
Manual | EN

TS8010
TwinCAT 2 | PLC Building Automation Basic

2022-10-28 | Version: 1.1

Table of contents

TS8010 3Version: 1.1

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 Safety instructions... 6
1.3 Notes on information security.. 7

2 General information .. 8

3 PLC API .. 9
3.1 Lightings.. 11

3.1.1 FB_Dimmer1Switch ... 11
3.1.2 FB_Dimmer1SwitchEco ... 13
3.1.3 FB_Dimmer2Switch ... 15
3.1.4 FB_Dimmer2SwitchEco ... 17
3.1.5 FB_Dimmer3Switch ... 18
3.1.6 FB_Light... 21
3.1.7 FB_LightControl ... 22
3.1.8 FB_ConstantLightControlEco... 24
3.1.9 FB_Ramp... 27
3.1.10 FB_Sequencer ... 28
3.1.11 FB_StairwellDimmer .. 32
3.1.12 FB_StairwellLight ... 34

3.2 Facade .. 34
3.2.1 FB_RoofWindow .. 34
3.2.2 FB_VenetianBlind .. 36
3.2.3 FB_VenetianBlindEx .. 38
3.2.4 FB_VenetianBlindEx1Switch.. 41

3.3 Scene Management .. 44
3.3.1 FB_RoomOperation ... 44
3.3.2 FB_ScenesLighting .. 49
3.3.3 FB_ScenesVenetianBlind .. 52

3.4 Signal Processing ... 54
3.4.1 FB_ShortLongClick .. 54
3.4.2 FB_SignallingContact... 55
3.4.3 FB_SingleDoubleClick ... 56
3.4.4 FB_ThresholdSwitch .. 57

3.5 Filter Functions.. 58
3.5.1 FB_PT1 .. 58
3.5.2 FB_PT2 .. 60

3.6 Conversion Functions ... 63
3.6.1 F_Scale .. 63
3.6.2 Temperature conversion functions... 63

3.7 Time Switches... 64
3.7.1 Scheduler Overview ... 64
3.7.2 FB_WeeklyTimeSwitch .. 75
3.7.3 FB_CalcSunPosition .. 77
3.7.4 FB_CalcSunriseSunset .. 78

Table of contents

TS80104 Version: 1.1

3.7.5 FB_CalcPublicHolidaysDE... 80
3.7.6 FB_CalcPublicHolidaysUS... 82
3.7.7 FB_CalcFederalHolidaysUS .. 84

3.8 Energy Management ... 85
3.8.1 FB_MaximumDemandController.. 85

3.9 Error codes.. 89

4 Appendix.. 90
4.1 Support and Service.. 90

Foreword

TS8010 5Version: 1.1

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TS80106 Version: 1.1

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

TS8010 7Version: 1.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

General information

TS80108 Version: 1.1

2 General information
Further libraries are required

For PC systems (x86) and Embedded-PCs (CXxxxx):

• Standard.lib
• TcBase.lib
• TcSystem.lib
• TcUtilities.lib

For Bus Terminal Controller of BCxx00 series:

• Standard.lb6
• TcPlcUtilitiesBC.lb6
• PlcSystemBC.lb6

For Bus Terminal Controller of BCxx50, BCxx20 and BC9191 series:

• Standard.lbx
• TcBaseBCxx50.lbx
• TcSystemBCxx50.lbx

For Bus Terminal Controller of BXxx00 series:

• Standard.lbx
• TcBaseBX.lbx
• TcSystemBX.lbx

Memory usage
By linking the library PLC program memory is already consumed. Depending on the application pro-
gram the remaining memory can not be sufficient.

PLC API

TS8010 9Version: 1.1

3 PLC API
The TwinCAT PLC Building Automation Library contains a number of function blocks useful for the building
automation.

Lightings

Name Description
FB_Dimmer1Switch [} 11] Light dimmer using a switch.

FB_Dimmer1SwitchEco [} 13] Simplified version of the FB_Dimmer1Switch() without extra-
functions. Needs less memory.

FB_Dimmer2Switch [} 15] Light dimmer using two switches.

FB_Dimmer2SwitchEco [} 17] Simplified version of the FB_Dimmer2Switch() without extra-
functions. Needs less memory.

FB_Dimmer3Switch [} 18] Combination of FB_Dimmer1Switch() und FB_Dimmer2Switch().

FB_Light [} 21] Control of lighting.

FB_LightControl [} 22] Daylight lamp control.

FB_ConstantLightControlEco [} 24] Constant light control.

FB_Ramp [} 27] Light-ramp.

FB_Sequencer [} 28] Light-sequence.

FB_StairwellDimmer [} 32] Stairwell light dimmer.

FB_StairwellLight [} 34] Stairwell lighting.

Facade

Name Description
FB_RoofWindow [} 34] Control of roof-window.

FB_VenetianBlind [} 36] Control of blinds.

FB_VenetianBlindEx [} 38] Venetian blind control with direct position command.

FB_VenetianBlindEx1Switch [} 41] Venetian blind control with direct position command with only one
switch-input.

Scene Management

Name Description
FB_RoomOperation [} 44] Function block for calling and changing scenes via buttons. *)

FB_ScenesLighting [} 49] Function block for managing lighting scenes. *)

FB_ScenesVenetianBlind [} 52] Function block for managing blind scenes. *)

Signal Processing

Name Description
FB_ShortLongClick [} 54] Differentiation between short and long button presses.

FB_SignallingContact [} 55] Signalling contact.

FB_SingleDoubleClick [} 56] Differentiation between single and double button presses.

FB_ThresholdSwitch [} 57] Threshold switch.

PLC API

TS801010 Version: 1.1

Filter Functions

Name Description
FB_PT1 [} 58] PT1-Filter for smoothing of input-values.

FB_PT2 [} 60] PT2-Filter for smoothing of input-values.

Conversion Functions

Name Description
F_Scale [} 63] Scaling the / conversion from raw values to measured value

F_TO_C [} 63], F_TO_K [} 63], F_TO_R
[} 63], K_TO_F [} 63], K_TO_C
[} 63], K_TO_R [} 63], C_TO_F
[} 63], C_TO_K [} 63], C_TO_R
[} 63], R_TO_K [} 63], R_TO_C
[} 63], R_TO_F [} 63]

Functions for converting temperatures between Kelvin, Celsius,
Reaumur and Fahrenheit

Time Switches

Name Description
FB_WeeklyTimeSwitch [} 75] Weekly time switch.

FB_CalcSunPosition [} 77] Calculating of sun height and sun sun azimuth.

FB_CalcSunriseSunset [} 78] Calculation of sunrise and Sunset. *)

FB_CalcPublicHolidaysDE [} 80] Calculation of german holidays.

FB_CalcPublicHolidaysUS [} 82] Calculation of the United States public holidays.

FB_CalcFederalHolidaysUS [} 84] Calculation of the United States federal holidays.

FB_DailyScheduler [} 66] switches every n-th day.

FB_WeeklyScheduler [} 67] switches every n-th week on specific days of the week.

FB_MonthlyScheduler1 [} 69] switches in specific months on a specific weekday.

FB_MonthlyScheduler2 [} 70] switches in specific months on a specific day of the month.

FB_YearlyScheduler [} 71] switches on a specific day of the year.

Energy Management

Name Description
FB_MaximumDemandController [} 85] Maximum Demand Controller in order to reduce power peaks.

*) Note: This functionblock is only available in the PC-based version of the library.

PLC API

TS8010 11Version: 1.1

3.1 Lightings

3.1.1 FB_Dimmer1Switch

Description

Operating by means of the bSwitchDimm input

The light is switched on or off by a short signal at the bSwitchDimm input. Dimmer mode will be activated if
the signal remains for longer than tSwitchOverTime (typical recommended value: 200ms). The output signal
then cycles between nOutMin and nOutMax. In order to be able to set the maximum or minimum value more
easily, the output signal pauses at the level of the maximum and minimum values for the time given by
tCycleDelay. When the signal is once more removed, the output signal being generated at that time is
retained. Another pulse at the input will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a rising edge is applied to the bOn or bOff inputs. This may, for
instance, be used for global on/off functions. The output value is set to 0 when switching off. The switch-on
behaviour can be affected by the memory function (see below).

Operation by means of the bSetDimmValue and nDimmValue inputs

If the value of nDimmValue changes, the signal will be passed through directly to the output. The significant
point here is that the value changes. The lighting is switched off by changing the value to 0. If there is a
rising edge at the bSetDimmValue input, the value of nDimmValue immediately appears at the output.
Immediate modification of the output can be suppressed by a static 1- signal at the bSetDimmValue input.
This makes it possible to apply a value to the nDimmValue input, but for this value only to be passed to the
output at the next rising edge of bSetDimmValue.
The bSetDimmValue and nDimmValue inputs can be used to implement a variety of lighting scenarios. Using
nDimmValue to set the outputs directly can be used to achieve particular brightness levels, either directly or
by continuously changing the value. nDimmValue must have a value between nOutMin and nOutMax. The
value 0 is an exception. If the value is outside this range, the output value is limited to the upper or lower
limit, as appropriate.

PLC API

TS801012 Version: 1.1

The memory function

It is necessary to determine whether the memory function (bMemoryModeOn input) is active or not at switch-
on. If the memory function is active, then the last set value is placed at the output as soon as the lamp is
switched on. If the memory function is not active, then the value specified by the
nOnValueWithoutMemoryMode parameter is output. It is irrelevant, in this case, whether the light it has been
switched on by means of the bOn input or the bSwitchDimm input. It should be noted that the
nOnValueWithoutMemoryMode parameter must lie between nOutMin and nOutMax. If this is not the case,
the output value is adjusted to the upper or lower limit, as appropriate.

Fast dimming up/down when switching on and off

Lighting is particularly pleasant if sudden changes are replaced by a slow change to the desired value. This
mode can be activated both for switching on and for switching off by means of the two inputs,
bDimmOnMode and bDimmOffMode. The tDimmOnTime and tDimmOffTime parameters specify the time
that will be taken by the switching processes. This value is always related to the minimum and maximum
possible output values (nOutMin and nOutMax). The bOn and bOff inputs are one way in which the switch
on/off commands may be given. Alternatively, a short pulse can be provided to the bSwitchDimm input. If the
nDimmValue input is set to 0, the output is modified without delay. The same is true if the output is set by a
rising edge at the bSetDimmValue input.

Comments on the tSwitchOverTime and tDimmTime parameters
If a duration of 0 is specified for the tSwitchOverTime parameter, while a value of greater than 0 is
specified for tDimmTime, then the tSwitchDimm input can only be used to dim the light. Switching
on and off is only possible with the bOn and bOff inputs.
If the tDimmTime parameter is 0, the bSwitchDimm input can only be used to switch the light on or
off. In this case, the value of tSwitchOverTime is irrelevant.

VAR_INPUT
bSwitchDimm : BOOL;
bOn : BOOL;
bOff : BOOL;
bSetDimmValue : BOOL;
nDimmValue : UINT;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tCycleDelay : TIME := t#10ms;
bMemoryModeOn : BOOL := FALSE;
nOnValueWithoutMemoryMode : UINT := 20000;
bDimmOnMode : BOOL := FALSE;
tDimmOnTime : TIME := t#0s;
bDimmOffMode : BOOL := FALSE;
tDimmOffTime : TIME := t#0s;
nOutMin : UINT := 5000;
nOutMax : UINT := 32767;

bSwitchDimm: Switches or dims the output.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

bSetDimmValue: Switches the output to the value nDimmValue.

nDimmValue: The value is immediately applied to the output when there is a change.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the bSwitchDimm
input.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tCycleDelay: Delay time, if either the minimum or maximum value is reached.

bMemoryModeOn: Switches over to use the memory function, so that the previous value is written to the
output as soon as it is switched on.

PLC API

TS8010 13Version: 1.1

nOnValueWithoutMemoryMode: Value at switch on if the memory function is not active.

bDimmOnMode: The output value is increased in steps when switching on.

tDimmOnTime: Period over which the light is turned up when switching on. bDimmOnMode must be active.

bDimmOffMode: The output value is reduced in steps when switching off.

tDimmOffTime: Period over which the light is turned down when switching off. bDimmOffMode must be
active.

nOutMin: Minimum output value.

nOutMax: Maximum output value. If the parameter nOutMin is not smaller than nOutMax, the output will
remain at 0.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: Analogue output-value.

bLight: Digital output-value. This bit is set if nOut is above 0.

3.1.2 FB_Dimmer1SwitchEco

Description

The function-block FB_Dimmer1SwitchEco is the memory-saving variation on the FB_Dimmer1Switch()
[} 11]. It operates without the extra-functions "Set-Value" and "Memory-mode-off", which are not needed in
many cases. In addition the values nOutMin and nOutMax of the FB_Dimmer1Switch() [} 11] are set to 0 and
32767 internally. The resulting output range is exactly the range of an analogue-output-terminal. The input
tPLCCycle is very important for the calculation of increments per cycle for the output nOut . This method
saves additional time-calculations.

Operating by means of the bSwitchDimm input

The light is switched on or off by a short signal at the bSwitchDimm input. Dimmer mode will be activated if
the signal remains for longer than tSwitchOverTime (typical recommended value: 200ms). The output signal
then cycles between 0 and 32767. In order to be able to set the maximum or minimum value more easily, the
output signal pauses at the level of the maximum and minimum values for the time given by tCycleDelay.
When the signal is once more removed, the output signal being generated at that time is retained. Another
pulse at the input will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a rising edge is applied to the bOn or bOff inputs. This may, for
instance, be used for global on/off functions. The output value is set to 0 when switching off.

PLC API

TS801014 Version: 1.1

The memory function

Unlike the function-block FB_Dimmer1Switch() [} 11], which can operate with or without memory-function, this
function is always activated in this variation. This means, that the light will, when turned on, always be set to
the last on-level. How the light was turned on, either with the input bSwitchDimm or with the input bOn ,
doesn´t matter.

Comment on the tSwitchOverTime parameter
If a duration of 0 is specified for the parameter tSwitchOverTime, the bSwitchDimm input can only
be used to dim the light. Switching on and off is only possible with the bOn and bOff inputs.

VAR_INPUT
bSwitchDimm : BOOL;
bOn : BOOL;
bOff : BOOL;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tCycleDelay : TIME := t#500ms;
tPLCCycle : TIME := t#10ms;

bSwitchDimm: Switches or dims the output.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the bSwitchDimm
input.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tCycleDelay: Delay time, if either the minimum or maximum value is reached.

tPLCCycle: PLC-Cycle time.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: Analogue output-value.

bLight: Digital output-value. This bit is set if nOut is above 0.

PLC API

TS8010 15Version: 1.1

3.1.3 FB_Dimmer2Switch

Description

The functions available in the Dimmer2Switch function block correspond closely to those in
FB_Dimmer1Switch() [} 11]. The difference is simply that two switches are connected to the Dimmer2Switch
function block. This allows the user to choose specifically between dimming up or dimming down.

Operation by means of the bSwitchDimmUp and bSwitchDimmDown inputs

The light is switched on or off by a short signal at the bSwitchDimmUp or bSwitchDimmDown inputs. Dimmer
mode will be activated if the signal remains for longer than tSwitchOverTime (typical recommended value:
200ms). The output signal goes to nOutMin or nOutMax. When the signal is once more removed, the output
signal being generated at that time is retained. Another pulse at one of the inputs will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a rising edge is applied to the bOn or bOff inputs. This may, for
instance, be used for global on/off functions. The output value is set to 0 when switching off. The switch-on
behaviour can be affected by the memory function (see below).

Operation by means of the bSetDimmValue and nDimmValue inputs

If the value of nDimmValue changes, the signal will be passed through directly to the output. The significant
point here is that the value changes. The lighting is switched off by changing the value to 0. If there is a
rising edge at the bSetDimmValue input, the value of nDimmValue immediately appears at the output.
Immediate modification of the output can be suppressed by a static 1- signal at the bSetDimmValue input.
This makes it possible to apply a value to the nDimmValue input, but for this value only to be passed to the
output at the next rising edge of bSetDimmValue.
The bSetDimmValue and nDimmValue inputs can be used to implement a variety of lighting scenarios. Using
nDimmValue to set the outputs directly can be used to achieve brightness levels, either directly or by
continuously changing the value. nDimmValue must have a value between nOutMin and nOutMax. The
value 0 is an exception. If the value is outside this range, the output value is limited to the upper or lower
limit, as appropriate.

The memory function

It is necessary to determine whether the memory function (bMemoryModeOn input) is active or not at switch-
on. If the memory function is active, then the last set value is placed at the output as soon as the lamp is
switched on. If the memory function is not active, then the value specified by the
nOnValueWithoutMemoryMode parameter is output. It is irrelevant, in this case, whether the light it has been

PLC API

TS801016 Version: 1.1

switched on by means of the bOn input or one of the bSwitchDimmUp or bSwitchDimmDown inputs. It
should be noted that the nOnValueWithoutMemoryMode parameter must lie between nOutMin and
nOutMax. If this is not the case, the output value is adjusted to the upper or lower limit, as appropriate.

