".C', ".EXE' etc.).

Return parameter Description
TRUE No error
FALSE Error. Check the function parameter.

Example for a call in ST:

The path name: 'C:\TwinCAT\PIc\ProjectO1\Data.txt' is splitted in the following components:
sDrive: ='C!'

sDir: \TwinCAT\PIc\Project01\'

sFileName: 'Data’

sExt: ".txt'

PROGRAM MAIN

VAR
bSplit : BOOL;
sPathName : T MaxString := 'C:\TwinCAT\Plc\ProjectOl\Data.txt';
sDrive : STRING(3);
sDir : T MaxString;
sFileName : T_MaxString;

82 Version: 1.1 TX1200

BECKHOFF Functions

sExt : T_MaxString;
bSuccess : BOOL;
END VAR
IF bSplit THEN
bSplit := FALSE;
bSuccess := F_SplitPathName (sPathName := sPathName,
sDrive := sDrive,
sDir := sDir,
sFileName := sFileName,
sExt := sExt);
END IF

Requirements

Development Environment Target System PLC Libraries to include
TwinCAT v2.10.0 Build > 1307 PC or CX (x86) TcSystem.Lib

CX (ARM)
4.1.2 F_CreatelPv4Addr

F_CreatelPw4addr
nlds —

The function F_CreatelPv4Addr returns formatted (IPv4) Internet Protocol network address string (e.g.:
'"172.16.7.199").

FUNCTION F_CreatelPv4Addr : T_IPv4Addr

T _IPv4Addr [»_109]

VAR _INPUT
nlds : T _IPv4AddrArr;
END VAR

nlds: Byte array [»_109]. Every byte is equivalent to one number of the (IPv4) Internet Protocol network
adress. The address bytes are represented in network byte order.

Example in structured text:

PROGRAM MAIN

VAR
ids : T _IPv4AddrArr := 172, 16, 7, 199;
sIPv4 : T_IPv4Addr := '';
END VAR
sIPv4 := F CreateIPv4Addr(ids); (* Result: '172.16.7.199' *)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.10.0 Build > 1340 PC or CX (x86, ARM) TcSystem.Lib
41.3 F_ScanlPv4Addrids

F_ScanlPwdaddrlds
slPwd —

TX1200 Version: 1.1 83

Functions BEGKHOFF

The function F_ScanlPv4Addrlds converts a string with the (IPv4) Internet Protocol network address into
single address bytes. The single address bytes are converted from left to right. They are returned as an
array of bytes. The address bytes are represented in network byte order.

FUNCTION F_ScanlPv4Addrids: T_IPv4AddrArr

T IPv4AddrArr [P 109]

VAR _INPUT
sIPv4 : T _IPv4Addr;
END VAR

sIPv4: Internet Protocol network address [P_109] as string. E.g.: '"172.16.7.199".

Input value Return value Description
sIPv4 # " (empty string) All bytes are zero Error during conversion. Please check the format of
and sIPv4 #'0.0.0.0' sIPv4 input string.

Example in structured text:

Internet Protocol (IPv4) network address string: '"172.16.7.199' is converted to an array of address bytes.

PROGRAM MAIN

VAR
ids : T IPv4AddrArr;
sIPv4 : T IPv4Addr := '172.16.7.199';
END VAR
ids := F _ScanIPv4AddrIds(sIPv4); (* Result: ids[0]:=172, ids[l]:=16, ids[2]:=7, 1ds[3]:=199 *)
Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.10.0 Build > 1340 PC or CX (x86, ARM) TcSystem.Lib
41.4 SETBIT32
SETBIT3E
—in%'al32
—hkitHo

The function sets the bit specified by a bit number in the 32 bit value that is passed to it and returns the
resulting value.

FUNCTION SETBIT32 : DWORD

VAR INPUT
inval32 :DWORD;
bitNo :SINT;
END VAR

inVal32: The 32-bit value that is to be modified;

bitNo: The number of the bit that is to be set (0-31). This number is internally converted to a modulo 32
value prior to execution;

Example of calling the function in FBD:

84 Version: 1.1 TX1200

BECKHOFF Functions

SETBIT32
16#0-inYal32 ——aSetBitResult¥ar=16£50000000
31 —bitNo

This sets bit 31 of the input value '0'. The result is the (hex) value '80000000'.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

41.5 CSETBIT32

CEETEIT3Z

—in%al3z
—hbit:o
—hitval

The function sets/resets the bit specified by a bit number in the 32 bit value that is passed to it and returns
the resulting value.

FUNCTION CSETBIT32 : DWORD

VAR _INPUT
inval3?2 :DWORD;
bitNo :SINT;
bitval :BOOL;
END VAR

inVal32: The 32-bit value that is to be modified;

bitNo: The number of the bit that is to be set/reset (0-31). This number is internally converted to a modulo
32 value prior to execution;

bitVal: The new value of the set/reset bit (TRUE = 1, FALSE = 0);

Example of calling the function in FBD:

CEETEIT3Z
TE#E0000000inYal32 —CsetBitResultYal=16#80003000
15— kitMa
TRLEABitval

This sets bit 15 of the input value "16#8000000' to 1. The result is the (hex) value '80008000'.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

TX1200 Version: 1.1 85

Functions BEGKHOFF

4.1.6 GETBIT32

GETBITIZ

—lin%al3d
—thitho

The function returns the status of the bit specified by a bit number in the 32 bit value that is passed to it as a
boolean resulting value. The input value is not altered.

FUNCTION GETBIT32 : BOOL

VAR INPUT
inval32 :DWORD;
bitNo :SINT;
END VAR

inVal32: The 32-bit value that is to be modified;

bitNo: The number of the bit that is to be set (0-31). This number is internally converted to a modulo 32
value prior to execution;

Example of calling the function in FBD:

GETBIT32
16#04—in¥al3z2 ——aGetBitResultYar
2—hitNo

Bit 2 in the input value '04' is interrogated here, and assigned to the boolean variable 'aGetBitResultVar'.
When examined, it is found in this example to be "'TRUE'.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

41.7 CLEARBIT32

CLEARBITIZ

—lin%'al3?
—thitHo

The function resets the bit specified by a bit number in the 32 bit value that is passed to it to zero and returns
the resulting value.

FUNCTION CLEARBIT32 : DWORD

VAR INPUT
inval32 :DWORD;
bitNo :SINT;
END VAR

inVal32: The 32-bit value that is to be modified;

86 Version: 1.1 TX1200

BEGKHOFF Functions

bitNo: The number of the bit that is to be set (0-31). This number is internally converted to a modulo 32
value prior to execution;

Example of calling the function in FBD:

CLEARBIT3Z
164C0000000—inYal32 ——aClearBitResult¥ar=16&40000000
31 bitNo

This resets bit 31 of the input value 'C0000000'. The result is the (hex) value '40000000'.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
4.1.8 LPTSIGNAL
LFTSIGMNAL

—Fortaddr

—FinMo

—OnOff

This function sets a defined output bit in a Centronics interface to a logical high or low level, and can, for
example, be used for run-time measurements with an oscilloscope. The function returns the preset state
which has been written to the output pin.

FUNCTION LPTSIGNAL: BOOL

VAR INPUT
PortAddr :UINT;
PinNo :INT;
OnOff :BOOL;
END VAR

PortAddr: Address of the port which is available for the desired LPT interface;
PinNo: Contains the number of the pin (Pin 0 .. 7) which is to be written by the PLC;

OnOff: Contains the state which is to be written to that pin;

Example of calling the function in FBD:

LPT3IGHNALL
NiPortiddr=16#0378-Portiddr
usiPinMNo=16#07-P inko
bPFinOn—Onoff

hiout

In the example, bit 7 of port 378 (hex) is set to 1.

TX1200 Version: 1.1 87

Functions BEGKHOFF

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

41.9 F_GetStructMemberAlignment

F_GetStructhemberalionment

The function returns information about used data struct member alignment setting. The alignment is affecting
the the way data structure elements are arranged in computer memory.

FUNCTION F_GetStructMemberAlignment : BYTE

VAR INPUT
(* none input parameters *)
END_VAR
Return value Description
1 1 byte alignment (e.g. TwinCAT v2.11, x86 target platform)
2 2 byte alignment
4 4 byte alignment (e.g. TwinCAT v2.11, ARM target platform)
8 8 byte alignment

The following examples show the arrangement of the data structure elements in the memory, depending on
the memory alignment employed.