Fast dimming up/down when switching on and off

Lighting is particularly pleasant if sudden changes are replaced by a slow change to the desired value. This
mode can be activated both for switching on and for switching off by means of the two inputs,
bDimmOnMode and bDimmOffMode. The tDimmOnTime and tDimmOffTime parameters specify the time
that will be taken by the switching processes. This value is always related to the minimum and maximum
possible output values (nOutMin and nOutMax). The bOn and bOff inputs are one way in which the switch
on/off commands may be given. Alternatively, a short pulse can be provided to either of the inputs
bSwitchDimmUp or bSwitchDimmDown. If the nDimmValue input is set to 0, the output is modified without
delay. The same is true if the output is set by a rising edge at the bSetDimmValue input.

Comments on the tSwitchOverTime and tDimmTime parameters
If a duration of 0 is specified for the tSwitchOverTime parameter, while a value of greater than 0 is
specified for tDimmTime, then the bSwitchDimmUp or bSwitchDimmDown inputs can only be used
to dim the light. Switching on and off is only possible with the bOn and bOff inputs.
If the tDimmTime parameter is 0, the bSwitchDimmUp or bSwitchDimmDown inputs can only be
used to switch the light on or off. In this case, the value of tSwitchOverTime is irrelevant.

VAR_INPUT
bSwitchDimmUp : BOOL;
bSwitchDimmDown : BOOL;
bOn : BOOL;
bOff : BOOL;
bSetDimmValue : BOOL;
nDimmValue : UINT;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
bMemoryModeOn : BOOL := FALSE;
nOnValueWithoutMemoryMode : UINT := 20000;
bDimmOnMode : BOOL := FALSE;
tDimmOnTime : TIME := t#0s;
bDimmOffMode : BOOL := FALSE;
tDimmOffTime : TIME := t#0s;
nOutMin : UINT := 5000;
nOutMax : UINT := 32767;

bSwitchDimmUp: Switches or dims the output Up.

bSwitchDimmDown: Switches or dims the output Down.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

bSetDimmValue: Switches the output to the value nDimmValue.

nDimmValue: The value is immediately applied to the output when there is a change.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the
bSwitchDimmUp and bSwitchDimmDown inputs.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

bMemoryModeOn: Switches over to use the memory function, so that the previous value is written to the
output as soon as it is switched on.

nOnValueWithoutMemoryMode: Value at switch on if the memory function is not active.

bDimmOnMode: The output value is increased in steps when switching on.

tDimmOnTime: Period over which the light is turned up when switching on. bDimmOnMode must be active.

bDimmOffMode: The output value is reduced in steps when switching off.

PLC API

TS8010 17Version: 1.1

tDimmOffTime: Period over which the light is turned down when switching off. bDimmOffMode must be
active.

nOutMin: Minimum output value.

nOutMax: Maximum output value. If the parameter nOutMin is not smaller than nOutMax, the output will
remain at 0.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: Analogue output-value.

bLight: Digital output-value. This bit is set if nOut is above 0.

3.1.4 FB_Dimmer2SwitchEco

Description

The function-block FB_Dimmer2SwitchEco is the memory-saving variation on the FB_Dimmer2Switch()
[} 15]. It operates without the extra-functions "Set-Value" and "Memory-mode-off", which are not needed in
many cases. In addition the values nOutMin and nOutMax of the FB_Dimmer2Switch() [} 15] are set to 0 and
32767 internally. The resulting output range is exactly the range of an analogue-output-terminal. The input
tPLCCycle is very important for the calculation of increments per cycle for the output nOut . This method
saves additional time-calculations.

Operation by means of the bSwitchDimmUp and bSwitchDimmDown inputs

The light is switched on or off by a short signal at the bSwitchDimmUp or bSwitchDimmDown inputs. Dimmer
mode will be activated if the signal remains for longer than tSwitchOverTime (typical recommended value:
200ms). The output signal goes to nOutMin or nOutMax. When the signal is once more removed, the output
signal being generated at that time is retained. Another pulse at one of the inputs will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a rising edge is applied to the bOn or bOff inputs. This may, for
instance, be used for global on/off functions. The output value is set to 0 when switching off.

The memory function

Unlike the function-block FB_Dimmer2Switch() [} 15], which can operate with or without memory-function, this
function is always activated in this variation. This means, that the light will, when turned on, always be set to
the last on-level. How the light was turned on, either with the input bSwitchDimmUp / bSwitchDimmDown or
with the input bOn , doesn´t matter.

Comment on the tSwitchOverTime parameter
If a duration of 0 is specified for the parameter tSwitchOverTime, the bSwitchDimmUp and
bSwitchDimmDown inputs can only be used to dim the light. Switching on and off is only possible
with the bOn and bOff inputs.

PLC API

TS801018 Version: 1.1

VAR_INPUT
bSwitchDimmUp : BOOL;
bSwitchDimmDown : BOOL;
bOn : BOOL;
bOff : BOOL;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tPLCCycle : TIME := t#10ms;

bSwitchDimmUp: Switches or dims the output Up.

bSwitchDimmDown: Switches or dims the output Down.

bOn: Sets the output to the last output value.

bOff: Sets the output to 0.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the bSwitchDimm
input.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tPLCCycle: PLC-Cycletime.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: Analogue output-value.

bLight: Digital output-value. This bit is set if nOut is above 0.

3.1.5 FB_Dimmer3Switch

Description

The functions available in the FB_Dimmer3Switch function block correspond closely to those in
FB_Dimmer1Switch() [} 11] and FB_Dimmer2Switch() [} 15].

PLC API

TS8010 19Version: 1.1

Operating by means of the bSwitchDimm input

The light is switched on or off by a short signal at the bSwitchDimm input. Dimmer mode will be activated if
the signal remains for longer than tSwitchOverTime (typical recommended value: 200ms). The output signal
then cycles between nOutMin and nOutMax. In order to be able to set the maximum or minimum value more
easily, the output signal pauses at the level of the maximum and minimum values for the time given by
tCycleDelay. When the signal is once more removed, the output signal being generated at that time is
retained. Another pulse at the input will set the output to 0.

Operation by means of the bSwitchDimmUp and bSwitchDimmDown inputs

The light is switched on or off by a short signal at the bSwitchDimmUp or bSwitchDimmDown inputs. Dimmer
mode will be activated if the signal remains for longer than tSwitchOverTime (typical recommended value:
200ms). The output signal goes to nOutMin or nOutMax. When the signal is once more removed, the output
signal being generated at that time is retained. Another pulse at one of the inputs will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a rising edge is applied to the bOn or bOff inputs. This may, for
instance, be used for global on/off functions. The output value is set to 0 when switching off. The switch-on
behaviour can be affected by the memory function (see below).

Operation by means of the bSetDimmValue and nDimmValue inputs

If the value of nDimmValue changes, the signal will be passed through directly to the output. The significant
point here is that the value changes. The lighting is switched off by changing the value to 0. If there is a
rising edge at the bSetDimmValue input, the value of nDimmValue immediately appears at the output.
Immediate modification of the output can be suppressed by a static 1- signal at the bSetDimmValue input.
This makes it possible to apply a value to the nDimmValue input, but for this value only to be passed to the
output at the next rising edge of bSetDimmValue.
The bSetDimmValue and nDimmValue inputs can be used to implement a variety of lighting scenarios. Using
nDimmValue to set the outputs directly can be used to achieve particular brightness levels, either directly or
by continuously changing the value. nDimmValue must have a value between nOutMin and nOutMax. The
value 0 is an exception. If the value is outside this range, the output value is limited to the upper or lower
limit, as appropriate.

The memory function

It is necessary to determine whether the memory function (bMemoryModeOn input) is active or not at switch-
on. If the memory function is active, then the last set value is placed at the output as soon as the lamp is
switched on. If the memory function is not active, then the value specified by the
nOnValueWithoutMemoryMode parameter is output. It is irrelevant, in this case, whether the light it has been
switched on by means of the bOn input or one of the bSwitchDimmUp or bSwitchDimmDown inputs. It
should be noted that the nOnValueWithoutMemoryMode parameter must lie between nOutMin and
nOutMax. If this is not the case, the output value is adjusted to the upper or lower limit, as appropriate.

Fast dimming up/down when switching on and off

Lighting is particularly pleasant if sudden changes are replaced by a slow change to the desired value. This
mode can be activated both for switching on and for switching off by means of the two inputs,
bDimmOnMode and bDimmOffMode. The tDimmOnTime and tDimmOffTime parameters specify the time
that will be taken by the switching processes. This value is always related to the minimum and maximum
possible output values (nOutMin and nOutMax). The bOn and bOff inputs are one way in which the switch
on/off commands may be given. Alternatively, a short pulse can be provided to either of the inputs
bSwitchDimmUp or bSwitchDimmDown. If the nDimmValue input is set to 0, the output is modified without
delay. The same is true if the output is set by a rising edge at the bSetDimmValue input.

PLC API

TS801020 Version: 1.1

Comments on the tSwitchOverTime and tDimmTime parameters
If a duration of 0 is specified for the tSwitchOverTime parameter, while a value of greater than 0 is
specified for tDimmTime, then the bSwitchDimmUp or bSwitchDimmDown inputs can only be used
to dim the light. Switching on and off is only possible with the bOn and bOff inputs.
If the tDimmTime parameter is 0, the bSwitchDimmUp or bSwitchDimmDown inputs can only be
used to switch the light on or off. In this case, the value of tSwitchOverTime is irrelevant.

VAR_INPUT
bSwitchDimm : BOOL;
bSwitchDimmUp : BOOL;
bSwitchDimmDown : BOOL;
bOn : BOOL;
bOff : BOOL;
bSetDimmValue : BOOL;
nDimmValue : UINT;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tCycleDelay : TIME := t#10ms;
bMemoryModeOn : BOOL := FALSE;
nOnValueWithoutMemoryMode : UINT := 20000;
bDimmOnMode : BOOL := FALSE;
tDimmOnTime : TIME := t#0s;
bDimmOffMode : BOOL := FALSE;
tDimmOffTime : TIME := t#0s;
nOutMin : UINT := 5000;
nOutMax : UINT := 32767;

bSwitchDimm: Switches or dims the output.

bSwitchDimmUp: Switches or dims the output Up.

bSwitchDimmDown: Switches or dims the output Down.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

bSetDimmValue: Switches the output to the value nDimmValue.

nDimmValue: The value is immediately applied to the output when there is a change.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the
bSwitchDimmUp and bSwitchDimmDown inputs.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tCycleDelay: Delay time, if either the minimum or maximum value is reached.

bMemoryModeOn: Switches over to use the memory function, so that the previous value is written to the
output as soon as it is switched on.

nOnValueWithoutMemoryMode: Value at switch on if the memory function is not active.

bDimmOnMode: The output value is increased in steps when switching on.

tDimmOnTime: Period over which the light is turned up when switching on. bDimmOnMode must be active.

bDimmOffMode: The output value is reduced in steps when switching off.

tDimmOffTime: Period over which the light is turned down when switching off. bDimmOffMode must be
active.

nOutMin: Minimum output value.

nOutMax: Maximum output value. If the parameter nOutMin is not smaller than nOutMax, the output will
remain at 0.

PLC API

TS8010 21Version: 1.1

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: Analogue output-value.

bLight: Digital output-value. This bit is set if nOut is above 0.

3.1.6 FB_Light

A rising edge at the bOn input sets the bLight output. The output is reset by a rising edge at the bOff input. If
a rising edge is presented to bToggle, the output is negated; i.e., if On it goes Off, and if Off it goes On.

VAR_INPUT
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;

bOn: Switches the output on.

bOff: Switches the output off.

bToggle: Negates the state of the output.

VAR_OUTPUT
bLight : BOOL;

bLight: A rising edge at the bOn input sets the output.

Example 1

In the following example a light is operated by two switches.

If either the bSwitchA or the bSwitchB button is pressed, then the state of the light, as represented by the
bLight output, is changed.

Example 2

In the following example the bSwitchMasterOff switch is used to switch the bLampKitchen and
bLampGarage lights off together. This function can be used, for instance, for central control of an area of a
building.

PLC API

TS801022 Version: 1.1

3.1.7 FB_LightControl

Daylight-Lamp-control.

This function-block is based upon a table of 30 nodes containing actual- and control-values for threshold-
switching. If the actual value comes within the range of a new node (arrControlTable[n].nActualValue -
arrControlTable[n].nSwitchRange/2 ... arrControlTable[n].Input + arrControlTable[n].nSwitchRange/2), the
control-value will change (see diagram). The threshold-switch is followed by a ramp-function which ramps
the light-level to the new control-value over the time tRampTime.With a rising-edge at bOn the light is
switched immediatelyto the nearest control-value and similarily arising edge at bOff switches the light
off,without the delay of a ramp. It is possible to trigger a positive edge on bOn or bOff at anytime.

PLC API

TS8010 23Version: 1.1

It is not required to use all 30 entries in the node table. The first element with a switch-range of "0" will mark
the beginning of the unused table-range.

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
nActualValue : UINT;
tRampTime : TIME := t#30s;
arrControlTable : ARRAY[1..30] OF ST_ControlTable;
nOptions : DWORD;

bEnable: A positive input enables the function block. A negative state deactivates the inputs and sets the
function-block to the idle-mode.

bOn: A rising edge sets the output nLightLevel directly to the next control-value.

bOff: A rising edge sets the output nLightLevel immediately to "0".

nActualValue: measured light-value.

tRampTime: time to drive the lamp from the actual light-level to the new control-value. (Preset value: 30s).

arrControlTable: Actual-/control-value-table. arrControlTable[1] to arrControlTable[30] of ST_ControlTable

TYPE ST_ControlTable : STRUCT nActualValue : UINT; nControlValue : UINT; nSwitchRange : UINT;
END_STRUCT END_TYPE
nActualValue: Measured light value.
nControlValue: Control value of a node.
nSwitchRange:Switching range around the node. nSwitchRange can only be "0" for the first node of the
unused table-range.

nOptions: Reserved for future developments.

PLC API

TS801024 Version: 1.1

VAR_OUTPUT
bLight : BOOL;
bBusy : BOOL;
bControlActiv : BOOL;
bError : BOOL;
nErrorId : UDINT;

bLight: If nLightLevel is greater than 0, this output is set to TRUE.

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bControlActive: If the control loop is active, this output is set to TRUE.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. bError is reset to FALSE by the execution of an
instruction at the inputs.

nErrorId: Contains the command-specific error code. nErrorId is reset to 0 by the execution of an instruction
at the inputs. See Error codes [} 89].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Reference to the actual light-level-output.

3.1.8 FB_ConstantLightControlEco

The function block FB_ConstantLightControlEco() is used for constant light control.

The system tries to match a specified setpoint through cyclic dimming. The control dynamics are determined
by a dead time (tDeadTime) and the step size (nStepSize). The dead time specifies the waiting time between
the individual steps or increments of the control value, which are determined by the set step size. The
smaller the dead time, the faster the control. A freely definable hysteresis (nHysteresis) prevents continuous
oscillation around the setpoint. If the actual value is within the hysteresis range around the setpoint, the
lamps brightness remains unchanged.

If the set step size nStepSize is too large or the hysteresis nHysteresis is too small, the hysteresis
range may be "missed". This cannot be prevented by the function block, because the light output
nLightLevel is only physically linked to the recorded actual light value, nActualLevel.

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;

PLC API

TS8010 25Version: 1.1

nSetpointValue : UINT := 16000;
nActualValue : UINT;
nHysteresis : UINT := 100;
nMaxLevel : UINT := 32767;
nMinLevel : UINT := 3276;
nStepSize : UINT := 10;
tDeadTime : TIME := t#50ms;
nOptions : DWORD;

bEnable: Enables the function-block. If this input is FALSE, the inputs bOn, bOff and bToogle are disabled.
The control values nLightLevel remains unchanged.

bOn: Switches the addressed devices to nMaxLevel and activates constant light control. Note: an activated
but disabled (bEnable = FALSE) function block will automatically resume its functionality, when it´s enabled
again.

bOff: Switches the addressed devices off and disables constant light control.

bToggle: The lighting is switched on or off, depending on the state of the reference device.

nSetpointValue: This input is used for specifying the set value.

nActualValue: The actual value is applied at this input.

nHysteresis: Control hysteresis around the set value. If the actual value is within this range, the control
values for the lamps remain unchanged.

nMaxLevel: Maximum limit of the control value nLightLevel.

nMinLevel: Minimum limit of the control value nLightLevel. If the light-control requires to dim below this level,
nLightLevel is set to "0". The other way around, if nLightLevel is "0", while the control is active, dimming up
means setting the lamp to this value first.

nStepSize: Step-Size, by which the control-value nLightLevel is increased/decreased every active dimming-
step.

tDeadTime: Dead time between the individual steps dimming up/down the light.

nOptions: Without functionality. Reserved for future developments.