?? := Padding byte

Example 1

TYPE ST_TESTl
STRUCT
ui8 : BYTE
f64 : LREAL
END_STRUCT
END TYPE

16#FF; (* FF *)
1234.5678; (* AD FA 5C 6D 45 4A 93 40 ¥*)

testl : ST TESTI;

Alignment SIZEOF(test1) Memory contents

1 byte 9 FF AD FA 5C 6D 45 4A 93 40

2 byte 10 FF ?? AD FA 5C 6D 45 4A 93 40

4 byte 12 FF ?? ?? ?? AD FA 5C 6D 45 4A 93 40

8 byte 16 FF ????2??7?????? ?? AD FA 5C 6D 45 4A 93 40
Example 2

Converting the order of the structure elements changes the arrangement of the padding bytes. These are
now added at the end.

TYPE ST TEST2

STRUCT
f64 : LREAL = 1234.5678; (* AD FA 5C 6D 45 4A 93 40 ¥*)
ui8 : BYTE = 164#FE; (* EE *)

END STRUCT

END TYPE

88 Version: 1.1 TX1200

BECKHOFF

Functions

test2 : ST_TEST2;
Alignment SIZEOF (test2) Memory contents

1 byte 9 AD FA 5C 6D 45 4A 93 40 FF

2 byte 10 AD FA 5C 6D 45 4A 93 40 FF ?7?

4 byte 12 AD FA 5C 6D 45 4A 93 40 FF ?? ?? ??

8 byte 16 AD FA5C 6D 454A 9340 FF ?? 2?2?2222 ?22 2?27?7777
Example 3

In the case of 2, 4 and 8-byte alignment, the elements ui32 and f64 are already suitably aligned, so that no
padding bytes need to be added.

TYPE ST TEST3

STRUCT
uis : BYTE = 16#FF; (* FF *)
uil6 : WORD := 16#1234; (* 34 12 *)
ui32 : DWORD := 16#AABBCCDD; (* DD CC BB AA *)
£64 : LREAL := 1234.5678; (* AD FA 5C 6D 45 4A 93 40 *)
END STRUCT
END TYPE
test3 : ST_TEST3;
Alignment |SIZEOF(test3) Memory contents
1 byte 15 FF 34 12 DD CC BB AA AD FA 5C 6D 45 4A 93 40
2 byte 16 FF ?? 3412 DD CC BB AA AD FA 5C 6D 45 4A 93 40
4 byte 16 FF ?? 3412 DD CC BB AA AD FA 5C 6D 45 4A 93 40
8 byte 16 FF ?? 3412 DD CC BB AA AD FA 5C 6D 45 4A 93 40
Example 4
TYPE ST Al
STRUCT
uis : BYTE = 16#FF; (* FF *)
ui32 : DWORD := 16#AABBCCDD; (* DD CC BB AA *)
rsv : BYTE = 16#EE; (* EE *)
END_STRUCT
END TYPE
TYPE ST A2
STRUCT
uilé : WORD = 16#1234; (* 34 12 ~*)
uisg : BYTE := 16#55; (* 55 *)
END_ STRUCT
END TYPE

TYPE ST TEST4

STRUCT
al : ST Al;
a2 : ST A2;
END_ STRUCT
END TYPE
testd : ST TEST4;
Align- SIZEOF(test| SIZEOF (test a1/a2 pad- |SIZEOF(test4.a Memory contents
ment 4) 4.a1) ding bytes |2)
1 byte 9 6 - FF DD CC BB AA EE 34 12 55
2 byte 12 8 - FF ?? DD CC BB AA EE ?? 34 12
55 ?7?
4 byte 16 12 - FF ?? ?? ?? DD CC BB AA
EE ?? ?? ?? 341255 ??
8 byte 16 12 - FF ?? ?? ?? DD CC BB AA
EE ?? ?? ?? 341255 ??
TX1200 Version: 1.1 89

Functions

BECKHOFF

Example 5

TYPE ST D1
STRUCT
uilé : WORD
uis : BYTE
END_ STRUCT
END TYPE

TYPE ST D2

STRUCT
uis8 : BYTE
fo64 : LREAL
rsv : BYTE

END STRUCT

END TYPE

TYPE ST TESTS
STRUCT
dl : ST DI1;
d2 : ST D2;
END STRUCT
END TYPE

test5 : ST TESTS;

16#1234; (* 34 12 *)
16#55; (* 55 *)

16#FF; (* FF *)
1234.5678; (* AD FA 5C 6D 45 4A 93 40 *)
16#EE; (* EE *)

Align- SIZEOF (test| SIZEOF(test5 |d1/d2 SIZEOF(test Memory contents
ment 5) .d1) padding |5.d2)
bytes

1 byte 13 3 - 10 34 12 55 FF AD FA 5C 6D 45 4A 93 40
EE

2 byte 16 4 - 12 3412 55 ?? FF ?? AD FA 5C 6D 45 4A
93 40 EE ??

4 byte 20 4 - 16 341255 ?? FF ?? ?? ?? ADFA 5C 6D
45 4A 93 40 EE ?? ?7? ??

8 byte 32 4 4 24 3412552272222 ???7?
FF???2?2?2?7??2??27???? ADFA5C 6D
454A 9340 EE ????2 2?2?2222 ?2? ??

Requirements
Development environment Target system type PLC libraries to include

TwinCAT v2.11 Build > 1553
TwinCAT v2.11 R2 Build > 2034

PC or CX (x86, ARM)

TcSystem.Lib

4.1.10 F_GetVersionTcSystem

—InVerszsionkElement

F_GETVERSIONTCSYSTEM

F_GetVersionTcSy=temnf—

The function returns library version info.

FUNCTION F_GetVersionTcSystem : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version parameter:

90

Version: 1.1

TX1200

BECKHOFF Functions

* 1 : major number;
e 2 :minor number;
e 3 :revision number;

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
4.2 I/0 port access
421 F_IOPortRead
F I0OPartRead
—rAddr —
—eSize

Most times a digital 1/0 port is a one byte wide 1/O Position, which is mapped in the memory or as port. If you
write a value at this place, the electrical signal at the output pins is changed according to the written bits.If
you read a value from the input positon, the current logistic level is returned at the input pins as individual bit
values.

The function F_IOPortRead reads a one eSize wide 1/O position. The read value is returned from the
function as return value. See description of the function F [OPortWrite [P 91]

FUNCTION F_IlOPortRead : DWORD

VAR INPUT

nAddr : UDINT;

eSize : E IOAccessSize;
END VAR

nAddr: I/0O Port address.

eSize: Number [P_112] of data byte to be read.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.10.0 Build > 1257 PC or CX (x86) TcSystem.Lib
4.2.2 F_lOPortWrite
F_IOPortWrite
—nAddr —
—e3ize
—n%/alue

The function F_IOPortWrite writes a one eSize wide I/O position. See also description F [OPortRead [» 91]
Function.

TX1200 Version: 1.1 91

Functions BEGKHOFF

@ Direct hardware access is no problem if you only read data.

1

Risk of data loss using write access

HOWEVER, BY WRITING DATA, YOU MAY CRASH OR EVEN PERMANENTLY DAMAGE YOUR HARD-
WARE AND/OR DESTROY DATA ON YOUR DISKS. THIS FUNCTION MAY SEVERELY DAMAGE YOUR
HARDWARE AND CAN EVEN MAKE YOUR COMPUTER UNBOOTABLE. PLEASE DO ONLY USE IT, IF
YOU EXACTLY KNOW WHAT YOU ARE DOING!

FUNCTION F_IOPortWrite : BOOL

VAR INPUT
nAddr : UDINT;
eSize : E_TIOAccessSize;
nValue: DWORD;

END_ VAR

nAddr: I/O port address.

eSize: Number [P_112] of data bytes to write.

nValue: Value, that shall be written.