VAR_OUTPUT
nDeviation : INT;
bControllerIsActive : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;

nDeviation: Current control deviation (set value/actual value).

bControllerIsActive: This output is set once the control is activated.

bBusy: When the control is activated, this output is always set, when the control-value nLightLevel changes.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. Is reset to FALSE by the execution of an instruction at
the inputs.

nErrorId: Contains the command-specific error code of the most recently executed command. Is reset to 0
by the execution of an instruction at the inputs. See Error codes [} 89].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Reference to the actual light-level-output. This output has to be an IN-OUT-Variable, because
the function-block demands a read-/write-access.

Operation diagram

The following diagram should make it clear, how the control works in normal operation:

PLC API

TS801026 Version: 1.1

First of all, the control will be enabled with a TRUE-signal at the input bEnable. Then, with a rising trigger at
bOn the light-level (nLightLevel) will be set to its maximum-value. This has an influence on the surrounding
light, measured by nActualValue, as well. With the actual light-level rising above the setpoint-value, the light-
level at the output of the control has to be recuced; nLightLevel is now decreased step by step until the
measured value nActualValue is within the hysteresis-range (nSetpointValue - 0.5*nHysteresis < x <
nSetpointValue + 0.5*nHysteresis).
If the measured light-value decreases eg. by outside influences, the control will increase the light level
(nLightLevel) until nActualValue is witlin the hysteresis-range again.

If the Step-size (nStepSize) is too big or the hysteresis too small, the control-value nLightLevel may oscillate
around the setpoint-value. The following diagram shows that the actual-value, influenced by the control-
value, will always miss the hysteresis-range.

PLC API

TS8010 27Version: 1.1

3.1.9 FB_Ramp

Fig. 1: FB_Ramp

Function-block creating a light-ramp.

With a rising-edge at bOn the light will be switched immediately to the maximum-level (32767) and a rising
edge at bOff turns the light off. Triggering the input bToggle inverts the actual light-state. A rising-edge at
bStart starts dimming the light from the actual to the end-level (nEndLevel) - the required time is defined by
tRampTime. As long as bEnable is TRUE all inputs are active, otherwise the controlling inputs bOn, bOff,
bToggle and bStart are deactivated and the function-block turns to its idle-mode.

PLC API

TS801028 Version: 1.1

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;
bStart : BOOL;
nEndLevel : BYTE;
tRampTime : TIME := t#10s;
nOptions : DWORD;

bEnable: A positive input enables the function block. A negative state deactivates the inputs and sets the
function-block to the idle-mode.

bOn: A rising edge sets the output nLightLevel directly to the maximum-level (32767).

bOff: A rising edge sets the output nLightLevel immediately to "0".

bToggle: Rising edges at this input toggle the nLightLevel between "0" and "32767".

bStart:This input starts the dim-ramp from the actual value to nEndLevel within the time defined as
tRampTime. This can be interrupted by bOn, bOff or bToggle at any time.

nEndLevel: Target-value of the dim-ramp.

tRampTime: Ramp-time, see bStart. (Initial value: 10s).

nOptions: Reserved for future developments.

VAR_OUTPUT
bLight : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;

bLight: As long as nLightLevel is greater than "0", this output is set to TRUE.

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. bError is reset to FALSE by the execution of an
instruction at the inputs.

nErrorId: Contains the command-specific error code of the most recently executed command. nErrorId is
reset to 0 by the execution of an instruction at the inputs. See Error codes [} 89].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Reference to the actual light-level-output. This output has to be an IN-OUT-Variable because
the function-block may need the actual level as a start-level for a ramp.

3.1.10 FB_Sequencer

PLC API

TS8010 29Version: 1.1

Function-block to program light-sequences with up to 50 different steps.

This function-block is based on a ramp-function, which drives the output to a target-value (nTargetValue)i n a
specified time (tRampTime) . When the target-value is reached, the light will stay at this level for a specified
time (tProlongTime). Once tProlongTime has elapsed, the light will ramp to the next target value.

The Sequence table consists of 50 elements containing the target-value (nTargetValue), the ramp-time
(tRampTime) and the time to hold a reached light-level (tProlongTime). It is not required to use all 50
elements of the table. An element containing only zeros for the target-value, ramp-time and prolong-time will
be recognized as the end of a sequence. Furthermore it is possible to let a sequence start at a specific
position with the input-value, nStartIndex. With nStartIndex it is possible to program different light-sequences
within the 50 elements of the table which are separated by simple zero-elements (delimiters).

PLC API

TS801030 Version: 1.1

The light-level programmed with sequence No.1, for example, will show the following behaviour
(nStartIndex=1, nOptions.bit0=TRUE, explanations see below):

PLC API

TS8010 31Version: 1.1

The function-block has inputs to switch the light on and off (on: nLightLevel = 32767, off: nLightLevel = 0) as
well as an input bToggle to invert the actual light-state. All inputs are only read by the function-block, if
bEnable is set to TRUE. If bEnable is reset to FALSE, all inputs are inactive and nLightLevel will remain on
its actual value.

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;
bStart : BOOL;
nStartIndex : USINT;
arrSequenceTable : ARRAY[1..50] OF ST_SequenceTable;
nOptions : DWORD;

bEnable: A positive input enables the function block. A negative state deactivates the inputs and sets the
function-block to the idle-mode.

bOn: A rising edge sets the output nLightLevel directly to the maximum-level (32767).

bOff: A rising edge sets the output nLightLevel immediately to "0".

bToggle: Rising edges at this input toggle the nLightLevel between "0" and "32767".

bStart: This input lets the sequence begin with the element defined with nStartIndex.

nStartIndex: See bStart.

arrSequenceTable: Light-value-table with the information about the target-value, the ramp-time and the
prolong-time.

TYPE ST_SequenceTable : STRUCT nTargetValue : UINT; tRampTime : TIME; tProlongTime : TIME;
END_STRUCT END_TYPE
nTargetValue: Target-value.
tRampTime: Time to reach the target-value.
tProlongTime: Time to stay on the target-value.

PLC API

TS801032 Version: 1.1

nOptions: Parameter-input. Setting (resp. not-setting) of the single bits will affect the behaviour of the
function-block as follows:

Constant Description
OPTION_INFINITE_LOOP After running through a sequence, the function-block will automatically

restart at the element defined with nStartIndex. If this option is not set
the function-block will stop after running through the sequence. In order
to start again, a rising edge at bStart is neccessary.

VAR_OUTPUT
nActualIndex : USINT;
bLight : BOOL;
bSequenceActive : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;

nActualIndex: This output shows the actual element of the light-sequence. If the sequence is finished or
stopped (bSequenceActive = FALSE , see below) , the output will fall back to "0".

bLight: As long as nLightLevel is greater than "0", this output is set to TRUE.

bSequenceActive: If a light-sequence is running, this output is set to TRUE.

bBusy: When the block is activated the output is set, and it remains active until execution of the command
has been completed.

bError: This output is switched to TRUE if an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. bError is reset to FALSE by the execution of an
instruction at the inputs.

nErrorId: Contains the command-specific error code of the most recently executed command. nErrorId is
reset to 0 by the execution of an instruction at the inputs. See Error codes [} 89].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Reference to the actual light-level-output.

3.1.11 FB_StairwellDimmer

A rising edge at the input bSwitch sets the analog output nOut to the value nPresenceValue. A falling edge
on bSwitch starts or restarts a timer with the runtime tPresenceDuration. Following the expiry of this timer,
nOut is dimmed to the value nProlongValue over the time period tFadeOffDuration. This value is maintained
for the time period tProlongDuration. After that, nOut is set to 0. A rising edge at the input bOff switches the
output nOut to 0 immediately. The digital output value bLight is always set when nOut is greater than 0.

PLC API

TS8010 33Version: 1.1

Fig. 2: FB_StairwellDimmer-Time-nOut

VAR_INPUT
bSwitch : BOOL;
bOff : BOOL;
nPresenceValue : UINT := 32767;
nProlongValue : UINT := 10000;
tPresenceDuration : TIME := t#120s;
tFadeOffDuration : TIME := t#10s;
tProlongDuration : TIME := t#20s;

bSwitch: Upon a rising edge: nOut is set to nPresenceValue. Upon a falling edge: start of the presence time
(see diagram).

bOff: Switches nOut off immediately.

nPresenceValue: Value to which nOut should be set during the presence time. (Preset value: 32767).

nProlongValue: Value to which nOut should be set during the dwell time. (Preset value: 10000).

tPresenceDuration: Duration of the presence time in which nOut is set to nPresenceValue following a
falling edge on bSwitch. (Preset value: 120 seconds).

tFadeOffDuration: Duration over which nOut is faded down to the dwell time following the presence time.
(Preset value: 10 seconds).

tProlongDuration: Duration of the dwell time. (Preset value: 20 seconds).

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: Output of the momentary light value.

bLight: This output is set if nOut is greater than 0.

PLC API

TS801034 Version: 1.1

3.1.12 FB_StairwellLight

A rising edge at the bSwitch input sets the bLight output. The output is reset again once tLightDuration has
elapsed. If a signal is presented again to the bSwitch input before this time has elapsed, the timer is
restarted. When tPreWarningStart has elapsed, the light is switched off (as a prewarning) for the period
tPreWarningDuration. If this prewarning is not to be given, the parameter tPreWarningStart must be set to 0.
A rising edge at the bOff input switches the output off immediately.

VAR_INPUT
bSwitch : BOOL;
bOff : BOOL;
tLightDuration : TIME := t#120s;
tPreWarningStart : TIME := t#110s;
tPreWarningDuration : TIME := t#500ms;

bSwitch: Switches the output on for the period of time given by tLightDuration.

bOff: Switches the output off.

tLightDuration: Period for which the output is set.

tPreWarningStart: Warning time.

tPreWarningDuration: Duration of the prewarning.

VAR_OUTPUT
bLight : BOOL;

bLight: A rising edge at the bSwitch input sets the output for the duration of tLightDuration.

3.2 Facade

3.2.1 FB_RoofWindow

Description

A rising edge at the bClose or bOpen inputs set the bWindowClose or bWindowOpen outputs respectively.
These remain asserted until the time tTurnOffTime has elapsed, or until the block receives some other
command. Both outputs are immediately reset by a positive edge at the bStop input.

PLC API

TS8010 35Version: 1.1

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 seconds and 1.0 seconds. The drive
manufacturer can give you a precise value.

Safety position

Travel to the safety position (e.g. because there is a strong wind) can be achieved by setting the
bSafetyPosition input. The output bWindowClose is set and the output bWindowOpen reset for the period
specified by tTurnOffTime. Operation of the window is prevented for as long as the bSafetyPosition input is
active.

VAR_INPUT
bClose : BOOL;
bOpen : BOOL;
bStop : BOOL;
bSafetyPosition : BOOL;
bLimitSwitchClose : BOOL;
bLimitSwitchOpen : BOOL;
tTurnOffTime : TIME := t#60s;
tSwitchOverDeadTime : TIME := t#400ms;

bClose: Set the bWindowClose output and reset the bWindowOpen output. The bWindowClose output
remains latched.

bOpen: Set the bWindowOpen output and reset the bWindowClose output. The bWindowOpen output
remains latched.

bStop: Reset the bWindowClose and bWindowOpen outputs.

bSafetyPosition: The safety position is approached. To do this, the window is closed for the period
specified by tTurnOffTime. It is not possible to operate the window while this input is set.

bLimitSwitchClose: Optional limit switch. If bClose is set and bLimitSwitchClose is not set for the period
specified by tTurnOffTime, bErrorLimitSwitchClose will be set.

bLimitSwitchOpen: Optional limit switch. If bOpen is set and bLimitSwitchOpen is not set for the period
specified by tTurnOffTime, bErrorLimitSwitchOpen will be set.

tTurnOffTime: If no input is activated, then the outputs are reset after this period of time. The outputs are
not automatically reset if the specified duration is 0. The value given here should be about 10% larger than
the travel time that is actually measured.

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

VAR_OUTPUT
bWindowOpen : BOOL;
bWindowClose : BOOL;
bErrorLimitSwitchClose : BOOL;
bErrorLimitSwitchOpen : BOOL;

bWindowOpen: The window opens.

bWindowClose: The window closes.

bErrorLimitSwitchClose: Error of optional limit switch while closing.

bErrorLimitSwitchOpen: Error of optional limit switch while opening.

PLC API

TS801036 Version: 1.1

3.2.2 FB_VenetianBlind

Description

There are three different ways in which the blinds may be controlled:

• A rising edge at the bUp or bDown inputs set the bBlindUp or bBlindDown outputs respectively. These
remain asserted until the time tTurnOffTime has elapsed, or until the block receives some other
command. Both outputs are immediately reset by a positive edge at the bStop input.

• Static signals are provided to the bSwitchOverUp or bSwitchOverDown inputs (e.g. by buttons). These
set the bBlindUp and bBlindDown outputs. If this signal is asserted for longer than tSwitchOverTime,
the outputs are latched. This means that the outputs will continue to be asserted, even if the signals at
the inputs are removed again. In most cases, a value of 500 ms is sufficient for the tSwitchOverTime
parameter. However, the output only remains asserted for the time tTurnOffTime, or until a new
command is given to the function block.

• This last variation can be useful if the user wants to alter the setting of the blind step by step. Each
rising edge at the bStepUp or bStepDown inputs sets the corresponding output for the time tStepTime.
A value of 200 ms has been found effective for tStepTime.

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 seconds and 1.0 seconds. The drive
manufacturer can give you a precise value.

Safety position

Travel to the safety position (e.g. because there is a strong wind or because maintenance is being carried
out at the window) can be achieved by setting the bSafetyPosition input. The output bBlindUp is set and the
output bBlindDown reset for the period specified by tTurnOffTime. Operation of the blinds is prevented for as
long as the bSafetyPosition input is active.

Shading position

Under conditions of above-average sunshine, the blinds can beat moved to the shading position. After
presenting a rising edge to the bShadowPosition input, the blinds are lowered for the period of time specified
by tShadowTurnOffTime. The blinds are then taken up again for the period of time specified by
tShadowTurnAroundTime. A time of about 2 seconds is usually set for this. This prevents the room from
being completely darkened. A pause of tSwitchOverDeadTime is maintained at the change of direction.
Travel to the shading position can be interrupted at any time by a new command.

PLC API

TS8010 37Version: 1.1

VAR_INPUT
bUp : BOOL;
bDown : BOOL;
bStop : BOOL;
bSwitchOverUp : BOOL;
bSwitchOverDown : BOOL;
tSwitchOverTime : TIME := t#500ms;
bStepUp : BOOL;
bStepDown : BOOL;
tStepTime : TIME:= t#200ms;
bShadowPosition : BOOL;
tShadowTurnAroundTime : TIME := t#0s;
tShadowTurnOffTime : TIME := t#20s;
bSafetyPosition : BOOL;
tTurnOffTime : TIME := t#60s;
tSwitchOverDeadTime : TIME := t#400ms;

bUp: Set the bBlindUp output and reset the bBlindDown output. The bBlindUp output remains latched.

bDown: Set the bBlindDown output and reset the bBlindUp output. The bBlindDown output remains latched.

bStop: Reset the bBlindUp and bBlindDown outputs.

bSwitchOverUp: Set the bBlindUp output and reset the bBlindDown output. If the signal remains present for
longer than tSwitchOverTime, the output bBlindUp remains latched.

bSwitchOverDown: Set the bBlindDown output and reset the bBlindUp output. If the signal remains present
for longer than tSwitchOverTime, the output bBlindDown remains latched.

tSwitchOverTime: Gives the time for which the bSwitchUp and bSwitchDown inputs must remain asserted
before the outputs are latched. If the value is 0, the outputs are latched immediately.

bStepUp: Reset the bBlindDown output and set the bBlindUp output for the time tStepTime.

bStepDown: Reset the bBlindUp output and set the bBlindDown output for the time tStepTime.

tStepTime: If the blind is controlled through the bStepUp or bStepDown inputs, the outputs remain asserted
for this period. The outputs are not set if the specified duration is 0.

bShadowPosition: The shading position is approached (see below).

tShadowTurnAroundTime: The blind travels in the opposite direction for the period of time specified by
tShadowTurnAroundTime after the shading position has been reached. A time of greater than 0 is necessary
for the shading position to be approached.

tShadowTurnOffTime: The time for which the bBlindDown output is set in order to reach the shading
position.

bSafetyPosition: The safety position is approached. To do this, the blind is raised for the period specified by
tTurnOffTime. It is not possible to operate the blinds while this input is set.

tTurnOffTime: If no input is activated, then the outputs are reset after this period of time. The outputs are
not automatically reset if the specified duration is 0. The value given here should be about 10% larger than
the travel time that is actually measured.