Return paramters Description
TRUE Kein Fehler
FALSE Fehler

ST sample:

In the following example, a PLC module for direct control of the PC speaker was implemented using the /O
port functions.Interface:

FUNCTION BLOCK FB_Speaker
(* Sample code from: "PC INTERN 2.0", ISBN 3-89011-331-1, Data Becker *)

VAR INPUT
freqg : DWORD := 10000; (* Frequency [Hz] *)
tDuration : TIME := T#ls; (* Tone duration *)
bExecute : BOOL; (* Rising edge starts function block execution *)
END VAR
VAR _OUTPUT

bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
END VAR
VAR
fbTrig : R _TRIG;
nState : BYTE;
sts6lH : DWORD;
cnt42H : DWORD;
cntLo : DWORD;
cntHi : DWORD;
timer : TON;
END_ VAR

Implementation:

fbTrig(CLK := bExecute);
CASE nState OF
0:
IF fbTrig.Q THEN
bBusy := TRUE;

bError := FALSE;
nErrID := 0;
timer (IN := FALSE);

IF F_IOPortWrite(16#43, NoOfByte Byte, 182) THEN

92 Version: 1.1 TX1200

BECKHOFF

Functions

cnt42H := 1193180 / freq;
cntLo := cnt42H AND 16#FF;
cntHi := SHR(cnt42H, 8) AND 16#FF;

F IOPortWrite(16#42, NoOfByte Byte, cntLo); (* LoByte ¥*)
F IOPortWrite(16#42, NoOfByte Byte, cntHi); (* HiByte ¥*)

timer (IN := TRUE, PT := tDuration);
sts6lH := F IOPortRead(16#61, NoOfByte Byte);
sts6lH := sts6lH OR 2#11;

F _IOPortWrite(16#61, NoOfByte Byte, sts6lH); (* speaker ON *)

nState := 1;
ELSE
nState := 100;
END IF
END IF
1:
timer ();

IF timer.Q THEN

sts6lH := F _IOPortRead(16#61, NoOfByte Byte);

sts61lH := sts6lH AND 2#11111100;
F IOPortWrite(16#61, NoOfByte Byte, sts6lH); (* speaker off *)
bBusy := FALSE;
nState := 0;

END IF

100:

bBusy := FALSE;

bError := TRUE;

nErrID := 16#8000;

nState := 0;

END_CASE

Test application:

PROGRAM MAIN

VAR
fbSpeaker FB_Speaker;
bStart : BOOL;

END VAR

fbSpeaker (freq:= 5000,
tDuration:= t#ls,
bExecute:= bStart);

Requirements

Development environment Target system type

PLC libraries to include

TwinCAT v2.10.0 Build > 1257 PC or CX (x86)

TcSystem.Lib

4.3 ADS Functions

431 ADSLOGDINT

ADSLOGOINT

—msgChibdask
—rmsgFmtStr
—dintirg

TX1200 Version: 1.1

93

Functions BEGKHOFF

This function issues when called a message box holding a specifiable text on the screen, and writes an entry
into the system’s log.

Since a PLC program is cyclically processed, it is necessary for an item such as a message box to be output
under edge-control. This is most easily achieved with an R_TRIG or F_TRIG function block placed in series
(see also examples below).

Using the ADSLOGDINT function a DINT value (4 byte signed integer) can be inserted in the text to be
output at a point specified by the user. For this purpose, the stored format string must contain the characters
‘%d’ at the desired location. The result value contains the function error code, or, if successful, 0.

FUNCTION ADSLOGDINT : DINT

VAR INPUT
msgCtrlMask : DWORD;
msgFmtStr : T_MaxString;
dintArg : DINT;

END VAR

msgCtriIMask : Control mask which determines the type and effect of the message output (see separate
table).

Constant Description

ADSLOG_MSGTYPE_HINT Message type is advice.

ADSLOG_MSGTYPE_WARN Message type is warning.

ADSLOG_MSGTYPE_ERROR Message type is error.

ADSLOG_MSGTYPE_LOG Message is written into the log.

ADSLOG_MSGTYPE_MSGBOX Message is output to a message box.

ADSLOG_MSGTYPE_RESOURCE Message is fetched from a resource file. (not currently
supported)

ADSLOG_MSGTYPE_STRING Message is a directly given string (default).

The control masks can be ORed in the desired combination.

msgFmtStr : Contains the message [»_109] to be issued. It can contain the formatting code ‘%d’ for the
output of a DINT value at any position.

dintArg : Contains the numerical value to be inserted into the message.

Example of calling the function in FBD:

rtMessagelutcputc
E_TRIG MNOT
bFeedTooHigh—-CLE O ———ﬁwonessage
oOR ADSLOGDINT
ADSLOG_M3GTYPE _HINT=1- msgCtrlMask FudilddsLogRes=0
AD3LOG_M3GTYPE_M3GEOI=32Z- 'PLC M=sg: Feed too high! Current feed: 5d' msgFmt3cr
4711 qdintirg
HoMessage:
LMD

The resulting message box

: TwinCAT PLC Server

—.

\]\;2) FLC Mzg: Feed too high! Current feed: 4711

94 Version: 1.1 TX1200

BEGKHOFF Functions

The DINT value 4711 is inserted here into a message. The insertion point is marked by the %d characters in
the format string.

Example of calling the function in ST:

rtMessageOutput: R TRIG; (* Declaration*)
bFeedTooHigh: BOOL;
udiAdsLogRes: UDINT;

rtMessageOutput (CLK := bFeedTooHigh) ;
IF rtMessageOutput.Q THEN
UdiAdsLogRes := ADSLOGDINT (msgCtrlMask :=

ADSLOG_MSGTYPE_HINT OR ADSLOG_MSGTYPE MSGBOX,
msgFmtStr := 'PLC

Msg: Feed too high! Current feed: %d4d',
dintArg:= 4711);

END_IF;

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
4.3.2 ADSLOGLREAL

ADSLOGLREAL

— msgCirikdask

—msgFmtstr

—IrealA&rg

When called, the function outputs a message box with a predefinable text to the screen and writes an entry
to the system's event log. In the text to be output, a LREAL value (floating-point number) can be inserted at a
point specified by the user. For this purpose, the created format string must contain the string '%f" at the
desired position. Please keep in mind that also here, as shown in the sample, the function must be called
using edge-control (see also description ADSLOGDINT [P 93]). The return parameter contains the function
error code, or 0 if successful.

FUNCTION ADSLOGLREAL : DINT

VAR INPUT
msgCtrlMask : DWORD;
msgFmtStr : T _MaxString;
lrealArg : LREAL;

END_ VAR

msgCtriMask : Control mask which determines the type and effect of the message output. Listing of all the
control masks for message output currently implemented as global constants in the library (see description of

the function ADSLOGDINT [P 93]).

msgFmtStr : Contains the message [»_109] to be issued. It can contain the formatting code ‘%d’ for the
output of a DINT value at any position.

IrealArg : Contains the numerical value to be inserted into the message.

TX1200 Version: 1.1 95

Functions BEGKHOFF

Example of calling the function in FBD:

rtMessagefutput
E_TRIG NOT
hTemperature TooHigh—CLE o } oMessage
OF. ADSLOGLREAL
ADSLOG M3GTYPE HINT=1+ msgCtr 1Mask udildsLogRes=
ADSLOG_MIGTYPE M3GBOX=32- 'PLC M=2g.: Max Temwp. reached ! Temperature: $f' fmsgFwmtStr
157.203045q1lrealdry
NoMessage:
LM

The resulting message box

P TennCAT PLC Server

\EE) FLC Mza: Max Temp. reached | Temperature: 187. 202045

Here the LREAL value 187.203045 is inserted into a message. The insertion point is marked by the ‘%f*
characters in the format string. The number is truncated after the sixth decimal point during output.

Example of calling the function in ST:

rtMessageOutput: R TRIG; (* Declaration*)
bTemperatureTooHigh: BOOL;
udiAdsLogRes: UDINT;

rtMessageOutput (CLK := bTemperatureTooHigh) ;
IF rtMessageOutput.Q THEN
udiAdsLogRes := ADSLOGLREAL (msgCtrlMask :=

ADSLOG_MSGTYPE HINT OR ADSLOG MSGTYPE MSGBOX,

msgFmtStr := 'PLC
Msg.: Max Temp. reached ! Temperature: $f', lrealArg :=
187.203045) ;
END_IF;

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

4.3.3 ADSLOGSTR

ADSLOGETR

—msgChitask
—msgFmtSte
—=trirg

When called, the function outputs a message box with a predefinable text to the screen and writes an entry
to the system's event log. A string can be inserted into the text to be output at a position specified by the
user. For this purpose, the created format string must contain the string '%s' at the desired position.

96 Version: 1.1 TX1200

BEGKHOFF Functions

@ Here, as also shown in the sample, the function must be called using edge-control (see also de-

1 scription ADSLOGDINT [P 93]).

The return parameter contains the function error code, or 0 if successful.

FUNCTION ADSLOGSTR : DINT

VAR INPUT
msgCtrlMask : DWORD;
msgFmtStr : T MaxString;
strArg : T MaxString;
END VAR

msgCtriIMask : Control mask which determines the type and effect of the message output (see separate
table: ADSLOGDINT [P 93]).

msgFmtStr : Contains the message [»_109] to be issued. It can contain the formatting code ‘%d’ for the
output of a DINT value at any position.alten.

strArg : Contains the string which is to be inserted into the message.

Example of calling the function in FBD:

rtMessageCutput
B_TRIG NOT
h3FCError—CLE o ———DNDHessage
OR ADSLOGSTER
ADSLOG MAGTYPE ERROR=4— msgCtr 1Mask 1 i Ad.
ADSLOG M3IGTYPE_M3IGBOX=3Z- 'PLC M=g.: Guarding time executed in 3FC step: %3' —msgFmt3tr
Str3FCErrorS3tep='MachineCallibration' qstrirg
NolMessage:
BN

The resulting message box

i TwinCAT PLC Server

Q FLC Mzg.: Guarding time executed in SFC step: MachineCallibration

With this, the PLC programmer inserts the string stored in the variable ‘strSFCErrorStep’ into the message.
The insertion point is marked by the %s characters in the format string.

Example of calling the function in ST:

strSFCErrorStep : STRING; (* Declaration*)
rtMessageOutput: R _TRIG;
bSFCError: BOOL;

(* ______________________________________ *)
rtMessageOutput (CLK := bSFCError) ;
IF rtMessageOutput.Q THEN

udiAdsLogRes := ADSLOGSTR(msgCtrlMask :=
ADSLOG_MSGTYPE ERROR OR ADSLOG MSGTYPE MSGBOX,

msgFmtStr := 'PLC Msg.:

Guarding time executed in SFC step: %s', strArg :=
strSFCErrorStep) ;
END IF;

TX1200 Version: 1.1 97

Functions BEGKHOFF
Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

4.3.4 F_CreateAmsNetid

F_CREATEAMSEHETID

—nld= F_CreatefinsHetId—

The F_CreateAmsNetld function returns formatted AmsNetld string (e.g.: '127.16.17.3.1.1").

FUNCTION F_CreateAmsNetld : T_AmsNetid

T AmsNetld [P 107]

VAR INPUT
nIds : T AmsNetIdArr;
END VAR

nlds : Byte array [P_108]. Every byte is equivalent to one number of the network adress. The address bytes
are represented in network byte order.

Example in structured text:

PROGRAM MAIN

VAR
ids : T AmsNetIdArr := [127, 16, 17, 3, 1, 1];
sNetID : T AmsNetID := ''
END VAR
sNetID := F CreateAmsNetId(ids); (* Result: '127.16.17.3.1.1"' ¥*)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

4.3.5 F_ScanAmsNetlds

F_ScanAmshetlds
sMetlD —

The function F_ScanAmsNetlds converts a string with the TwinCAT network address into single address
bytes. The single address bytes are converted from left to right. They are returned as an array of bytes. The
address bytes are represented in network byte order.

FUNCTION F_ScanAmsNetlds : T AmsNetldArr

T AmsNetldArr [» 108]

98 Version: 1.1 TX1200

BECKHOFF Functions

VAR_INPUT
sNetID : T AmsNetID;
END_VAR

sNetID: TwinCAT network address [P_107] as string. E.g.: '127.16.17.3.1.1'

Input value Return value Description
sNetID # " (empty string) All bytes are zero Error during conversion. Please check the format of
and sNetID # '0.0.0.0.0.0' sNetld input string.

Example in structured text:

TwinCAT network address string: '127.16.17.3.1.1" is converted to an array of address bytes.
PROGRAM MAIN

VAR

ids : T AmsNetIdArr;

sNetID : T AmsNetID := '127.16.17.3.1.1"';
END VAR
ids := F ScanAmsNetIds(sNetID);

(* Result: ids[0]:=127, ids[1]:=16, ids[2]:=17, ids[3]:=3, ids[4]:=1, ids[5]:=1 *)

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.10.0 Build > 1257 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

4.4 MEMORY functions

441 MEMCMP

MEMCHF

—pBufl
—pBufz
—n

The function MEMCMP allows the values of PLC variables in two different memory areas to be compared.

FUNCTION MEMCMP : DINT

VAR_INPUT
pBufl :UDINT;
pBuf2 :UDINT;
n :UDINT;
END_VAR

pBuf1: start address of the first memory area (the first data buffer).
pBuf2: start address of the second memory area (the second data buffer).

n: number of bytes to be compared.

The function compares the first n bytes in the two data buffers and returns a value that corresponds to their
relationship.

TX1200 Version: 1.1 99

Functions BEGKHOFF

Return parameter Relationship of the first byte that differs between the first and second data
buffers

-1 pBuf1 smaller than pBuf2

0 pBuf1 identical to pBuf2

1 pBuf1 greater than pBuf2

OxFF Incorrect parameter values. pBuff1 =0 or pBuff2=00rn=20

Example of a call in FBD

VAR
Bufferl : ARRAY[0..3] OF BYTE;
Buffer2 : ARRAY[0..3] OF BYTE;
CmpResult : DINT;
END VAR
ADR FMERMCHF
Bufferl 5 pBufl ——CmpFResult=1
pBufz
ADR h
Buffer?
SIZEQF
Buffers

In this example, 4 bytes of data in Buffer2 are compared with those in Buffer1. The first differing byte is
larger in Buffer1 than it is in Buffer2.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCHelper.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
4.4.2 MEMCPY
hE WCF

— destAddr

—srcéddr

—n

The function MEMCPY can be used to copy the values of PLC variables from one memory area to another.

FUNCTION MEMCPY : UDINT

VAR INPUT
destAddr : UDINT;
srcAddr : UDINT;
n : UDINT;
END_ VAR

destAddr: start address of the target memory area.
srcAddr: start address of the source memory area.

n: number of bytes to be copied.

100 Version: 1.1 TX1200

BECKHOFF

Functions

The function copies n bytes from the memory area that starts at srcAddr to the memory area that starts at
destAdar.

Return parameter Meaning
0 Incorrect parameter values. destAddr == 0 or srcAddr==0 or n ==
>0 If successful, the number of bytes copied (n).

Example of a call in FBD

VAR
Bufferl : ARRAY[0..3] OF BYTE;
Buffer2 : ARRAY[0..3] OF BYTE;
CpyResult : UDINT;
END_ VAR
ADR RMEMCEY
Bufter] H destaddr ——CpyResult=16£00000004
sroaddr
ADR h
Buffers -
SIZEQF
Buffer?—

In the example, 4 bytes are copied from Buffer2 to Buffer1.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCHelper.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

443 MEMSET

MEMSET

—destaddr
— fillBwte
—in

The function MEMSET allows PLC variables in a particular memory area to be set to a particular value.

FUNCTION MEMSET : UDINT

VAR _INPUT
destAddr :UDINT;
fillByte :USINT;
n :UDINT;
END_VAR

destAddr: start address of the memory area that is to be set.

TX1200

Version: 1.1

Functions BEGKHOFF

fillByte: value of the filler byte.

n: number of bytes to be set.

The function fills n bytes in the memory area that starts at address destAddr with the value specified by
fillByte.

Return parameter Meaning
0 Incorrect parameter values. destAddr == 0 or n ==
>0 If successful, the number of bytes that have been set (n).

Example of a call in FBD

VAR
Bufferl : ARRAY[0..3] OF BYTE;
SetResult : UDINT;
END VAR
ADR MEMSET
Buffer! - destaddr SetResult=16400000004
Th#AFAfillByte

SIZEQF lin
Buffer!