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;

bBlindUp: The blind drives up.

bBlindDown: The blind drives down.

PLC API

TS801038 Version: 1.1

3.2.3 FB_VenetianBlindEx

Description

Four different methods are available for controlling the blind:

• A rising edge at the bUp or bDown inputs set the bBlindUp or bBlindDown outputs respectively. These
remain asserted until the time tDriveTime + 10% has elapsed, or until the block receives some other
command. Both outputs are immediately reset by a positive edge at the bStop input.

• Static signals are provided to the bSwitchOverUp or bSwitchOverDown inputs (e.g. by buttons). These
set the bBlindUp and bBlindDown outputs. If this signal is asserted for longer than tSwitchOverTime,
the outputs are latched. This means that the outputs will continue to be asserted, even if the signals at
the inputs are removed again. In most cases, a value of 500 ms is sufficient for the tSwitchOverTime
parameter. However, the output only remains asserted for the time tDriveTime + 10%, or until a new
command is given to the function block.

• In certain applications it may be useful for the operator to be able to alter the blind position step by
step. Each rising edge at the bStepUp or bStepDown inputs sets the corresponding output for the time
tStepTime. A value of 200 ms has been found effective for tStepTime.

• Unlike the FB_VenetianBlind() [} 36] block, this block also enables movement to an absolute position. A
percentage value is applied to input nSetPosition, and subsequently a rising edge is applied to input
bPosition.

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 seconds and 1.0 seconds. The drive
manufacturer can give you a precise value.

Safety position

Travel to the safety position (e.g. because there is a strong wind or because maintenance is being carried
out at the window) can be achieved by setting the bSafetyPosition input. The output bBlindUp is set and the
output bBlindDown reset for the period specified by tDriveTime + 10%. Operation of the blinds is prevented
for as long as the bSafetyPosition input is active.

Shading position

Under conditions of above-average sunshine, the blinds can be moved to the shading position. After
applying a positive edge to the input bShadowPosition, the blind is moved to the position
nShadowSetPosition. The blind is then moved upwards again for the period of time specified by
tShadowTurnAroundTime. This prevents the room from being completely darkened. If the blind had moved

PLC API

TS8010 39Version: 1.1

upwards during the approach of the shading position, it is moved downwards for the time period
tDriveSwitchOverTime - tShadowTurnAroundTime. The same angle is therefore set as if the blind had
moved down to darken.
When changing direction, a pause of the duration tSwitchOverDeadTime is observed. Travel to the shading
position can be interrupted at any time by a new command.

The set shading time tShadowTurnAroundTime must never be longer than the time for the change
of direction tDriveSwitchOverTime.

Moving to an absolute position

In most cases a blind will not provide feedback about its current position. Therefore, this can only be
calculated via the travel time. The accuracy depends on the uniformity of the blind speed. Further-
more, the speed differences between opening and closing should be as small as possible.
The positions are always specified in percent. 0 % corresponds to fully up, 100 % to fully down. If a
value greater than 100 is specified, it will be limited to 100 within the function block.

Determining the parameters

First, certain blind parameters have to be determined. The first one is the travel time, i.e. the time required
for the blind to travel the complete distance. The second parameter is the time required for a change of
direction. During a change of direction, the angle between the individual blades will change. The travel
duration is transferred to the parameter tDriveTime, the duration of a change of direction to
tDriveSwitchOverTime.

Referencing a block

Since the current position of the blind has to be calculated, inaccuracies during operation will accumulate. In
order to limit deviations, the block will automatically reference itself as often as possible. This occurs when
the blind is moved either fully up or fully down, and the appropriate output is reset automatically, i.e. after the
time tDriveTime + 10% has passed.

VAR_INPUT
bUp : BOOL;
bDown : BOOL;
bStop : BOOL;
bSwitchOverUp : BOOL;
bSwitchOverDown : BOOL;
tSwitchOverTime : TIME := t#500ms;
bStepUp : BOOL;
bStepDown : BOOL;
tStepTime : TIME := t#200ms;
bPosition : BOOL;
nSetPosition : USINT;
bShadowPosition : BOOL;
nShadowSetPosition : USINT := 80;
tShadowTurnAroundTime : TIME := t#0s;
bSafetyPosition : BOOL;
tDriveTime : TIME := t#60s;
tDriveSwitchOverTime : TIME := t#200ms;
tSwitchOverDeadTime : TIME := t#400ms;

bUp: Set the bBlindUp output and reset the bBlindDown output. The bBlindUp output remains latched.

bDown: Set the bBlindDown output and reset the bBlindUp output. The bBlindDown output remains latched.

bStop: Reset the bBlindUp and bBlindDown outputs.

bSwitchOverUp: Set the bBlindUp output and reset the bBlindDown output. If the signal remains present for
longer than tSwitchOverTime, the output bBlindUp remains latched.

bSwitchOverDown: Set the bBlindDown output and reset the bBlindUp output. If the signal remains present
for longer than tSwitchOverTime, the output bBlindDown remains latched.

PLC API

TS801040 Version: 1.1

tSwitchOverTime: Gives the time for which the bSwitchUp and bSwitchDown inputs must remain asserted
before the outputs are latched. If the value is 0, the outputs are latched immediately.

bStepUp: Reset the bBlindDown output and set the bBlindUp output for the time tStepTime.

bStepDown: Reset the bBlindUp output and set the bBlindDown output for the time tStepTime.

tStepTime: If the blind is controlled through the bStepUp or bStepDown inputs, the outputs remain asserted
for this period. The outputs are not set if the specified duration is 0.

bPosition: Move blind to specified position.

nSetPosition: Position (0%-100%) to which the blind is to be moved, after a rising edge has been applied to
input bPosition. 0% corresponds to fully up, 100% corresponds to fully down.

bShadowPosition: The shading position is approached (see below).

nShadowSetPosition: Shading position (0%-100%) to which the blind is to be moved, after a rising edge
has been applied to input bShadowPosition.

tShadowTurnAroundTime: Once the shading position has been reached, the blind is moved upwards for
the period tShadowTurnAroundTime.

bSafetyPosition: The safety position is approached. To do this, the blind is raised for the period tDriveTime
+ 10%. It is not possible to operate the blinds while this input is set.

tDriveTime: Travel time of the blind from fully up to fully down. If no input is activated, the outputs are reset
after the period tDriveTime + 10%. The outputs are not automatically reset if the specified duration is 0. In
this case, the blind cannot be moved to absolute positions.

tDriveSwitchOverTime: Period required for a change of direction of the blind.

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;
nActualPosition : USINT;
bCalibrated : BOOL;

bBlindUp: The blind moves up.

bBlindDown: The blind moves down.

nActualPosition: Current position in percent.

bCalibrated: Specifies whether the blind is calibrated.

PLC API

TS8010 41Version: 1.1

3.2.4 FB_VenetianBlindEx1Switch

Description

Function-block with the same functionality as FB_VenetianBlindEx() [} 38] but with only one input bSwitch to
operate the blind.
Four different methods are available for controlling the blind:

• A rising edge at the bUp or bDown inputs set the bBlindUp or bBlindDown outputs respectively. These
remain asserted until the time tDriveTime + 10% has elapsed, or until the block receives some other
command. Both outputs are immediately reset by a positive edge at the bStop input.

• With the input bSwitch, which is normally connected to a pushbutton, it is possible to drive the blind up
and down. In contrast to FB_VenetianBlindEx() [} 38] the specific output will be latched immediately. If
operated in short succession, the functionality of bSwich will change from driving to stopping to driving
in the opposite direction to stopping and to driving again. However, the output only remains asserted
for the time tDriveTime + 10%, or until a new command is given to the function block.

• In certain applications it may be useful for the operator to be able to alter the blind position step by
step. Each rising edge at the bStepUp or bStepDown inputs sets the corresponding output for the time
tStepTime. A value of 200 ms has been found effective for tStepTime.

• Unlike the FB_VenetianBlind() [} 36] block, this block also enables movement to an absolute position. A
percentage value is applied to input nSetPosition, and subsequently a rising edge is applied to input
bPosition.

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 seconds and 1.0 seconds. The drive
manufacturer can give you a precise value.

Safety position

Travel to the safety position (e.g., because there is a strong wind or because maintenance is being carried
out at the window) can be achieved by setting the bSafetyPosition input. The output bBlindUp is set and the
output bBlindDown reset for the period specified by tDriveTime + 10%. Operation of the blinds is prevented
for as long as the bSafetyPosition input is active.

Shading position

Under conditions of above-average sunshine, the blinds can be moved to the shading position. After
applying a rising edge to the input bShadowPosition, the blind is moved to the position nShadowSetPosition.
The blinds are then taken up again for the period specified by tShadowTurnAroundTime. This prevents the
room from being completely darkened. If the blind had moved upwards during the approach of the shading

PLC API

TS801042 Version: 1.1

position, it is moved downwards for the period tDriveSwitchOverTime - tShadowTurnAroundTime. The same
angle will therefore be set as if the blind had been moved downwards for darkening purposes.
During a change of direction, a pause of duration tSwitchOverDeadTime is maintained. Travel to the shading
position can be interrupted at any time by a new command.

Moving to an absolute position

In most cases a blind will not provide feedback about its current position. Therefore, this can only be
calculated via the travel time. The accuracy depends on the uniformity of the blind speed. Further-
more, the speed differences between opening and closing should be as small as possible.
The positions are always specified in percent. 0 % corresponds to fully up, 100 % to fully down. If a
value greater than 100 is specified, it will be limited to 100 within the function block.

Determining the parameters

First, certain blind parameters have to be determined. The first one is the travel time, i.e., the time required
for the blind to travel the complete distance. The second parameter is the time required for a change of
direction. During a change of direction, the angle between the individual blades will change. The travel
duration is transferred to the parameter tDriveTime, the duration of a change of direction to
tDriveSwitchOverTime.

Referencing a block

Since the current position of the blind has to be calculated, inaccuracies during operation will accumulate. In
order to limit deviations, the block will automatically reference itself as often as possible. This occurs when
the blind is moved either fully up or fully down, and the appropriate output is reset automatically, i.e. after the
time tDriveTime + 10% has passed.

VAR_INPUT
bUp : BOOL;
bDown : BOOL;
bStop : BOOL;
bSwitch : BOOL;
bStepUp : BOOL;
bStepDown : BOOL;
tStepTime : TIME := t#200ms;
bPosition : BOOL;
nSetPosition : USINT;
bShadowPosition : BOOL;
nShadowSetPosition : USINT := 80;
tShadowTurnAroundTime : TIME := t#0s;
bSafetyPosition : BOOL;
tDriveTime : TIME := t#60s;
tDriveSwitchOverTime : TIME := t#200ms;
tSwitchOverDeadTime : TIME := t#400ms;

bUp: Set the bBlindUp output and reset the bBlindDown output. The bBlindUp output remains latched.

bDown: Set the bBlindDown output and reset the bBlindUp output. The bBlindDown output remains latched.

bStop: Reset the bBlindUp and bBlindDown outputs.

bSwitch: Control input to drive the blind up and down. In contrast to FB_VenetianBlindEx() [} 38] the specific
output will be latched immediately. If operated in short succession, the functionality of bSwich will change
from driving to stopping to driving in the opposite direction to stopping and to driving again.

bStepUp: Reset the bBlindDown output and set the bBlindUp output for the time tStepTime.

bStepDown: Reset the bBlindUp output and set the bBlindDown output for the time tStepTime.

tStepTime: If the blind is controlled through the bStepUp or bStepDown inputs, the outputs remain asserted
for this period. The outputs are not set if the specified duration is 0.

bPosition: Move blind to specified position.

nSetPosition: Position (0%-100%) to which the blind is to be moved, after a rising edge has been applied to
input bPosition. 0% corresponds to fully up, 100% corresponds to fully down.

PLC API

TS8010 43Version: 1.1

bShadowPosition: The shading position is approached (see below).

nShadowSetPosition: Shading position (0%-100%) to which the blind is to be moved, after a rising edge
has been applied to input bShadowPosition.

tShadowTurnAroundTime: Once the shading position has been reached, the blind is moved upwards for
the period tShadowTurnAroundTime.

bSafetyPosition: The safety position is approached. To do this, the blind is raised for the period tDriveTime
+ 10%. It is not possible to operate the blinds while this input is set.

tDriveTime: Travel time of the blind from fully up to fully down. If no input is activated, the outputs are reset
after the period tDriveTime + 10%. The outputs are not automatically reset if the specified duration is 0. In
this case, the blind cannot be moved to absolute positions.

tDriveSwitchOverTime: Period of time required for a change of direction of the blind.

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;
nActualPosition : USINT;
bCalibrated : BOOL;

bBlindUp: The blind moves up.

bBlindDown: The blind moves down.

nActualPosition: Current position in percent.

bCalibrated: Specifies whether the blind is calibrated.

PLC API

TS801044 Version: 1.1

3.3 Scene Management

3.3.1 FB_RoomOperation

PLC API

TS8010 45Version: 1.1

PLC API

TS801046 Version: 1.1

Description

The function block FB_RoomOperation () is conceived for the management of lighting and blinds. Scenes
are called and dimmed in a state of rest. Lighting and blinds can be set and saved in the appropriate mode.
This function block is intended for use with the function blocks FB_ScenesLighting() [} 49],
FB_ScenesVenetianBlind() [} 52], FB_Dimmer1Switch() [} 11] and FB_VenetianBlindEx() [} 52].

Calling saved scenes:

A rising edge at the input bSwitch_A, bSwitch_B or bSwitch_1..14 causes a pulse to be output at the output
bInvokeScene_A, bInvokeScene_B or bInvokeScene_1..14 .

Dimming saved scenes:

A scene is called and dimmed up by a signal that is applied to the input bSwitch_A, bSwitch_B or
bSwitch_1..14 for a time exceeding tCycleDelayDimmTime.

Setting blind and lighting values:

A signal at the input bSwitchLightingMode or bSwitchBlindingMode switches to the respective mode. The
control values are changed by the inputs bSwitch_1..14 via the outputs bSwitchLighting_1..14 or
bSwitchBlindUp/bSwitchBlindDown_1..7.

Saving the settings:

By means of setting the input bSwitchLightingMode or bSwitchBlindingMode and a signal at the input
bSwitch_A, bSwitch_B or bSwitch_1..14, a pulse is output at the output bSaveScene_A, bSaveScene_B or
bSaveScene_1..14. The values are saved in the function block FB_ScenesLighting() [} 49],
FB_ScenesVenetianBlind() [} 52].

Note: This functionblock is only available in the PC-based version of the library.

VAR_INPUT
bSwitch_A : BOOL;
bSwitch_B : BOOL;
bSwitch_1 : BOOL;
bSwitch_2 : BOOL;
bSwitch_3 : BOOL;
bSwitch_4 : BOOL;
bSwitch_5 : BOOL;
bSwitch_6 : BOOL;
bSwitch_7 : BOOL;
bSwitch_8 : BOOL;
bSwitch_9 : BOOL;
bSwitch_10 : BOOL;
bSwitch_11 : BOOL;
bSwitch_12 : BOOL;
bSwitch_13 : BOOL;
bSwitch_14 : BOOL;
bSwitchLightingMode : BOOL;
bSwitchBlindingMode : BOOL;
bFeedbackLighting_1 : BOOL;
bFeedbackLighting_2 : BOOL;
bFeedbackLighting_3 : BOOL;
bFeedbackLighting_4 : BOOL;
bFeedbackLighting_5 : BOOL;
bFeedbackLighting_6 : BOOL;
bFeedbackLighting_7 : BOOL;
bFeedbackLighting_8 : BOOL;
bFeedbackLighting_9 : BOOL;
bFeedbackLighting_10 : BOOL;
bFeedbackLighting_11 : BOOL;
bFeedbackLighting_12 : BOOL;
bFeedbackLighting_13 : BOOL;
bFeedbackLighting_14 : BOOL;
nFeedbackLighting_1 : UINT;
nFeedbackLighting_2 : UINT;
nFeedbackLighting_3 : UINT;
nFeedbackLighting_4 : UINT;

PLC API

TS8010 47Version: 1.1

nFeedbackLighting_5 : UINT;
nFeedbackLighting_6 : UINT;
nFeedbackLighting_7 : UINT;
nFeedbackLighting_8 : UINT;
nFeedbackLighting_9 : UINT;
nFeedbackLighting_10 : UINT;
nFeedbackLighting_11 : UINT;
nFeedbackLighting_12 : UINT;
nFeedbackLighting_13 : UINT;
nFeedbackLighting_14 : UINT;
nFeedbackBlind_1 : USINT;
nFeedbackBlind_2 : USINT;
nFeedbackBlind_3 : USINT;
nFeedbackBlind_4 : USINT;
nFeedbackBlind_5 : USINT;
nFeedbackBlind_6 : USINT;
nFeedbackBlind_7 : USINT;
tCycleDelayDimmTime : TIME := t#500ms;
tOperationTime : TIME := t#60s;

bSwitch_A, B: calls the saved Scene A or Scene B.

bSwitch_1..14: sets and calls the saved scenes.

bSwitchLightingMode: switches to the lighting mode.

bSwitchBlindingMode: switches to the blinding mode.

bFeedbackLighting_1..14: current status of the respective lamp. Return value from the dimmer function
block FB_Dimmer1Switch() [} 11].

nFeedbackLighting_1..14: current control value of the respective lamp. Return value from the dimmer
function block FB_Dimmer1Switch() [} 11].

nFeedbackBlind_1..7: current control value of the respective blind. Return value from the blind function
block FB_VenetianBlindEx() [} 38].

tCycleDelayDimmTime: switching time between dimming and calling a scene.

tOperationTime: if the blinding or lighting mode is active and no operation takes place, the mode is
automatically switched back to scene mode after the expiry of this time.