In the example, 4 bytes in Buffer1 are set to the value OxAF.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCHelper.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
44.4 MEMMOVE
MEMMONWE

—destaddr MEMMOWVE—
—=reAddr
—h

The function MEMMOVE can be used to copy the values of PLC variables from one memory area to
another. If some regions of the source area and the destination overlap, MEMMOVE ensures that the
original source bytes in the overlapping region are copied before being overwritten.

FUNCTION MEMMOVE : UDINT

VAR_INPUT
destAddr : UDINT;
srcAddr : UDINT;
n : UDINT;
END_ VAR

destAddr: start address of the target memory area.

102 Version: 1.1 TX1200

BECKHOFF Functions

srcAddr: start address of the source memory area.

n: number of bytes to be copied.

The function copies n bytes from the memory area that starts at srcAddr to the memory area that starts at
destAddr.

Return parameter Meaning
0 Incorrect parameter values. destAddr == 0 or srcAddr==0 or n ==
>0 If successful, the number of bytes copied (n).

Example of a call in FBD

VAR
Bufferl : ARRAY[0..3] OF BYTE;
Buffer2 : ARRAY[0..3] OF BYTE;
MoveResult : UDINT;
END_ VAR
ADR MEMMOVE
Buffer! destaddr ——mOYEResult=164#00000004
srcAddr
ADR n
Buffer?—
SIZEQF
Buffer? -

In the example, 4 bytes are moved from Buffer2 to Buffer1.

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 Build > 737 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
4.5 Character functions
4.5.1 F_ ToCHR
F _TaCHR
— |: b

The function converts ASCIl Code zu STRING.

TX1200 Version: 1.1 103

Functions

BECKHOFF

FUNCTION F_ToCHR: STRING

VAR INPUT
© g 1BV 2
END_VAR

c: ASCII-Code to be converted;

Example for a call in FBD:

PROGRAM P _TEST
VAR

sCharacter : STRING(1l) := "'
cAsciiCode : BYTE := 16#31;
END_VAR
F_ToCHR

cAsciCode=16831 -

[}

Requirements

sCharacter=""

Development environment Target System PLC Libraries to include
TwinCAT v2.10.0 Build > 1256 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

4.5.2 F_ToASC

F ToASC
—5tr —

This function converts STRING to ASCII Code. Only the first sign of the STRING will be converted. An empty

STRING delivers a zero.

FUNCTION F_ToASC : BYTE

VAR INPUT
str : STRING;
END VAR

str: STRING to be converted.

Example for a call in FBD:

PROGRAM P _TEST

VAR
sCharacter : STRING(1l) := '1"';
cAsciiCode : BYTE := 0;
END VAR
F ToASC

sCharacter=""qstr

Requirements

cAsciCode=16831

Development environment Target System PLC Libraries to include
TwinCAT v2.10.0 Build > 1256 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

104

Version: 1.1

TX1200

BEGKHOFF Functions

TX1200 Version: 1.1 105

Data structures BEGKHOFF

5 Data structures

5.1 SYSTEMINFOTYPE

TYPE SYSTEMINFOTYPE

STRUCT
runTimeNo 3 BTG 2
projectName : STRING(32);
numberOfTasks : BYTE;
onlineChangeCount : UINT;
bootDataFlags : BYTE;
systemStateFlags : WORD;

END_STRUCT

END_TYPE

runTimeNo : The number of the active runtime system (1..4).

projectName : The name of the PLC project.

numberOfTasks : The number of tasks (max. 4) in the actual runtime system.
onlineChangeCount : The number of online changes made since the last complete download.

bootDataFlags : The status of the boot data (RETAIN and PERSISTENT) after loading. The upper four bits
indicate the state of the persistent data, while the lower four bits indicate the state of the retain data.

Bit number Description

0 RETAIN variables: LOADED (without error)

1 RETAIN variables: INVALID (the back-up copy was loaded, since no valid data was
present)

2 RETAIN variables: REQUESTED (RETAIN variables should be loaded, a setting in
TwinCAT System Control)

3 reserved

4 PERSISTENT variables: LOADED (without error)

5 PERSISTENT variables: INVALID (the back-up copy was loaded, since no valid data was
present)

6 reserved

7 reserved

systemStateFlags : Reserved.

® When shutting TwinCAT down the PERSISTENT and RETAIN data is written into two files on the
hard disk. The path can be specified in TwinCAT System Control by means of the TwinCAT system

1 properties (PLC tab). The standard setting is "<Drive>\TwinCAT\Boot". The files all have a fixed
name with fixed extensions.

File name Description

TCPLC_P_x.wbp Boot project (x = number of the run-time system)

TCPLC_S x.wbp Packed Sourcecode (x = number of the run-time system)

TCPLC_R_x.wbp RETAIN variables (x = number of the run-time system)

TCPLC_T_x.wbp PERSISTENT variables (x = number of the run-time system)

TCPLC_R_x.wb~ Backup copy of the RETAIN variables (x = number of the run-time system)
TCPLC_T_x.wb~ Backup copy of the PERSISTENT variables (x = number of the run-time system)

If the file for the persistent and/or retain variables can not be written when shutting TwinCAT down, the
standard reaction is for the backup file to be loaded. In that case bit 1 of the bootDataFlags (for the RETAIN
variables) in the PLC and/or bit 5 (for the PERSISTENT variables) is set.

If the back-up file is not to be used under any conditions, a setting must be made in the NT registry. In the
registry editor, under

106 Version: 1.1 TX1200

BECKHOFF

Data structures

[HKEY LOCAL MACHINE\SOFTWARE\Beckhoff\TwinCAT\Plc]

"ClearInvalidRetainData"=dword:00000000

"ClearInvalidPersistentData"=dword: 00000000

the value of "ClearlnvalidRetainData" or of "ClearlnvalidPersistentData" must be set to 1. The default setting

is 0.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.2 SYSTEMTASKINFOTYPE

TYPE SYSTEMTASKINFOTYPE

STRUCT
active : BOOL;
taskName : STRING(16) ;
firstCycle : BOOL;
cycleTimeExceeded : BOOL;
cycleTime : UDINT;
lastExecTime : UDINT;
priority : BYTE;
cycleCount : UDINT;

END STRUCT

END TYPE

active : Boolean variable is TRUE, if the task is active.
taskName : Contains the name of the task.
firstCycle : The variable is TRUE in the first cycle of the task.

cycleTimeExceeded : The variable is TRUE if the runtime of the task exceeds the cycletime set in
taskconfiguration.

cycleTime : Cycletime set in the taskconfiguration in parts of 100ns.
lastExecTime : Needed cycletime for the last cycle in parts of 100ns.
priority : Priority set in the task configuration.

cycleCount : Cyclecounter.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) PLCSystem.Lib
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.3 T_AmsNetid

TYPE T AmsNetId : STRING(23);
END TYPE

The variable of this type is a string containing the AMS network identifier of the target device to which the
ADS command is directed. The string consists of six numerical fields, separated by dots. Each numerical
field contains a number between 1 and 254. Valid AMS network addresses are, for example, "1.1.1.2.7.1" or
"200.5.7.170.1.7". If an empty string is passed, the AMS network identifier of the local device is automatically
assumed.

TX1200 Version: 1.1 107

Data structures

BECKHOFF

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.4 T_AmsNetidArr

TYPE T AmsNetIdArr : ARRAY[0..5] OF BYTE;

END TYPE

The variable of this type is a array of bytes containing the AMS network identifier. The address bytes are
represented in network byte order.

E.g.'127.16.17.3.1.1" is represented as:

byte[0] = 127

byte[1] = 16
byte[2] = 17
byte[3] = 3
byte[4] = 1
byte[5] = 1

Example: F ScanAmsNetlds [P 98]

Requirements

PLC libraries to include
TcSystem.Lib

Development environment
TwinCAT v2.10.0 Build > 1307

Target system type
PC or CX (x86, ARM)

5.5 T_AmsPort
TYPE T AmsPort : UINT;
END_TYPE

ADS devices in the TwinCAT network are identified by an AMS network address and a port number. The
following port numbers are invariably specified on every individual TwinCAT system. Table with specified
ADS port numbers:

ADS device Port number

Camshaft controller value 900

PLC Run-time system 1 :801
Run-time system 2 :811
Run-time system 3 :821
Run-time system 4 :831

NC 500

Reserved 400

1/0 300

Real-time kernel 200

Message system 100

Up to 4 independent PLC run-time systems can run on each computer, and each run-time system is to be
looked on as an independent PLC. The port number and the network address are both required as input
parameters when the ADS blocks are called.