VAR_OUTPUT
bEnableLightingMode : BOOL;
bEnableBlindingMode : BOOL;
bSwitchLighting_1 : BOOL;
bSwitchLighting_2 : BOOL;
bSwitchLighting_3 : BOOL;
bSwitchLighting_4 : BOOL;
bSwitchLighting_5 : BOOL;
bSwitchLighting_6 : BOOL;
bSwitchLighting_7 : BOOL;
bSwitchLighting_8 : BOOL;
bSwitchLighting_9 : BOOL;
bSwitchLighting_10 : BOOL;
bSwitchLighting_11 : BOOL;
bSwitchLighting_12 : BOOL;
bSwitchLighting_13 : BOOL;
bSwitchLighting_14 : BOOL;
bSwitchBlindUp_1 : BOOL;
bSwitchBlindDown_1 : BOOL;
bSwitchBlindUp_2 : BOOL;
bSwitchBlindDown_2 : BOOL;
bSwitchBlindUp_3 : BOOL;
bSwitchBlindDown_3 : BOOL;
bSwitchBlindUp_4 : BOOL;
bSwitchBlindDown_4 : BOOL;
bSwitchBlindUp_5 : BOOL;
bSwitchBlindDown_5 : BOOL;
bSwitchBlindUp_6 : BOOL;
bSwitchBlindDown_6 : BOOL;
bSwitchBlindUp_7 : BOOL;
bSwitchBlindDown_7 : BOOL;
bInvokeScene_A : BOOL;
bInvokeScene_B : BOOL;

PLC API

TS801048 Version: 1.1

bInvokeScene_1 : BOOL;
bInvokeScene_2 : BOOL;
bInvokeScene_3 : BOOL;
bInvokeScene_4 : BOOL;
bInvokeScene_5 : BOOL;
bInvokeScene_6 : BOOL;
bInvokeScene_7 : BOOL;
bInvokeScene_8 : BOOL;
bInvokeScene_9 : BOOL;
bInvokeScene_10 : BOOL;
bInvokeScene_11 : BOOL;
bInvokeScene_12 : BOOL;
bInvokeScene_13 : BOOL;
bInvokeScene_14 : BOOL;
bSaveScene_A : BOOL;
bSaveScene_B : BOOL;
bSaveScene_1 : BOOL;
bSaveScene_2 : BOOL;
bSaveScene_3 : BOOL;
bSaveScene_4 : BOOL;
bSaveScene_5 : BOOL;
bSaveScene_6 : BOOL;
bSaveScene_7 : BOOL;
bSaveScene_8 : BOOL;
bSaveScene_9 : BOOL;
bSaveScene_10 : BOOL;
bSaveScene_11 : BOOL;
bSaveScene_12 : BOOL;
bSaveScene_13 : BOOL;
bSaveScene_14 : BOOL;
bLEDSwitch_1 : BOOL;
bLEDSwitch_2 : BOOL;
bLEDSwitch_3 : BOOL;
bLEDSwitch_4 : BOOL;
bLEDSwitch_5 : BOOL;
bLEDSwitch_6 : BOOL;
bLEDSwitch_7 : BOOL;
bLEDSwitch_8 : BOOL;
bLEDSwitch_9 : BOOL;
bLEDSwitch_10 : BOOL;
bLEDSwitch_11 : BOOL;
bLEDSwitch_12 : BOOL;
bLEDSwitch_13 : BOOL;
bLEDSwitch_14 : BOOL;
bLEDLightingMode : BOOL;
bLEDBlindingMode : BOOL;

bEnableLightingMode: enables the memory function block FB_ScenesLighting() [} 49].

bEnableBlindingMode: enables the memory function block FB_ScenesVenetianBlind() [} 52].

bSwitchLighting_1..14: output for operating the dimmer function block FB_Dimmer1Switch() [} 11] via the
input bSwitchDimm..

bSwitchBlindUp_1..7: output for operating the blind function block FB_VenetianBlindEx() [} 38] via the input
bSwitchOverUp.

bSwitchBlindDown_1..7: output for operating the blind function block FB_VenetianBlindEx() [} 38] via the
input bSwitchOverDown.

bInvokeScene_A, B, 1..14: output signal for loading a scene. Is passed on to the function blocks
FB_ScenesLighting() [} 49] und FB_ScenesVenetianBlind() [} 52].

bSaveScene_A, B, 1..14: output signal for saving a scene. Is passed on to the function blocks
FB_ScenesLighting() [} 49] und FB_ScenesVenetianBlind() [} 52].

bLEDSwitch_1..14: these outputs indicate the status of the respective lighting (on/off) or shading (0%/
100%). These outputs are always FALSE in scene mode.

bLEDLightingMode: this output is TRUE if lighting mode is active.

bLEDBlindingMode: this output is TRUE if blinding mode is active.

Also see about this

PLC API

TS8010 49Version: 1.1

2 FB_VenetianBlindEx [} 38]

3.3.2 FB_ScenesLighting

PLC API

TS801050 Version: 1.1

Description

Use of the function block

This function block is intended for the management of lighting scenes. The function block is enabled via the
bEnable input. The loading of the saved scenes is started by a rising edge at the bEnable input. The input
must remain TRUE until the operation is completed. The values of the scenes are saved non-volatile in the
TwinCAT Boot directory as a *.bin file. The last data status is saved in a *.bak file as a backup.

Saving a scene

The values of the inputs nActualValueLighting_1..14 are saved in the respective scene by a rising edge at
the input bSaveScene_1...16.

Loading scenes

The saved values are output at the output nDimmValue_1..14 by a rising edge at the input
bInvokeScene_1..16. Furthermore, a rising edge is generated at the output bSetDimmValue_1..14 for one
PLC cycle.

Note: This functionblock is only available in the PC-based version of the library.

VAR_INPUT
bEnable : BOOL;
bInvokeScene_1 : BOOL;
bInvokeScene_2 : BOOL;
bInvokeScene_3 : BOOL;
bInvokeScene_4 : BOOL;
bInvokeScene_5 : BOOL;
bInvokeScene_6 : BOOL;
bInvokeScene_7 : BOOL;
bInvokeScene_8 : BOOL;
bInvokeScene_9 : BOOL;
bInvokeScene_10 : BOOL;
bInvokeScene_11 : BOOL;
bInvokeScene_12 : BOOL;
bInvokeScene_13 : BOOL;
bInvokeScene_14 : BOOL;
bInvokeScene_15 : BOOL;
bInvokeScene_16 : BOOL;
bSaveScene_1 : BOOL;
bSaveScene_2 : BOOL;
bSaveScene_3 : BOOL;
bSaveScene_4 : BOOL;
bSaveScene_5 : BOOL;
bSaveScene_6 : BOOL;
bSaveScene_7 : BOOL;
bSaveScene_8 : BOOL;
bSaveScene_9 : BOOL;
bSaveScene_10 : BOOL;
bSaveScene_11 : BOOL;
bSaveScene_12 : BOOL;
bSaveScene_13 : BOOL;
bSaveScene_14 : BOOL;
bSaveScene_15 : BOOL;
bSaveScene_16 : BOOL;
nActualValueLighting_1 : UINT;
nActualValueLighting_2 : UINT;
nActualValueLighting_3 : UINT;
nActualValueLighting_4 : UINT;
nActualValueLighting_5 : UINT;
nActualValueLighting_6 : UINT;
nActualValueLighting_7 : UINT;
nActualValueLighting_8 : UINT;
nActualValueLighting_9 : UINT;
nActualValueLighting_10 : UINT;
nActualValueLighting_11 : UINT;
nActualValueLighting_12 : UINT;
nActualValueLighting_13 : UINT;
nActualValueLighting_14 : UINT;
sFile : STRING;
nOptions : UDINT;

PLC API

TS8010 51Version: 1.1

bEnable: enables the function block.

bInvokeScene_1..16: calls the respective scene.

bSaveScene_1..16: saves the current analog value nActualValueLighting_1..14 in the respective scene.

nActualValueLighting_1..14: current control value of the respective lamp. Return value from the dimmer
function block FB_Dimmer1Switch() [} 11].

sFile: file name (without path and file extension) for saving the scenes. The file name must be unique in the
entire project. If several instances of the function blocks FB_ScenesLighting() or FB_ScenesVenetianBlind()
[} 52] are created, then each instance must use a different file name. The file is always saved to the
TwinCAT Boot directory and is given the extension .bin. Example: 'ControlPanelA'.

nOptions: reserved for future developments.

VAR_OUTPUT
bSetDimmValue_1 : BOOL;
nDimmValue_1 : UINT;
bSetDimmValue_2 : BOOL;
nDimmValue_2 : UINT;
bSetDimmValue_3 : BOOL;
nDimmValue_3 : UINT;
bSetDimmValue_4 : BOOL;
nDimmValue_4 : UINT;
bSetDimmValue_5 : BOOL;
nDimmValue_5 : UINT;
bSetDimmValue_6 : BOOL;
nDimmValue_6 : UINT;
bSetDimmValue_7 : BOOL;
nDimmValue_7 : UINT;
bSetDimmValue_8 : BOOL;
nDimmValue_8 : UINT;
bSetDimmValue_9 : BOOL;
nDimmValue_9 : UINT;
bSetDimmValue_10 : BOOL;
nDimmValue_10 : UINT;
bSetDimmValue_11 : BOOL;
nDimmValue_11 : UINT;
bSetDimmValue_12 : BOOL;
nDimmValue_12 : UINT;
bSetDimmValue_13 : BOOL;
nDimmValue_13 : UINT;
bSetDimmValue_14 : BOOL;
nDimmValue_14 : UINT;
bInit : BOOL;
bError : BOOL;
nErrorId : UDINT;

bSetDimmValue_1..14: output with the edge for the input bSetDimmValue of the function block
FB_Dimmer1Switch() [} 11].

nDimmValue_1..14: Output with the value for the input nDimmValue of the function block
FB_Dimmer1Switch() [} 11].

bInit: this output goes TRUE as soon as the initialisation of the function block is complete.

bError: this output is set to TRUE as soon as an error is detected during execution. The error code is
contained in nErrorId.

nErrorId: contains the error code as soon as bError goes TRUE. See Error codes [} 89].

PLC API

TS801052 Version: 1.1

3.3.3 FB_ScenesVenetianBlind

Description

Use of the function block

This function block is intended for the management of blind scenes. The function block is enabled via the
bEnable input. The loading of the saved scenes is started by a rising edge at the bEnable input. The input
must remain TRUE until the operation is completed. The values of the scenes are saved non-volatile in the
TwinCAT Boot directory as a *.bin file. The last data status is saved in a *.bak file as a backup.

PLC API

TS8010 53Version: 1.1

Saving a scene

The values of the inputs nActualValueBlinding_1..7 are saved in the respective scene by a rising edge at the
input bSaveScene_1...16.

Loading scenes

The saved values are output at the output nBlindValue_1..7 by a rising edge at the input
bInvokeScene_1..16. Furthermore, a rising edge is generated at the output bSetBlindValue_1..7 for one PLC
cycle.

Note: This functionblock is only available in the PC-based version of the library.

VAR_INPUT
bEnable : BOOL;
bInvokeScene_1 : BOOL;
bInvokeScene_2 : BOOL;
bInvokeScene_4 : BOOL;
bInvokeScene_5 : BOOL;
bInvokeScene_6 : BOOL;
bInvokeScene_7 : BOOL;
bInvokeScene_8 : BOOL;
bInvokeScene_9 : BOOL;
bInvokeScene_10 : BOOL;
bInvokeScene_11 : BOOL;
bInvokeScene_12 : BOOL;
bInvokeScene_13 : BOOL;
bInvokeScene_14 : BOOL;
bInvokeScene_15 : BOOL;
bInvokeScene_16 : BOOL;
bSaveScene_1 : BOOL;
bSaveScene_2 : BOOL;
bSaveScene_3 : BOOL;
bSaveScene_4 : BOOL;
bSaveScene_5 : BOOL;
bSaveScene_6 : BOOL;
bSaveScene_7 : BOOL;
bSaveScene_8 : BOOL;
bSaveScene_9 : BOOL;
bSaveScene_10 : BOOL;
bSaveScene_11 : BOOL;
bSaveScene_12 : BOOL;
bSaveScene_13 : BOOL;
bSaveScene_14 : BOOL;
bSaveScene_15 : BOOL;
bSaveScene_16 : BOOL;
nActualValueBlinding_1 : UINT;
nActualValueBlinding_2 : USINT;
nActualValueBlinding_3 : USINT;
nActualValueBlinding_4 : USINT;
nActualValueBlinding_5 : USINT;
nActualValueBlinding_6 : USINT;
nActualValueBlinding_7 : USINT;
sFile : STRING;
nOptions : DWORD;

bEnable: enables the function block.

bInvokeScene_1..16: calls the respective scene.

bSaveScene_1..16: saves the current analog value nActualValueBlinding_1..14 in the respective scene.

nActualValueBlinding_1..7: current control value of the respective blind. Return value from the blind
function block FB_VenetianBlindEx() [} 38].

sFile: file name (without path and file extension) for saving the scenes. The file name must be unique in the
entire project. If several instances of the function blocks FB_ScenesLighting() [} 49] or
FB_ScenesVenetianBlind() are created, then each instance must use a different file name. The file is always
saved to the TwinCAT Boot directory and is given the extension .bin. Example: 'ControlPanelA'.

nOptions: reserved for future developments.

PLC API

TS801054 Version: 1.1

VAR_OUTPUT
bSetBlindValue_1 : BOOL;
nBlindValue_1 : USINT;
bSetBlindValue_2 : BOOL;
nBlindValue_2 : USINT;
bSetBlindValue_3 : BOOL;
nBlindValue_3 : USINT;
bSetBlindValue_4 : BOOL;
nBlindValue_4 : USINT;
bSetBlindValue_5 : BOOL;
nBlindValue_5 : USINT;
bSetBlindValue_6 : BOOL;
nBlindValue_6 : USINT;
bSetBlindValue_7 : BOOL;
nBlindValue_7 : USINT;
bInit : BOOL;
bError : BOOL;
nErrorId : UDINT;

bSetBlindValue_1..7: output with the edge for the input bPosition of the function block FB_VenetianBlindEx()
[} 38].

nBlindValue_1..7: output with the value for the input nSetPosition of the function block FB_VenetianBlindEx()
[} 38].

bInit: this output goes TRUE as soon as the initialisation of the function block is complete.

bError: this output is set to TRUE as soon as an error is detected during execution. The error code is
contained in nErrorId.

nErrorId: contains the error code as soon as bError goes TRUE. See Error codes [} 89].

3.4 Signal Processing

3.4.1 FB_ShortLongClick

If the bSwitch input is longer than the tSwitchTime, the bLongClick output is set for one PLC cycle.
Otherwise, the bShortClick output is set.

VAR_INPUT
bSwitch : BOOL;
tSwitchTime : TIME := t#50ms;

bSwitch: Input signal.

tSwitchTime: Duration above which the input signal is to be interpreted as a long button press.

VAR_OUTPUT
bShortClick : BOOL;
bLongClick : BOOL;

bShortClick: Indicates a short button press.

bLongClick: Indicates a long button press.

Example

In the following example, two switches are used to control two different lamps. A switch is assigned to each
lamp. If a switch is pressed for longer than 500 ms, both lamps are switched off.

PLC API

TS8010 55Version: 1.1

3.4.2 FB_SignallingContact

The two inputs tDelayOnTime and tDelayOffTime allow slow operation and slow release delays to be set. If a
message signal is to be acknowledged before this time can be ended, this is done by means of the
bQuitSignal input. The state of the message contact is communicated to the block via the bContact input.