108 Version: 1.1 TX1200

BECKHOFF

Data structures

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.6 T_MaxString

TYPE T MaxString : STRING(MAX STRING LENGTH) ;

END_TYPE

The variable of this type is PLC string with the maximal length.

VAR GLOBAL CONSTANT

MAX STRING LENGTH : UDINT := 255;
ENd VAR
Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib
5.7 T_IPv4Addr

TYPE T IPv4Addr: STRING (15);
END TYPE

String containing an (Ipv4) Internet Protocol dotted address. E.g. '"172.16.7.199'

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.10.0 Build > 1307 PC or CX (x86) TcSystem.Lib
CX (ARM)

5.8 T_IPv4AddrArr

TYPE T IPv4AddrArr: ARRAY[O0..3] OF BYTE;

END_TYPE

The variable of this type is a array of bytes containing the (IPv4) Internet Protocol network address. The
address bytes are represented in network byte order.
E.g.'172.16.7.199' is represented as:

byte[0] := 172
byte[1] := 16
byte[2] =7
byte[3] := 199

Example: F_ScanlPv4Addrids [P 83]

Requirements

Development environment

Target system type

PLC libraries to include

TwinCAT v2.10.0 Build > 1340

PC or CX (x86, ARM)

TcSystem.Lib

TX1200

Version: 1.1

109

Data structures BEGKHOFF

5.9 ST_AmsAddr

TYPE ST AmsAddr

STRUCT
netId : T AmsNetIdArr;
port : T _AmsPort;

END STRUCT

END TYPE

netld: Ams network ID address bytes [» 108];

port: Ams port number [P _108];

Requirements
Development environment Target system type PLC libraries to include
TwinCAT v2.10.0 Build > 1307 PC or CX (x86, ARM) TcSystem.Lib

5.10 E_OpenPath

TYPE E_OpenPath
(

PATH GENERIC :=1, (* search/open/create files in selected/generic folder *)
PATH BOOTPRJ, (* search/open/create files in the TwinCAT/
Boot directory (adds the extension .wbp) *)
PATH BOOTDATA, (* reserved for future use*)
PATH BOOTPATH, (* refers to the TwinCAT/
Boot directory without adding an extension (.wbp) *)
PATH USERPATHI =11, (*reserved for future use¥*)
PATH USERPATHZ2, (*reserved for future use*)
PATH_USERPATH3, (*reserved for future use¥*)
PATH USERPATH4, (*reserved for future use¥*)
PATH USERPATHS, (*reserved for future use¥*)
PATH USERPATHG6, (*reserved for future use*)
PATH_USERPATH7, (*reserved for future use¥*)
PATH_USERPATHS, (*reserved for future useY)
PATH USERPATHY (*reserved for future use¥*)
)i
END TYPE

The variable of this type selects generic or one of the TwinCAT system paths on the target device to perform
the file open operation.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.11 E_SeekOrigin

TYPE E SeekOrigin
(

SEEK_SET o= 0, (* Seek from beginning of file *)
SEEK_CUR, (* Seek from current position of file pointer *)
SEEK END (* Seek from the end of file ¥*)
) ;
END_TYPE
Value Description
SEEK_SET Seek from beginning of file
SEEK CUR Seek from current position of file pointer
SEEK _END Seek from the end of file

110 Version: 1.1 TX1200

BECKHOFF

Data structures

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.12

TYPE E TcEventClass :

(
TCEVENTCLASS NONE
TCEVENTCLASS MAINTENANCE
TCEVENTCLASS MESSAGE
TCEVENTCLASS_HINT
TCEVENTCLASS_STATEINFO
TCEVENTCLASS INSTRUCTION
TCEVENTCLASS WARNING
TCEVENTCLASS ALARM
TCEVENTCLASS_ PARAMERROR

)i

E_TcEventClass

No class ¥*)
Maintenance hint *)
Message ¥*)

Hint *)

State information *)
Instruction *)
Warning *)

Alarm *)

Parameter error *)

END TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) Standard.Lib, PLCEvent.Lib,
PLCSystem.Lib, TcPIcAds.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.13

TYPE E_TcEventClearModes :

(
TCEVENTLOGIOFFS CLEARACTIVE
TCEVENTLOGIOFFS_CLEARLOGGED
TCEVENTLOGIOFFS CLEARALL

)7

E_TcEventClearModes

END TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) Standard.Lib, PLCEvent.Lib,
PLCSystem.Lib, TcPIcAds.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.14

TYPE E_TcEventPriority :
(

TCEVENTPRIO IMPLICIT 5=
)

E_TcEventPriority

END TYPE

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v2.7.0 PC or CX (x86) Standard.Lib, PLCEvent.Lib,

PLCSystem.Lib, TcPIcAds.Lib

TX1200

Version: 1.1 111

Data structures

BECKHOFF

Development environment Target system type

PLC libraries to include

TwinCAT v2.8.0 PC or CX (x86)

TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM)

TcSystem.Lib

5.15 E_TcEventStreamType

TYPE E TcEventStreamType :
(

TCEVENTSTREAM INVALID := 0, (* no source name, no prog id *)
TCEVENTSTREAM SIMPLE, (* no source name, no prog id *)
TCEVENTSTREAM NORMAL, (* source name AND prog id *)
TCEVENTSTREAM NOSOURCE, (* no source name, but prog id ¥*)
TCEVENTSTREAM CLASSID, (* source name AND class id *)
TCEVENTSTREAM CLSNOSRC, (* no source name but class id ¥*)
TCEVENTSTREAM READCLASSCOUNT, (= =)
TCEVENTSTREAM MAXTYPE (* no source name but class id *)

) i

END_TYPE

Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) Standard.Lib, PLCEvent.Lib,
PLCSystem.Lib, TcPIcAds.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.16 E_IOAccessSize

TYPE E IOAccessSize :
(
NoOfByte Byte
NoOfByte Word
NoOfByte DWord

o
N
~

)i
END_TYPE

Byte size of 1/0 position (Number of bytes to be written or read).

Requirements

Development environment Target system type

PLC libraries to include

TwinCAT v2.0.10 Build > 1257 PC or CX (x86)

TcSystem.Lib

5.17 TcEvent

TYPE TcEvent

STRUCT
Class : UDINT;
Prio : UDINT;
Id : UDINT;
bQuitRequired : BOOL;
DataFormatStrAddress : UDINT;
UserFlags : DWORD;
Flags : DWORD;
StreamType : UDINT;
SourceString : STRING[15]; (TCEVENT SRCNAMESIZE)
SourcelId : UDINT;
ProgId : STRING[31]; (TCEVENT_ FMTPRGSIZE)
END STRUCT
END TYPE
112 Version: 1.1 TX1200

BEGKHOFF Data structures

Class : Event class, take value from the enum E TcEventClass [P 111]

Prio : priority of the event inside a class, free selectable count (1..MaxUDINT)
Id : Id of the events, is used for explicit identification in the Eventlogger

bQuitRequired : edges for switch on and off the acknowledgement obligatory (TRUE --> acknowledgement
obligatory)

DataFormatStrAddress : Address of a strings. String contains formatting instructions (e.g. '%d%f' formates
an Integer and a Real (float) value)

UserFlags : 32-bit count is free available

Flags : 32-bit count for identification of the event. The meaning of the single bits is declared in the global
Variables [»_115] of the libraries

StreamType : Type of events. Take the value from the enum E TcEventStreamType [P_112]

SourceString : String with the source name (max. 15 strings [P_115]).

Sourceld : Source-ID.