The state of the message signal is indicated by the nSignalState output. A message signal can adopt one of
altogether 6 different states. Corresponding constants are defined in the library:

Constant Description
TCSIGNAL_INVALID The message signal still does not have a defined state.
TCSIGNAL_SIGNALED The message signal is active.
TCSIGNAL_RESET The message signal has been reset.
TCSIGNAL_CONFIRMED The message signal is confirmed, but has not yet been reset.
TCSIGNAL_SIGNALCON The message signal is active and confirmed.
TCSIGNAL_RESETCON The message signal is confirmed and reset.

VAR_INPUT
tDelayOnTime : TIME := t#100ms;
tDelayOffTime : TIME := t#100ms;
bQuitSignal : BOOL;
bContact : BOOL;

tDelayOnTime: Delay before setting the message signal.

tDelayOffTime: Delay before resetting the message signal.

bQuitSignal: Input to acknowledge message signal.

bContact: Input for the message signal contact.

VAR_OUTPUT
nSignalState : WORD;

nSignalState: State of the message.

PLC API

TS801056 Version: 1.1

Examples

A message signal requiring acknowledgement is implemented in the following example. The variable
bGateAlert represents the state of the message signal. If the output nSignalState has the value
TCSIGNAL_SIGNALED or TCSIGNAL_RESET, the message is active. A rising edge at the bQuitSignal input
acknowledges the message signal.

The following example illustrates the simplest case. A message signal not requiring acknowledgement.

The slow-release delay allows the message signal to remain active for a certain time. The slow operation
delay can be used, for example, to suppress contact bounce.

3.4.3 FB_SingleDoubleClick

If the input signal is presented twice within the time tSwitchTime, the bDoubleClick output is set for one PLC
cycle. Otherwise, the bSingleClick output is set.

VAR_INPUT
bSwitch : BOOL;
tSwitchTime : TIME := t#500ms;

bSwitch: Input signal.

tSwitchTime: Duration above which the input signal is to be interpreted as a double button press.

VAR_OUTPUT
bSingleClick : BOOL;
bDoublelick : BOOL;

bSingleClick: Indicates a simple button press.

bDoublelick: Indicates a double button press.

Example

In the following example, two switches are used to control two different lamps. A switch is assigned to each
lamp. If a switch is pressed twice in rapid succession, both lamps are switched off.

PLC API

TS8010 57Version: 1.1

3.4.4 FB_ThresholdSwitch

If the input signal exceeds the limit value fUpperLimit for the duration specified by tUpperLimitDelay, the
output bCrossUpperLimit is set for one PLC cycle. The bSwitchingSignal output is also set. This remains set
until the input signal passes below the value of fLowerLimit for the duration specified by tLowerLimitDelay. In
this case, the output fCrossLowerLimit is set for one PLC cycle.

VAR_INPUT
fSignal : LREAL;
fLowerLimit : LREAL := 16000;
fUpperLimit : LREAL := 17000;
tLowerLimitDelay : TIME := t#100ms;
tUpperLimitDelay : TIME := t#100ms;

fSignal: Input signal.

fLowerLimit: Lower limit value.

fUpperLimit: Upper limit value.

tLowerLimitDelay: Switching delay when passing beyond the lower limit.

tUpperLimitDelay: Switching delay when passing beyond the upper limit.

VAR_OUTPUT
bSwitchingSignal : BOOL;
bCrossLowerLimit : BOOL;
bCrossUpperLimit : BOOL;

bSwitchingSignal: State depends on bCrossLowerLimit and bCrossUpperLimit.

bCrossLowerLimit: Is TRUE for one cycle, once fLowerLimit has fallen short of for the time
tLowerLimitDelay. Simultaneously bSwitchingSignal is FALSE.

bCrossUpperLimit: Is TRUE for one cycle, once fUpperLimit was exceeded for the time tUpperLimitDelay.
Simultaneously bSwitchingSignal is TRUE.

PLC API

TS801058 Version: 1.1

Example

In the following example, the two lamps can each be controlled with one switch. The two lamps are
automatically switched in response to the outside brightness and the threshold switch. The lamps are
switched on if the outside brightness is less than 1000 lux for 15 minutes. The lamps are switched off as
soon as the brightness is greater than 2000 lux for more than 15 minutes.

3.5 Filter Functions

3.5.1 FB_PT1
PT1 element for smoothing of input values.

This function block is active continuously. The output fOut always follows the input value fIn multiplied by Kp
with an exponential curve:

PLC API

TS8010 59Version: 1.1

If Kp is 1 the output value directly follows the input value. fOut has already reached 63 % of the input value
after the time tT1 has elapsed, after 3 x tT1 the value is 95 %.

The mathematical formula is:

The following time-discrete formula is used for the calculation in the PLC:

With a continuously changing input fIn, fOut behaves as follows (fIn= 0..33000, Kp= 1, T1= 5 s):

PLC API

TS801060 Version: 1.1

Since this function block is a time-discrete model of a PT1 element, it only works correctly if the
damping time is significantly longer than the set cycle time. To be on the safe side, if a damping
time is entered that is less than twice the set cycle time it is internally set to zero. A damping time of
0 s means that the output value directly follows the input value multiplied by Kp.

VAR_INPUT
fIn : LREAL;
fKp : LREAL := 1;
tT1 : TIME := t#10s;
tCycletime : TIME := t#10ms;
bSetActual : BOOL;

fIn: Input Value.

fKp: Amplifying-factor, preset value: 1.

tT1: Damping-time, preset value: 10s.

tCycleTime: PLC-cycle-time, preset value: 10ms.

bSetActual: Sets the output fOut directly to the input-value fIn.

VAR_OUTPUT
fOut : LREAL;

fOut: Output-Value.

3.5.2 FB_PT2
PT2 element for smoothing of input values.

PLC API

TS8010 61Version: 1.1

This function block is active continuously. The output fOut always follows the input value fIn multiplied by Kp.

This PT2 element consists of a series of two PT1 elements; the time constants T1 and T2 can have different
values. The step response (see above) shows a significantly more attenuated subsequent behavior
compared to the PT1 element (dashed) right from the start.

With a continuously changing input fIn, fOut behaves as follows (fIn= 0..33000, Kp= 1, T1,T2= 5 s):

PLC API

TS801062 Version: 1.1

In comparison, the dotted line shows the behavior of a PT1 element [} 58] with fIn= 0..33000, Kp= 1, T1= 5 s.

Since this function block is a time-discrete model of a PT2 element, it only works correctly if the
damping time is significantly longer than the set cycle time. To be on the safe side, if damping times
are entered that are less than twice the set cycle time they are internally set to zero. As already
mentioned, the PT2 element consists of two PT1 elements connected in series. If one of the two
damping times is set to zero, the PT2 element is reduced to a PT1 element. If both damping times
are set to zero, the output value directly follows the input value multiplied by Kp.

VAR_INPUT
fIn : LREAL;
fKp : LREAL := 1;
tT1 : TIME := t#10s;
tT2 : TIME := t#10s;
tCycletime : TIME := t#10ms;
bSetActual : BOOL;

fIn: Input Value.

fKp: Amplifying-factor, preset value: 1.

tT1: Damping-time 1, preset value: 10s.

tT2: Damping-time 2, preset value: 10s.

tCycleTime: PLC-cycle-time, preset value: 10ms.

bSetActual: Sets the output fOut directly to the input-value fIn.

VAR_OUTPUT
fOut : LREAL;

fOut: Output-Value.

PLC API

TS8010 63Version: 1.1

3.6 Conversion Functions

3.6.1 F_Scale

A raw analog signal value is scaled to the specified range of measurements and returned as the function
value. If the value of the raw signal extends beyond the upper or lower measurement range, the
corresponding limit value is output. There must be a difference of at least 0.01 between the upper and lower
limit values for the raw data. If this is not the case, the lower limit value is output.

VAR_INPUT
fRawData : LREAL;
fRawDataLowerOffLimit : LREAL;
fRawDataUpperOffLimit : LREAL;
fScaleDataLowerOffLimit : LREAL;
fScaleDataUpperOffLimit : LREAL;

fRawData: Raw data.

fRawDataLowerOffLimit: Lower limit for raw data.

fRawDataUpperOffLimit: Upper limit for raw data.

fScaleDataLowerOffLimit: Lower limit of scaled measurement.

fScaleDataUpperOffLimit: Upper limit of scaled measurement.

3.6.2 Temperature conversion functions
Functions for converting temperatures between Kelvin, Celsius, Reaumur and Fahrenheit.

F_TO_C
F_TO_K
F_TO_R

K_TO_F
K_TO_C
K_TO_R

C_TO_F
C_TO_K
C_TO_R

R_TO_K
R_TO_C
R_TO_F

PLC API

TS801064 Version: 1.1

Overview

Kelvin (K) Degrees Celsius
(°C)

Reaumur (°R) Fahrenheit (°F)

Absolute zero 0 -273,15 -218,52 -459,67
Melting point 273,15 0 0 32
Boiling point 373,15 100 80 212

(The melting and boiling points refer to pure water.)

Conversion rules

Kelvin (K) Degrees Celsius
(°C)

Reaumur (°R) Fahrenheit (°F)

x = Kelvin (K) -

x = degrees
Celsius (°C)

-

x = Reaumur (°R) -

x = Fahrenheit (°F) -

3.7 Time Switches

3.7.1 Scheduler Overview
The timer blocks are intended to trigger actions on certain days in the year/ month/ week. The action can be
triggered via a start event or a start time and terminated via an end event, end time or duration. The following
combinations are possible:

PLC API

TS8010 65Version: 1.1

The grey-blue fields indicate the timer type. The day is determined by the periodicity (red fields) and further
discretization (orange). A common feature of all blocks is that they have the same start and end criteria
(green). The start criterion relates to the selected day, the end criterion depends on the starting point. For
each instance of a function block only one start and end criterion can be defined. To trigger several actions
on the same day several instances of the function block are required.

Time overlaps

Time overlaps Time overlaps of two consecutive switch-on and switch-off criteria may occur in the same
instance of the function block if the switching duration is not limited to less than 1 day. In this case a start
event may be followed by another start event before the end of the preceding period. The following overlap
scenarios are possible in the situation described above:

Starttime / Endtime (type TOD, TOD)
No overlap possible since for Starttime<Endtime the start and end point are on same day, and for
Starttime>=Endtime the end point is assumed to be on the next day. This means that the duration is this
limited to less than 1 day.

Starttime / Duration (type TOD, TIME)
Overlap is possible, since the duration is freely selectable, and the TIME variable type can be up to 50 days.
It would therefore be possible to trigger an action with a duration of 3 days daily. The action would never be
completed since it would be constantly restarted.

Starttime / End event (type TOD, BOOL)
Overlap possible, since the end event is variable and cannot occur before the next start time.

Start event / Endtime (type BOOL, TOD)
Overlap may be possible. The end time is calculated when the start event occurs. If Starttime<Endtime the

PLC API

TS801066 Version: 1.1

end time is on the same day. In this case no overlap is possible. On the other hand, if Starttime>=Endtime
the end point is on the next day. An overlap occurs if the start is triggered on this day before the end of the
previous action has been reached.

Start event / Duration (type BOOL, TIME)
Overlap is possible, since the duration is freely selectable, and the TIME variable type can be up to 50 days.
It would therefore be possible to trigger an action with a duration of 3 days on a daily basis. The action would
never be completed since it would be constantly restarted.

Start event / End event (type BOOL, BOOL)
Overlap possible, since the end event is variable and cannot occur before the next start event.

An overlap means that the control output bOut for the respective function block does not change to FALSE.
Instead, the system waits for end of the next period.

Further documentation

The following table contains an overview of the documentation for the individual blocks:

FB_DailyScheduler()
[} 66]

FB_WeeklySched-
uler() [} 67]

FB_MonthlySched-
uler1() [} 69]

FB_MonthlySched-
uler2() [} 70]

FB_YearlyScheduler()
[} 71]

switches every n-th
day

switches every n-th
week on certain

weekdays (multiple
selection possible)

switches in certain
months (multiple se-
lection possible) on
a certain day of the

week

switches in certain
months (multiple se-
lection possible) on
a certain day of the

month

switches on a cer-
tain day of the year

Example Program

A sample program [} 73] uses a daily switching block (FB_DailyScheduler) to illustrate how the blocks must
be parameterized.

3.7.1.1 FB_DailyScheduler

Function block for triggering actions every nth day of the year.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
uiPeriodicity : UINT;
uiBegin : UINT;
eStartEnd : ENUM;
stStartEnd : TIMESTRUCT;
stSystemtime : TIMESTRUCT;

uiPeriodicity: Periodicity or interval. May be within the range 1 to 365.

uiBegin: Start value for the day counter. May be within the range 1 to 365. Example: uiPeriodicity = 5,
uiBegin = 2: Switching events on 2 Jan., 7 Jan. 12 Jan. etc. - uiPeriodicity = 3, uiBegin = 1: Switching events
on 1 Jan., 4 Jan. 7 Jan. etc.

PLC API

TS8010 67Version: 1.1

eStartEnd: Selection of start/end definition.

TYPE E_StartEnd : (eSTARTTIME_ENDTIME := 1, eSTARTTIME_DURATION := 2,
eSTARTTIME_ENDEVENT := 3, eSTARTEVENT_ENDTIME := 4, eSTARTEVENT_DURATION := 5,
eSTARTEVENT_ENDEVENT := 6); END_TYPE
eSTARTTIME_ENDTIME: Selection of start/end time. If the start time is equal or greater the end time, the
end is allocated to the next day.
eSTARTTIME_DURATION: Selection of start time/duration.
eSTARTTIME_ENDEVENT: Selection of start time/end event.
eSTARTEVENT_ENDTIME: Selection of start event/end time. If the start time is equal or greater the end
time, the end is allocated to the next day.
eSTARTEVENT_DURATION: Selection of start event/duration.
eSTARTEVENT_ENDEVENT: Selection of start event/end event.

stStartEnd: Structure with the parameters defining the start and end. Unused variables are ignored
internally, e.g. the duration for the selection of start/end time.

TYPE ST_StartEnd : STRUCT todStartTime : TOD; bStartEvent : BOOL; tDuration : TIME; todEndTime :
TOD; bEndEvent : BOOL; END_STRUCT END_TYPE

todStartTime: Start time.

bStartEvent: Start event

tDuration: Switching duration.

todEndTime: End time.

bEndEvent: End event.

stSystemtime: current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: control output that is switched on or off by the start and end event.

bTriggerOn: trigger output for switch-on events. This output is used to detect switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps [} 65] in the overview.

bNoEventNextYear: no day matching the parameterization was found within the next 366 days.

bError: this output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: contains the command-specific error code. Reset to 0 once the parameterization is correct. See
error codes [} 89].

3.7.1.2 FB_WeeklyScheduler

Function block for triggering actions on certain weekdays in every nth week of the year.

PLC API

TS801068 Version: 1.1

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
uiPeriodicity : UINT;
uiBegin : UINT;
arrActiveWeekday : ARRAY[0..6] OF BOOL;
eStartEnd : ENUM;
stStartEnd : TIMESTRUCT;
stSystemtime : TIMESTRUCT;

uiPeriodicity: Periodicity or interval. May be within the range 1 to 52.

uiBegin: Start value for the week. May be within the range 1 to 52. Example: uiPeriodicity = 5, uiBegin = 2:
Switching events in week 2, week 7, week 12 etc. - uiPeriodicity = 3, uiBegin = 1: Switching events in week
2, week 7, week 12 etc.

arrActiveWeekday: Day of the week on which an action is to be triggered - arrActiveWeekday[0] =>
Sunday .. arrActiveWeekday[6] => Saturday. Multiple selections are possible.

eStartEnd: Selection of start/end definition.

TYPE E_StartEnd : (eSTARTTIME_ENDTIME := 1, eSTARTTIME_DURATION := 2,
eSTARTTIME_ENDEVENT := 3, eSTARTEVENT_ENDTIME := 4, eSTARTEVENT_DURATION := 5,
eSTARTEVENT_ENDEVENT := 6); END_TYPE
eSTARTTIME_ENDTIME: Selection of start/end time. If the start time is equal or greater the end time, the
end is allocated to the next day.
eSTARTTIME_DURATION: Selection of start time/duration.
eSTARTTIME_ENDEVENT: Selection of start time/end event.
eSTARTEVENT_ENDTIME: Selection of start event/end time. If the start time is equal or greater the end
time, the end is allocated to the next day.
eSTARTEVENT_DURATION: Selection of start event/duration.
eSTARTEVENT_ENDEVENT: Selection of start event/end event.

stStartEnd: Structure with the parameters defining the start and end. Unused variables are ignored
internally, e.g. the duration for the selection of start/end time.