Progld : String (Prog-Id) with the name of the formatter (max. 31 strings [P_115])
TwinCAT 2.7 default: 'TcEventLogger.TcLogFormatter'
TwinCAT 2.8 default: 'TcEventLogger.TcLogFormatter' or "TcEventFormatter. TcXmlIFormatter'

Requirements

Development environment Target system type PLC libraries to include

TwinCAT v2.7.0 PC or CX (x86) Standard.Lib, PLCEvent.Lib,
PLCSystem.Lib, TcPIcAds.Lib

TwinCAT v2.8.0 PC or CX (x86) TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) TcSystem.Lib

5.18 PVOID

TYPE PVOID : UDINT;
END_TYPE

Platform independent pointer type:
+ x86, ARM => 32 bit pointer type (TwinCAT 2.xx default);
» Xx64 => 64 bit pointer type (reserved for future use in TwWinCAT 3.x);

Requirements
Entwicklungsumgebung Zielplattform Einzubindende SPS Bibliotheken
TwinCAT v2.11.0 Build >= 2243 PC or CX (x86, ARM) TcSystem.Lib

5.19 UXINT

TYPE UXINT : UDINT;
END TYPE

Platform independent unsigned integer type:

» x86, ARM => 32 bit unsigned integer (TWinCAT 2.xx default);
* Xx64 => 64 bit unsigned integer (reserved for future use in TwWinCAT 3.x);

TX1200 Version: 1.1 113

Data structures BEGKHOFF

Requirements

Entwicklungsumgebung Zielplattform Einzubindende SPS Bibliotheken
TwinCAT v2.11.0 Build >= 2243 PC or CX (x86, ARM) TcSystem.Lib

5.20 XINT

TYPE XINT : DINT;
END TYPE

Platform independent signed integer type:
+ x86, ARM => 32 bit signed integer (TwinCAT 2.xx default);
* Xx64 => 64 bit signed integer (reserved for future use in TwinCAT 3.x);

Requirements

Entwicklungsumgebung Zielplattform Einzubindende SPS Bibliotheken
TwinCAT v2.11.0 Build >= 2243 PC or CX (x86, ARM) TcSystem.Lib

5.21 XWORD

TYPE XWORD : DWORD;
END TYPE

Platform independent bit type:
+ x86, ARM => 32 bit unsigned integer (TWinCAT 2.xx default);
* X64 => 64 bit unsigned integer (reserved for future use in TwWinCAT 3.x);

Requirements

Entwicklungsumgebung Zielplattform Einzubindende SPS Bibliotheken
TwinCAT v2.11.0 Build >= 2243 PC or CX (x86, ARM) TcSystem.Lib

114 Version: 1.1 TX1200

BECKHOFF

Constants

6 Constants

In the TcSystem.lib different constants were defined.

Port numbers Value Description

AMSPORT_LOGGER 100 Port number of the standard loggers.

AMSPORT_EVENTLOG 110 Port number of the TwinCAT Eventloggers.

AMSPORT_RO_RTIME 200 Port number of the TwinCAT Realtime Servers.

AMSPORT_RO_IO 300 Port number of the TwinCAT I/O Servers.

AMSPORT_RO_NC 500 Port number of the TwinCAT NC Servers.

AMSPORT_RO_NCSAF 501 Port number of the TwinCAT NC Servers (Task SAF).

AMSPORT_RO_NCSVB 511 Port number of the TwinCAT NC Servers (Task SVB).

AMSPORT_RO_ISG 550 internal

AMSPORT_RO_CNC 600 Port number of the TwinCAT NC | Servers.

AMSPORT_RO_LINE 700 internal

AMSPORT_RO_PLC 800 Port number of the TwinCAT PLC Servers (only at the
Buscontroller).

AMSPORT_RO _PLC RTS1 801 Port number of the TwinCAT PLC Servers in the runtime 1.

AMSPORT_RO_PLC_RTS2 811 Port number of the TwinCAT PLC Servers in the runtime 2.

AMSPORT_RO_PLC RTS3 821 Port number of the TwinCAT PLC Servers in the runtime 3.

AMSPORT_RO_PLC RTS4 831 Port number of the TwinCAT PLC Servers in the runtime 4.

AMSPORT_R0_CAM 900 Port number of the TwinCAT CAM Server.

AMSPORT_R0O_CAMTOOL 950 Port number of the TwinCAT CAMTOOL Server.

AMSPORT_R3_SYSSERV 10000 Port number of the TwinCAT System Service.

AMSPORT_R3 SCOPESERVER (27110 Port number of the TwinCAT Scope Servers (since Lib.
V2.0.12)

ADS States Value Description

ADSSTATE_INVALID 0 ADS Status: invalid

ADSSTATE_IDLE 1 ADS Status: idle

ADSSTATE_RESET 2 ADS Status: reset.

ADSSTATE_INIT 3 ADS Status: init

ADSSTATE_START 4 ADS Status: start

ADSSTATE_RUN 5 ADS Status: run

ADSSTATE_STOP 6 ADS Status: stop

ADSSTATE_SAVECFG 7 ADS Status: save configuration

ADSSTATE_LOADCFG 8 ADS Status: load configuration

ADSSTATE_POWERFAILURE 9 ADS Status: Power failure

ADSSTATE_POWERGOOD 10 ADS Status: Power good

ADSSTATE_ERROR 11 ADS Status: Error

ADSSTATE_SHUTDOWN 12 ADS Status: Shutdown

ADSSTATE_SUSPEND 13 ADS Status: Suspend

ADSSTATE_RESUME 14 ADS Status: Resume

ADSSTATE_CONFIG 15 ADS Status: Configuration

ADSSTATE_RECONFIG 16 ADS Status: Reconfiguration

ADSSTATE_MAXSTATES 17

TX1200 Version: 1.1 115

Constants BEGKHOFF
Reserved Index Groups Value Description
ADSIGRP_SYMTAB 16#F000
ADSIGRP_SYMNAME 16#F001
ADSIGRP_SYMVAL 16#F002
ADSIGRP_SYM_HNDBYNAME 16#F003
ADSIGRP_SYM_VALBYNAME 16#F004
ADSIGRP_SYM_VALBYHND 16#F005
ADSIGRP_SYM_RELEASEHND |16#F006
ADSIGRP_SYM_INFOBYNAME |16#F007
ADSIGRP_SYM_VERSION 16#F008
ADSIGRP_SYM_INFOBYNAMEEX |16#F009
ADSIGRP_SYM_DOWNLOAD 16#F00A
ADSIGRP_SYM_UPLOAD 16#F00B
ADSIGRP_SYM_UPLOADINFO |16#F00C
ADSIGRP_SYMNOTE 16#F010
ADSIGRP_IOIMAGE_RWIB 16#F020
ADSIGRP_IOIMAGE_RWIX 16#F021
ADSIGRP_IOIMAGE_RISIZE 16#F025
ADSIGRP_IOIMAGE_RWOB 16#F030
ADSIGRP_IOIMAGE_RWOX 16#F031
ADSIGRP_IOIMAGE_RWOSIZE |16#F035
ADSIGRP_IOIMAGE_CLEARI 16#F040
ADSIGRP_IOIMAGE_CLEARO 16#F050
ADSIGRP_IOIMAGE_RWIOB 16#F060
ADSIGRP_DEVICE_DATA 16#F100
ADSIOFFS_DEVDATA_ADSSTAT |16#0000
E

ADSIOFFS_DEVDATA DEVSTAT |16#0002
E

System Service Index Groups Value Description
SYSTEMSERVICE_OPENCREAT |100

E

SYSTEMSERVICE_OPENREAD 101
SYSTEMSERVICE_OPENWRITE |102
SYSTEMSERVICE_CREATEFILE |110
SYSTEMSERVICE_CLOSEHAND |111

LE

SYSTEMSERVICE_FOPEN 120
SYSTEMSERVICE_FCLOSE 121
SYSTEMSERVICE_FREAD 122
SYSTEMSERVICE_FWRITE 123
SYSTEMSERVICE_FSEEK 124
SYSTEMSERVICE_FTELL 125
SYSTEMSERVICE_FGETS 126
SYSTEMSERVICE_FPUTS 127
SYSTEMSERVICE_FSCANF 128
SYSTEMSERVICE_FPRINTF 129
SYSTEMSERVICE_FEOF 130

116

Version: 1.1

TX1200

BEGKHOFF Constants
System Service Index Groups Value Description
SYSTEMSERVICE_FDELETE 131
SYSTEMSERVICE_FRENAME 132
SYSTEMSERVICE_REG_HKEYL (200

OCALMACHINE

SYSTEMSERVICE_SENDEMAIL |300
SYSTEMSERVICE_TIMESERVIC (400

ES

SYSTEMSERVICE_STARTPROC (500

ESS

SYSTEMSERVICE_CHANGENETI |600

D

System Service Index Offsets Value Description
(Timeservices)

TIMESERVICE_DATEANDTIME |1
TIMESERVICE_SYSTEMTIMES |2
TIMESERVICE_RTCTIMEDIFF 3
TIMESERVICE_ADJUSTTIMETOR |4

TC

Masks for Log output Value Description
ADSLOG_MSGTYPE_HINT 16#01
ADSLOG_MSGTYPE_WARN 16#02
ADSLOG_MSGTYPE_ERROR 16#04
ADSLOG_MSGTYPE_LOG 16#10
ADSLOG_MSGTYPE_MSGBOX |16#20
ADSLOG_MSGTYPE_RESOURC |16#40

E

ADSLOG_MSGTYPE_STRING 16#80

Masks for Bootdata-Flags Value Description
BOOTDATAFLAGS RETAIN_LOA |16#01

DED

BOOTDATAFLAGS_RETAIN_INV |16#02

ALID

BOOTDATAFLAGS_RETAIN_REQ|16#04

UESTED

BOOTDATAFLAGS PERSISTENT |16#10

_LOADED

BOOTDATAFLAGS PERSISTENT |16#20

_INVALID

Masks for BSOD-Flags Value Description
SYSTEMSTATEFLAGS BSOD 16#01 BSOD: Blue Screen of Death

TX1200

Version: 1.1

117

Constants BEGKHOFF

Masks for BSOD-Flags Value Description

SYSTEMSTATEFLAGS_ RTVIOLA [16#02 Realtime violation, latency time overrun

TION

Masks for File output Value Description

FOPEN_MODEREAD 16#0001 'r': Opens file for reading

FOPEN_MODEWRITE 16#0002 |'w": Opens file for writing, (possible) existing files were
overwritten.

FOPEN_MODEAPPEND 16#0004 'a": Opens file for writing, is attached to (possible) exisiting
files.
If no file exists, it will be created.

FOPEN_MODEPLUS 16#0008 |'+": Opens a file for reading and writing.

FOPEN_MODEBINARY 16#0010 'b": Opens a file for binary reading and writing.

FOPEN_MODETEXT 16#0020 |'t: Opens a file for textual reading and writing.

Masks for Eventlogger Flags Value Description

TCEVENTFLAG_PRIOCLASS 16#0010 Class and priority are defined by the formatter.

TCEVENTFLAG_FMTSELF 16#0020 |The formatting information comes with the event

TCEVENTFLAG_LOG 16#0040 |Logg.

TCEVENTFLAG_MSGBOX 16#0080 Show message box .

TCEVENTFLAG_SRCID 16#0100 Use Source-Id instead of Source name.

TwinCAT Eventlogger Status Value Description

messages

TCEVENTSTATE_INVALID 16#0000 Not valid, occurs also if the event was not reported.

TCEVENTSTATE_SIGNALED 16#0001 Event is reported, but neither signed off nor
acknowledged.

TCEVENTSTATE_RESET 16#0002 |Eventis signed off ('gone').

TCEVENTSTATE_CONFIRMED |16#0010 |Eventis acknowledged.

TCEVENTSTATE_RESETCON 16#0012 |Eventis signed off and acknowledged.

TwinCAT Eventlogger Status Value Description
messages
TCEVENT_SRCNAMESIZE 15 Max. Length for the Source name.
TCEVENT_FMTPRGSIZE 31 Max. Length for the name of the formatters.
Other Value Description
PI 3.14159265 | Pi number

358979323

846264338

32795
DEFAULT_ADS_TIMEOUT T#5s Default ADS timeout
MAX_STRING_LENGTH 255 The max. string length of T_MaxString data type

118 Version: 1.1 TX1200

More Information:
www.beckhoff.com/tx1200

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TX1200
https://www.beckhoff.com
https://www.beckhoff.com/tx1200

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Overview
	3 Function blocks
	3.1 ADS Function Blocks
	3.1.1 ADSREAD
	3.1.2 ADSWRITE
	3.1.3 ADSRDWRT
	3.1.4 ADSRDSTATE
	3.1.5 ADSWRTCTL
	3.1.6 ADSRDDEVINFO
	3.1.7 ADSREADEX
	3.1.8 ADSRDWRTEX

	3.2 Expanded ADS Function Blocks
	3.2.1 ADSREADIND
	3.2.2 ADSWRITEIND
	3.2.3 ADSRDWRTIND
	3.2.4 ADSREADRES
	3.2.5 ADSWRITERES
	3.2.6 ADSRDWRTRES
	3.2.7 Example 1: Expanded ADS function blocks
	3.2.8 Example 2: Expanded ADS function blocks

	3.3 General Function Blocks
	3.3.1 DRAND
	3.3.2 GETCURTASKINDEX

	3.4 Time Function Blocks
	3.4.1 GETSYSTEMTIME
	3.4.2 GETTASKTIME
	3.4.3 GETCPUCOUNTER
	3.4.4 GETCPUACCOUNT

	3.5 Watchdog Function Blocks
	3.5.1 FB_PcWatchdog

	3.6 File Function Blocks
	3.6.1 FB_EOF
	3.6.2 FB_FileClose
	3.6.3 FB_FileDelete
	3.6.4 FB_FileGets
	3.6.5 FB_FileOpen
	3.6.6 FB_FilePuts
	3.6.7 FB_FileRead
	3.6.8 FB_FileRename
	3.6.9 FB_FileSeek
	3.6.10 FB_FileTell
	3.6.11 FB_FileWrite
	3.6.12 Example: File access from the PLC
	3.6.13 FB_CreateDir
	3.6.14 FB_RemoveDir
	3.6.15 TwinCAT 2.7 file function blocks
	3.6.15.1 FILEOPEN
	3.6.15.2 FILECLOSE
	3.6.15.3 FILEWRITE
	3.6.15.4 FILEREAD
	3.6.15.5 FILESEEK

	3.7 IEC steps / SFC flags function blocks
	3.7.1 SFCActionControl
	3.7.2 AnalyzeExpression
	3.7.3 AnalyzeExpressionCombined
	3.7.4 AppendErrorString

	3.8 Eventlogger function blocks
	3.8.1 ADSLOGEVENT
	3.8.2 ADSCLEAREVENTS

	4 Functions
	4.1 General Functions
	4.1.1 F_SplitPathName
	4.1.2 F_CreateIPv4Addr
	4.1.3 F_ScanIPv4AddrIds
	4.1.4 SETBIT32
	4.1.5 CSETBIT32
	4.1.6 GETBIT32
	4.1.7 CLEARBIT32
	4.1.8 LPTSIGNAL
	4.1.9 F_GetStructMemberAlignment
	4.1.10 F_GetVersionTcSystem

	4.2 I/O port access
	4.2.1 F_IOPortRead
	4.2.2 F_IOPortWrite

	4.3 ADS Functions
	4.3.1 ADSLOGDINT
	4.3.2 ADSLOGLREAL
	4.3.3 ADSLOGSTR
	4.3.4 F_CreateAmsNetId
	4.3.5 F_ScanAmsNetIds

	4.4 MEMORY functions
	4.4.1 MEMCMP
	4.4.2 MEMCPY
	4.4.3 MEMSET
	4.4.4 MEMMOVE

	4.5 Character functions
	4.5.1 F_ToCHR
	4.5.2 F_ToASC

	5 Data structures
	5.1 SYSTEMINFOTYPE
	5.2 SYSTEMTASKINFOTYPE
	5.3 T_AmsNetId
	5.4 T_AmsNetIdArr
	5.5 T_AmsPort
	5.6 T_MaxString
	5.7 T_IPv4Addr
	5.8 T_IPv4AddrArr
	5.9 ST_AmsAddr
	5.10 E_OpenPath
	5.11 E_SeekOrigin
	5.12 E_TcEventClass
	5.13 E_TcEventClearModes
	5.14 E_TcEventPriority
	5.15 E_TcEventStreamType
	5.16 E_IOAccessSize
	5.17 TcEvent
	5.18 PVOID
	5.19 UXINT
	5.20 XINT
	5.21 XWORD

	6 Constants

		documentation@beckhoff.com
	2022-10-11T10:58:48+0200
	Beckhoff Automation, Verl
	Documentation Publishing