TYPE ST_StartEnd : STRUCT todStartTime : TOD; bStartEvent : BOOL; tDuration : TIME; todEndTime :
TOD; bEndEvent : BOOL; END_STRUCT END_TYPE

todStartTime: Start time.

bStartEvent: Start event

tDuration: Switching duration.

todEndTime: End time.

bEndEvent: End event.

stSystemtime: current time in TIMESTRUCT format. It is important to count every second.

PLC API

TS8010 69Version: 1.1

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: control output that is switched on or off by the start and end event.

bTriggerOn: trigger output for switch-on events. This output is used to detect switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps [} 65] in the overview.

bNoEventNextYear: no day matching the parameterization was found within the next 366 days.

bError: this output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: contains the command-specific error code. Reset to 0 once the parameterization is correct. See
error codes [} 89].

3.7.1.3 FB_MonthlyScheduler1

Function block for triggering actions on a certain day of the week in certain months.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
arrActiveMonth : ARRAY[1..12] OF BOOL;
uiActiveWeekday : UINT;
eStartEnd : ENUM;
stStartEnd : TIMESTRUCT;
stSystemtime : TIMESTRUCT;

arrActiveMonth: Month in which an action is to be triggered - arrActiveMonth[1] => January ..
arrActiveMonth[12] => December. Multiple selections are possible.

uiActiveWeekday: Day of the week on which an action is to be triggered in the selected months. 0 =
Sunday .. 6 = Saturday. Multiple selections are not possible; the maximum value is 6

eStartEnd: Selection of start/end definition.

TYPE E_StartEnd : (eSTARTTIME_ENDTIME := 1, eSTARTTIME_DURATION := 2,
eSTARTTIME_ENDEVENT := 3, eSTARTEVENT_ENDTIME := 4, eSTARTEVENT_DURATION := 5,
eSTARTEVENT_ENDEVENT := 6); END_TYPE
eSTARTTIME_ENDTIME: Selection of start/end time. If the start time is equal or greater the end time, the
end is allocated to the next day.
eSTARTTIME_DURATION: Selection of start time/duration.
eSTARTTIME_ENDEVENT: Selection of start time/end event.
eSTARTEVENT_ENDTIME: Selection of start event/end time. If the start time is equal or greater the end
time, the end is allocated to the next day.
eSTARTEVENT_DURATION: Selection of start event/duration.

PLC API

TS801070 Version: 1.1

eSTARTEVENT_ENDEVENT: Selection of start event/end event.

stStartEnd: Structure with the parameters defining the start and end. Unused variables are ignored
internally, e.g. the duration for the selection of start/end time.

TYPE ST_StartEnd : STRUCT todStartTime : TOD; bStartEvent : BOOL; tDuration : TIME; todEndTime :
TOD; bEndEvent : BOOL; END_STRUCT END_TYPE

todStartTime: Start time.

bStartEvent: Start event

tDuration: Switching duration.

todEndTime: End time.

bEndEvent: End event.

stSystemtime: current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: control output that is switched on or off by the start and end event.

bTriggerOn: trigger output for switch-on events. This output is used to detect switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps [} 65] in the overview.

bNoEventNextYear: no day matching the parameterization was found within the next 366 days.

bError: this output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: contains the command-specific error code. Reset to 0 once the parameterization is correct. See
error codes [} 89].

3.7.1.4 FB_MonthlyScheduler2

Function block for triggering actions on a certain day in certain months.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
arrActiveMonth : ARRAY[1..12] OF BOOL;
uiActiveWeekday : UINT;
eStartEnd : ENUM;
stStartEnd : TIMESTRUCT;
stSystemtime : TIMESTRUCT;

PLC API

TS8010 71Version: 1.1

arrActiveMonth: Month in which an action is to be triggered - arrActiveMonth[1]=>January ..
arrActiveMonth[12]=>December. Multiple selections are possible.

uiActiveDay: Day of the month on which an action is to be triggered. Multiple selections are not possible.

eStartEnd: Selection of start/end definition.

TYPE E_StartEnd : (eSTARTTIME_ENDTIME := 1, eSTARTTIME_DURATION := 2,
eSTARTTIME_ENDEVENT := 3, eSTARTEVENT_ENDTIME := 4, eSTARTEVENT_DURATION := 5,
eSTARTEVENT_ENDEVENT := 6); END_TYPE
eSTARTTIME_ENDTIME: Selection of start/end time. If the start time is equal or greater the end time, the
end is allocated to the next day.
eSTARTTIME_DURATION: Selection of start time/duration.
eSTARTTIME_ENDEVENT: Selection of start time/end event.
eSTARTEVENT_ENDTIME: Selection of start event/end time. If the start time is equal or greater the end
time, the end is allocated to the next day.
eSTARTEVENT_DURATION: Selection of start event/duration.
eSTARTEVENT_ENDEVENT: Selection of start event/end event.

stStartEnd: Structure with the parameters defining the start and end. Unused variables are ignored
internally, e.g. the duration for the selection of start/end time.

TYPE ST_StartEnd : STRUCT todStartTime : TOD; bStartEvent : BOOL; tDuration : TIME; todEndTime :
TOD; bEndEvent : BOOL; END_STRUCT END_TYPE

todStartTime: Start time.

bStartEvent: Start event

tDuration: Switching duration.

todEndTime: End time.

bEndEvent: End event.

stSystemtime: current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: control output that is switched on or off by the start and end event.

bTriggerOn: trigger output for switch-on events. This output is used to detect switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps [} 65] in the overview.

bNoEventNextYear: no day matching the parameterization was found within the next 366 days.

bError: this output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: contains the command-specific error code. Reset to 0 once the parameterization is correct. See
error codes [} 89].

3.7.1.5 FB_YearlyScheduler

Function block for triggering actions on a certain day of the year.

PLC API

TS801072 Version: 1.1

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
uiMonth : UINT;
uiDay : UINT;
eStartEnd : ENUM;
stStartEnd : TIMESTRUCT;
stSystemtime : TIMESTRUCT;

uiMonth: Month in which an action is to be triggered. Multiple selections are not possible.

uiDay: Day on which an action is to be triggered. Multiple selections are not possible.

eStartEnd: Selection of start/end definition.

TYPE E_StartEnd : (eSTARTTIME_ENDTIME := 1, eSTARTTIME_DURATION := 2,
eSTARTTIME_ENDEVENT := 3, eSTARTEVENT_ENDTIME := 4, eSTARTEVENT_DURATION := 5,
eSTARTEVENT_ENDEVENT := 6); END_TYPE
eSTARTTIME_ENDTIME: Selection of start/end time. If the start time is equal or greater the end time, the
end is allocated to the next day.
eSTARTTIME_DURATION: Selection of start time/duration.
eSTARTTIME_ENDEVENT: Selection of start time/end event.
eSTARTEVENT_ENDTIME: Selection of start event/end time. If the start time is equal or greater the end
time, the end is allocated to the next day.
eSTARTEVENT_DURATION: Selection of start event/duration.
eSTARTEVENT_ENDEVENT: Selection of start event/end event.

stStartEnd: Structure with the parameters defining the start and end. Unused variables are ignored
internally, e.g. the duration for the selection of start/end time.

TYPE ST_StartEnd : STRUCT todStartTime : TOD; bStartEvent : BOOL; tDuration : TIME; todEndTime :
TOD; bEndEvent : BOOL; END_STRUCT END_TYPE

todStartTime: Start time.

bStartEvent: Start event

tDuration: Switching duration.

todEndTime: End time.

bEndEvent: End event.

stSystemtime: current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: control output that is switched on or off by the start and end event.

PLC API

TS8010 73Version: 1.1

bTriggerOn: trigger output for switch-on events. This output is used to detect switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps [} 65] in the overview.

bNoEventNextYear: no day matching the parameterization was found within the next 366 days.

bError: this output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: contains the command-specific error code. Reset to 0 once the parameterization is correct. See
error codes [} 89].

3.7.1.6 Scheduler Example

The following programming example uses a day timer to illustrate how the blocks should be parameterised,
particularly with regard to the inputs eStartEnd, stStartEnd and stSystemTime.

We recommend using the block NT_GetTime, which is available in the library TcUtilities.lib, for reading the
system time in PC- and CX-based systems. A program for reading might look as follows:

It provides a time base for parameterizing the scheduler blocks with regard to the time input stSystemTime.
The enumerator matching the required behavior is created at input eStartEnd:

eSTARTTIME_ENDTIME Start criterion: Time - End criterion: Time

PLC API

TS801074 Version: 1.1

eSTARTTIME_DURATION Start criterion: Time - End criterion: Duration
eSTARTTIME_ENDEVENT Start criterion: Time - End criterion: Event (boolean input)
eSTARTEVENT_ENDTIME Start criterion: Event (boolean input) - End criterion: Time
eSTARTEVENT_DURATION Start criterion: Event (boolean input) - End criterion: Duration
eSTARTEVENT_ENDEVENT Start criterion: Event (boolean input) - End criterion: Event (boolean

input)

For the input stStartEnd a structure variable of the same type has to be declared that is referred to in the
example as stStartEnd. In program the subvariables for this structure that are relevant for the function type
are described. For the example shown here these are todStartTime and tDuration. All other variables are not
read and therefore do not have to be described.

Both programs have to be called in the MAIN block. The program part P_SchedulerExample may only be
called once the program part P_SystemTime supplies valid data, i.e. once P_SystemTimeValid is TRUE. The
reason for this protective logic is that reading the time takes several cycles which means that the time when
the program starts is invalid and must not be used.

If the program starts on 1 January, the sequences is as follows:

PLC API

TS8010 75Version: 1.1

The days on which actions are triggered start with the 2nd of the year (uiBegin:=2). The process is repeated
every three days (uiPeriodicity:=3). The switch-on time is 15:00 (stStartEnd.todStartTime := tod#15:00:00)
and the switching duration is 6 hours (stStartEnd.tDuration := t#6h).

3.7.2 FB_WeeklyTimeSwitch

The parameters tSwitchOnTime and tSwitchOffTime define a period of time, in which bOutput will be set to
TRUE. The timer is only active on the selected days of the week. This selection is done by setting the inputs
bSunday, bMonday, ..., bSaturday. It is only possible to define one switching-period per timer. Each further
switching-period requires a new timer.

VAR_INPUT
bEnable : BOOL;
tCurrentDateTime : DATE_AND_TIME;
tSwitchOnTime : TOD;
tSwitchOffTime : TOD;
bSunday : BOOL;
bMonday : BOOL;
bTuesday : BOOL;
bWednesday : BOOL;
bThursday : BOOL;
bFriday : BOOL;
bSaturday : BOOL;

PLC API

TS801076 Version: 1.1

bEnable: Timer-release.

tCurrentDateTime: Actual time and date

tSwitchOnTime: Time, when bOutput will be set to TRUE.

tSwitchOffTime: Time, when bOutput will be set to FALSE.

bSunday: Timer is active on Sunday.

bMonday: Timer is active on Monday.

bTuesday: Timer is active on Tuesday.

bWednesday: Timer is active on Wednesday.

bThursday: Timer is active on Thursday.

bFriday: Timer is active on Friday.

bSaturday: Timer is active on Saturday.

VAR_OUTPUT
bOutput : BOOL;
bEdgeOn : BOOL;
bEdgeOff : BOOL;

bOutput: As long as the actual time lies between the on- and the off-time, this output will be set to TRUE.

bEdgeOn: When bOutput turns to its TRUE-state, this output will be set to TRUE for one PLC-cycle.

bEdgeOff: When bOutput turns to its FALSE-state, this output will be set to TRUE for one PLC-cycle.

Example

The following example shows a blind, which is programmed to go up at 6.30am and to go down at 7.00pm at
the weekend. The timer outputs bEdgeOn and bEdgeOff are used to control the blind-function, which needs
pulses at the inputs bUp und bDown to move the blind.

PLC API

TS8010 77Version: 1.1

3.7.3 FB_CalcSunPosition

Calculation of the position of the sun by means of specifying the date, time, longitude and latitude.

Description

The position of the sun for a given point in time can be calculated according to common methods with a
defined accuracy. For applications with moderate requirements, the present block is sufficient. As the basis
for this, the SUNAE algorithm was used, which represents a favorable compromise between accuracy and
computing effort.

The position of the sun at a fixed observation point is normally determined by specifying two angles. One
angle indicates the height above the horizon, where 0° means that the sun is in the horizontal plane of the
observation site and 90° means that the sun is directly over the observer's head. The other angle indicates
the direction in which the sun is standing. The SUNAE algorithm is used to distinguish whether the observer
is standing on the northern hemisphere (longitude > 0 degrees) or on the southern hemisphere (longitude <
0 degrees) of the earth. If the observation point is in the northern hemisphere is, then a value of 0° is
assigned for the northern sun direction and it then runs in the clockwise direction around the compass, i.e.,
90° is east, 180° is south, 270° is west etc. If the point of observation is in the southern hemisphere, then 0°
corresponds to the southern direction and it then runs in the counterclockwise direction, i.e. 90° is east, 180°
is north, 270° is west etc.

In specifying the time, the time according to Greenwich Mean Time (GMT) must be given.

The latitude is specified as the distance of a place on the surface of the earth from the equator to the north or
to the south in degrees. The latitude can assume a value from 0° (at the equator) to ±90° (at the poles). A
positive sign thereby indicates a northern direction and a negative sign a southern direction. The longitude is
an angle that can assume values up to ±180° starting from the prime meridian 0° (an artificially determined
North-South line). A positive sign indicates a longitude in an eastern direction and a negative sign in a
western direction. Examples:

Place Longitude Latitude
Sydney, Australia 151,2° -33,9°
New York, USA -74,0° 40,7°
London, England -0,1° 51,5°
Moscow, Russia 37,6° 55,7°

PLC API

TS801078 Version: 1.1

Place Longitude Latitude
Peking, China 116,3° 39,9°
Dubai, United Arab Emirates 55,3° 25,4°
Rio de Janeiro, Brazil -43,2° -22,9°
Hawai, USA -155,8° 20,2°
Verl, Germany 8,5° 51,9°

If the block FB_CalcSunPosition() returns a negative value for the height of the sun (fSunElevation), then the
sun is not visible. This can be used to determine sunrise and sunset.

VAR_INPUT
fDegreeOfLongitude : LREAL := 8.5;
fDegreeOfLatitude : LREAL := 51.9;
dtGMT : TIMESTRUCT;

fDegreeOfLongitude: Longitude in degrees.

fDegreeofLatitude: Latitude in degrees.

dtGMT: Current time as Greenwich Mean Time (GMT).

VAR_OUTPUT
fSunAzimuth : LREAL;
fSunElevation : LREAL;

fSunAzimuth: Direction of the sun (northern hemisphere: 0° north… 90° east… 180° south… 270° west…/
southern hemisphere: 0° south… 90° east… 180° north… 270° west…).

fSunElevation: Height of the sun (0° horizontal - 90° vertical).

Sample
PROGRAM MAIN
VAR
 fbCalcSunPosition : FB_CalcSunPosition;
 fSunAzimuth : LREAL;
 fSunElevation : LREAL;
 fbGetSystemTime : GETSYSTEMTIME;
 fileTime : T_FILETIME;
END_VAR

fbGetSystemTime(timeLoDW=>fileTime.dwLowDateTime,
 timeHiDW=>fileTime.dwHighDateTime);

fbCalcSunPosition(fDegreeOfLongitude := 8.5,
 fDegreeOfLatitude := 51.9,
 dtGMT := FILETIME_TO_SYSTEMTIME(fileTime));
ffSunAzimuth := fbCalcSunPosition.fSunAzimuth;
fSunElevation := fbCalcSunPosition.fSunElevation;

3.7.4 FB_CalcSunriseSunset

Function block for calculating sunrise and sunset based on the longitude, latitude, reference meridian and
time.

The earth is divided into several time zones. Each time zone is associated with a reference meridian.
Reference meridian for some of the time zones:

PLC API

TS8010 79Version: 1.1

Time zone Reference meridian
GMT (Greenwich Mean Time) λGMT = 0°
CET (Central European Time) λMEZ = 15°
CEST (Central European Summer Time) λCEST = 30°

In specifying the time, the time according to Greenwich Mean Time (GMT) must be given.

This function block is only available in the PC version of the library.

VAR_INPUT
fDegreeOfLongitude : LREAL := 8.5;
fDegreeOfLatitude : LREAL := 51.9;
fReferenceMeridian : LREAL;
dCurrentDate : DATE;

fDegreeOfLongitude: Longitude in degrees.

fDegreeofLatitude: Latitude in degrees.

fReferenceMeridian: Reference meridian of the time zone.

dCurrentDate: current date.

VAR_OUTPUT
todSunrise : TOD;
todSunset : TOD;

todSunrise: Sunrise. Output of hour and minute.

todSunset: Sunset. Output of hour and minute.

Example
PROGRAM MAIN
VAR
 fbCalcSunriseSunset : FB_CalcSunriseSunset;
 todSunrise : TOD;
 todSunset : TOD;
 fbGetSystemTime : GETSYSTEMTIME;
 fileTime : T_FILETIME;
 dtCurrentDate : DT;
END_VAR

fbGetSystemTime(timeLoDW =>fileTime.dwLowDateTime,
 timeHiDW =>fileTime.dwHighDateTime);
dtCurrentDate:=FILETIME_TO_DT(fileTime);

fbCalcSunriseSunset(fDegreeOfLongitude := 8.5, (* Longitude of Verl *)
 fDegreeOfLatitude := 51.9, (* Latitude of Verl *)
 fReferenceMeridian := 30.0, (* Central European Summer Time *)
 dCurrentDate := DT_TO_DATE(dtCurrentDate),
 todSunrise => todSunrise,
 todSunset => todSunset);

PLC API

TS801080 Version: 1.1

3.7.5 FB_CalcPublicHolidaysDE

Calculation of German public holidays.

Description

Holidays for the current year are calculated based on the date entered. A boolean output indicates whether
the entered date matches one of the calculated holidays. To ensure international readability the block was
translated into English. The parameters have the following meaning:

English name German name
NewYears Day Neujahr
Epiphany Heilige Drei Könige
Good Friday Karfreitag
Easter Sunday Ostersonntag
Easter Monday Ostermontag

PLC API

TS8010 81Version: 1.1

English name German name
Labour Day Maifeiertag
Ascension Day Christi Himmelfahrt
Whit Sunday Pfingstsonntag
Whit Monday Pfingstmontag
Corpus Christi Fronleichnam
Assumption Day Mariä Himmelfahrt
German Unification Day Tag Der Deutschen Einheit
Reformation Day Reformationstag
All Saints Day Allerheiligen
Penance Day Buß- und Bettag
Christmas Eve Heiligabend
1st ChristmasDay 1. Weihnachtstag
2nd ChristmasDay 2. Weihnachtstag
New Years Eve Silvester

VAR_INPUT
dCurrentDate : DATE;

dCurrentDate: current date.

VAR_OUTPUT
dNewYearsDay : DATE;
dEpiphany : DATE;
dGoodFriday : DATE;
dEasterSunday : DATE;
dEasterMonday : DATE;
dLabourDay : DATE;
dAscensionDay : DATE;
dWhitSunday : DATE;
dWhitMonday : DATE;
dCorpusChristi : DATE;
dAssumptionDay : DATE;
dGermanUnificationDay : DATE;
dReformationDay : DATE;
dAllSaintsDay : DATE;
dPenanceDay : DATE;
dChristmasEve : DATE;
d1stChristmasDay : DATE;
d2ndChristmasDay : DATE;
dNewYearsEve : DATE;

bNewYearsDay : BOOL;
bEpiphany : BOOL;
bGoodFriday : BOOL;
bEasterSunday : BOOL;
bEasterMonday : BOOL;
bLabourDay : BOOL;
bAscensionDay : BOOL;
bWhitSunday : BOOL;
bWhitMonday : BOOL;
bCorpusChristi : BOOL;
bAssumptionDay : BOOL;
bGermanUnificationDay : BOOL;
bReformationDay : BOOL;
bAllSaintsDay : BOOL;
bPenanceDay : BOOL;
bChristmasEve : BOOL;
b1stChristmasDay : BOOL;
b2ndChristmasDay : BOOL;
bNewYearsEve : BOOL;

dxxxxxx: Date of the respective holiday.

bxxxxxx: Boolean statement indicating whether today is the respective holiday.

PLC API

TS801082 Version: 1.1

3.7.6 FB_CalcPublicHolidaysUS

Calculation of US public holidays.

Description

Public holidays recognized by the US Federal government, as well as most popular holiday for the current
year are calculated based on the date entered. A Boolean output indicates whether the entered date
matches one of the calculated holidays. To ensure international readability the block was translated into
English. The parameters have the following meaning:

English name German name
New Years Day Neujahr
Martin Luther King, Jr. Day MLKtag
Presidents Day Presidentstag
Good Friday Karfreitag
Easter Sunday Ostersonntag
Memorial Day Ostermontag
Independence Day Independencetag
Labor Day Maifeiertag
Columbus Day Columbustag
Veterans Day Veteranstag
Thanksgiving Day Thanksgivingtag

PLC API

TS8010 83Version: 1.1

English name German name
Thanksgiving Friday Thanksgivingfriestag
Christmas Eve Heiligabend
Christmas Day Weihnachtstag
New Years Eve Silvester

VAR_INPUT
dCurrentDate : DATE;

dCurrentDate: Current date.

VAR_OUTPUT
dNewYearsDay : DATE;
dMartinLutherKingJrDay : DATE;
dPresidentsDay : DATE;
dGoodFriday : DATE;
dEasterSunday : DATE;
dMemorialDay : DATE;
dIndependenceDay : DATE;
dLaborDay : DATE;
dColumbusDay : DATE;
dVeteransDay : DATE;
dThanksgivingDay : DATE;
dThanksgivingFriday : DATE;
dChristmasEve : DATE;
dChristmasDay : DATE;
dNewYearsEve : DATE;

bNewYearsDay : BOOL;
bMartinLutherKingJrDay : BOOL;
bPresidentsDay : BOOL;
bGoodFriday : BOOL;
bEasterSunday : BOOL;
bMemorialDay : BOOL;
bLaborDay : BOOL;
bColumbusDay : BOOL;
bVeteransDay : BOOL;
bThanksgivingDay : BOOL;
bThanksgivingFriday : BOOL;
bChristmasEve : BOOL;
bChristmasDay : BOOL;
bNewYearsEve : BOOL;

dxxxxxx: Date of the respective holiday.

bxxxxxx: Boolean statement indicating whether today is the respective holiday.

PLC API

TS801084 Version: 1.1

3.7.7 FB_CalcFederalHolidaysUS

Calculation of US federal holidays.

Description

Public holidays recognized by the US Federal government for the current year are calculated based on the
date entered. A boolean output indicates whether the entered date matches one of the calculated holidays.
To ensure international readability the block was translated into English. The parameters have the following
meaning:

English name German name
New Years Day Neujahr
Martin Luther King, Jr. Day MLKtag
Presidents Day Presidentstag
Memorial Day Memorialtag
Independence Day Independencetag
Labor Day Maifeiertag
Columbus Day Columbustag
Veterans Day Veteranstag
Thanksgiving Day Thanksgivingtag
Christmas Day Weihnachtstag

VAR_INPUT
dCurrentDate : DATE;

dCurrentDate: Current date.

VAR_OUTPUT
dNewYearsDay : DATE;
dMartinLutherKingJrDay : DATE;
dPresidentsDay : DATE;
dMemorialDay : DATE;
dIndependenceDay : DATE;
dLaborDay : DATE;

PLC API

TS8010 85Version: 1.1

dColumbusDay : DATE;
dThanksgivingDay : DATE;
dChristmasDay : DATE;

bNewYearsDay : BOOL;
bMartinLutherKingJrDay : BOOL;
bPresidentsDay : BOOL;
bMemorialDay : BOOL;
bIndependenceDay : BOOL;
bLaborDay : BOOL;
bColumbusDay : BOOL;
bThanksgivingDay : BOOL;
bChristmasDay : BOOL;

dxxxxxx: Date of the respective holiday.

bxxxxxx: Boolean statement indicating whether today is the respective holiday.

3.8 Energy Management

3.8.1 FB_MaximumDemandController

Function block for peak load optimization, which ensures compliance with the set power limit by means of
switching on or off up to eight consumers. The consumers can be switched off according to their rated power
and priority in such a manner that the production sequence is not disturbed.

To distinguish the individual measurement cycles, a synchronization pulse is supplied by the electricity
supply company (ESC). This indicates the start of a new measurement cycle and must be connected to the
input bPeriodPuls. The actual power is recorded via the counter terminal KL1501.

The block works with a fixed measurement period of 15 minutes. If the synchronization pulse exceeds the
16-minute limit, the output bEmergencySignal is set.

All consumers are switched on at the start of each measurement period. If the power limit (fAgreedPower)
threatens to be exceeded within the measurement period, the consumers are switched off one after the
other. If the danger of an excess load no longer exists, the consumers are switched on again.

Special items, such as minimum power-on time, minimum power-off time or maximum power-off time can be
specified via an input variable. The priority of the individual consumers can similarly be determined.
Consumers with a low priority will be switched off before consumers with a high priority.

PLC API

TS801086 Version: 1.1

VAR_INPUT
bStart : BOOL;
fMeterConstant : LREAL;
fAgreedPower : LREAL;
bPeriodPulse : BOOL;
arrLoadParameter : ARRAY[1..8] OF ST_MDCLoadParameters;

bStart: The block is activated by a rising edge at this input.

fMeterConstant: Meter constant [pulses / kWh].

fAgreedPower: This is the agreed power limit which, as far as possible, should not be exceeded in the
operational case [kW].

bPeriodPulse: Synchronisation pulse sent by the electricity supply company (ESC). This pulse starts the
measurement interval.

arrLoadParameter: Parameter structure of the respective consumer. This consists of the following
elements:

TYPE ST_MDCLoadParameters: STRUCT bConnected : BOOL; nDegreeOfPriority : INT;
tMINPowerOnTime : TIME; tMINPowerOffTime : TIME; tMAXPowerOffTime : TIME; END_STRUCT
END_TYPE

bConnected: TRUE = consumer connected; FALSE = consumer not connected.

nDegreeOfPriority: Indicates the switch-off priority; consumers with a low priority will be switched off first.
(1 => lox; ... 8 => high priority)

tMINPowerOnTime: The minimum power-on time (minimum ramp-up time) during which the consumer may
not be switched off.

PLC API

TS8010 87Version: 1.1

tMINPowerOffTime: The minimum power-off time (recovery time) during which the consumer may not be
switched on again.

tMAXPowerOffTime: The maximum power-off time after which the consumer must be switched on again.

VAR_OUTPUT
arrLoad : ARRAY[1..8] OF BOOL;
fAgreedEnergy : LREAL;
fInstantaneousEnergy : LREAL;
fActualEnergy : LREAL;
tRemainingTime : TIME;
fLastPeriodEnergy : LREAL;
bEmergencySignal : BOOL;
bError : BOOL;
nErrorId : UDINT;

arrLoad: This is an array of data type BOOL; consumers that are switched on are TRUE.

fAgreedEnergy: Agreed energy consumption [kWh].

fInstantaneousEnergy: Momentary energy consumption [kWh] in relation of the integration period with 15s
(internal measurement interval).

fActualEnergy: Energy consumed at the "presently" observed point in time of the measurement period.

tRemainingTime: Time remaining until the next measurement interval.

fLastPeriodEnergy: Rated power from the preceding measurement period [kWh].

bEmergencySignal: This output is set as soon as the specified energy is exceeded.

bError: This output is switched to TRUE if an error occurs during the execution of a command.

nErrorId: Contains the Errorcode [} 89].

VAR_IN_OUT
stInDataKL1501 : ST_MDCInDataKL1501;
stOutDataKL1501 : ST_MDCOutDataKL1501;

stInDataKL1501: Linked to the KL1501.
TYPE ST_MDCInDataKL1501 :
STRUCT
 nStatus : USINT;
 nDummy1 : USINT;
 nDummy2 : USINT;
 nDummy3 : USINT;
 nData : DWORD;
END_STRUCT
END_TYPE

stOutDataKL1501: Linked to the KL1501.
TYPE ST_MDCOutDataKL1501 :
STRUCT
 nCtrl : USINT;
 nDummy1 : USINT;
 nDummy2 : USINT;
 nDummy3 : USINT;
 nData : DWORD;
END_STRUCT
END_TYPE

Sample
VAR_GLOBAL
 arrLoadParameters AT %MB100 : ARRAY [1..8] OF ST_MDCLoadParameters;

 (* KL1002 *)
 bPeriodPulse AT %IX6.0 : BOOL;

 (* KL1501*)
 stInDataKL1501 AT %IB0 : ST_MDCInDataKL1501;
 stOutDataKL1501 AT %QB0 : ST_MDCOutDataKL1501;

PLC API

TS801088 Version: 1.1

 (* KL2404 *)
 bLoadOut1 AT %QX6.0 : BOOL;
 bLoadOut2 AT %QX6.1 : BOOL;
 bLoadOut3 AT %QX6.2 : BOOL;
 bLoadOut4 AT %QX6.3 : BOOL;

 (* KL2404 *)
 bLoadOut5 AT %QX6.4 : BOOL;
 bLoadOut6 AT %QX6.5 : BOOL;
 bLoadOut7 AT %QX6.6 : BOOL;
 bEmergencySignal AT %QX6.7 : BOOL;
END_VAR

PROGRAM MAIN
VAR
 fbMaximumDemandController : FB_MaximumDemandController;
END_VAR

arrLoadParameters[1].bConnected := TRUE;
arrLoadParameters[1].nDegreeOfPriority := 1;
arrLoadParameters[1].tMINPowerOnTime := t#60s;
arrLoadParameters[1].tMINPowerOffTime := t#120s;
arrLoadParameters[1].tMAXPowerOffTime := t#600s;

arrLoadParameters[2].bConnected := TRUE;
arrLoadParameters[2].nDegreeOfPriority := 2;
arrLoadParameters[2].tMINPowerOnTime := t#60s;
arrLoadParameters[2].tMINPowerOffTime := t#120s;
arrLoadParameters[2].tMAXPowerOffTime := t#600s;

arrLoadParameters[3].bConnected := TRUE;
arrLoadParameters[3].nDegreeOfPriority := 3;
arrLoadParameters[3].tMINPowerOnTime := t#60s;
arrLoadParameters[3].tMINPowerOffTime := t#120s;
arrLoadParameters[3].tMAXPowerOffTime := t#300s;

arrLoadParameters[4].bConnected := TRUE;
arrLoadParameters[4].nDegreeOfPriority := 4;
arrLoadParameters[4].tMINPowerOnTime := t#20s;
arrLoadParameters[4].tMINPowerOffTime := t#30s;
arrLoadParameters[4].tMAXPowerOffTime := t#8m;

arrLoadParameters[5].bConnected := TRUE;
arrLoadParameters[5].nDegreeOfPriority := 5;
arrLoadParameters[5].tMINPowerOnTime := t#20s;
arrLoadParameters[5].tMINPowerOffTime := t#50s;
arrLoadParameters[5].tMAXPowerOffTime := t#20m;

arrLoadParameters[6].bConnected := TRUE;
arrLoadParameters[6].nDegreeOfPriority := 6;
arrLoadParameters[6].tMINPowerOnTime := t#30s;
arrLoadParameters[6].tMINPowerOffTime := t#1m;
arrLoadParameters[6].tMAXPowerOffTime := t#1m;

arrLoadParameters[7].bConnected := TRUE;
arrLoadParameters[7].nDegreeOfPriority := 7;
arrLoadParameters[7].tMINPowerOnTime := t#0s;
arrLoadParameters[7].tMINPowerOffTime := t#0s;
arrLoadParameters[7].tMAXPowerOffTime := t#1m;

arrLoadParameters[8].bConnected := FALSE;

fbMaximumDemandController(bStart := TRUE,
 fMeterConstant := 20000,
 fAgreedPower := 600,
 bPeriodPulse := bPeriodPulse,
 arrLoadParameters := arrLoadParameters,
 stInDataKL1501 := stInDataKL1501,
 stOutDataKL1501 := stOutDataKL1501);

bLoadOut1 := fbMaximumDemandController.arrLoad[1];
bLoadOut2 := fbMaximumDemandController.arrLoad[2];
bLoadOut3 := fbMaximumDemandController.arrLoad[3];
bLoadOut4 := fbMaximumDemandController.arrLoad[4];
bLoadOut5 := fbMaximumDemandController.arrLoad[5];
bLoadOut6 := fbMaximumDemandController.arrLoad[6];
bLoadOut7 := fbMaximumDemandController.arrLoad[7];
bEmergencySignal := fbMaximumDemandController.bEmergencySignal;

PLC API

TS8010 89Version: 1.1

3.9 Error codes
Value (hex) Value (dec) Description
0x0000 0 No error.
0x0001 1 FB_MaximumDemandController(): [} 85] -- reserved errorcode --
0x0002 2 FB_MaximumDemandController(): [} 85] The input-parameter

fMeterConstant is "0".
0x0003 3 FB_LightControl(): [} 22] The switch-range nSwitchRange of the

1st or 2nd element of the table arrControlTable is “0”. Thus it´s
assumed, that the table has no or only one element.

0x0004 4 FB_LightControl(): [} 22] At least one input-value nActualValue the
table arrControlTable lies in the switch range of its neighbour.

0x0005 5 FB_Sequencer(): [} 28] The startindex nStartIndex is not within the
valid range [1..50].

0x0006 6 FB_Sequencer(): [} 28] The startindex nStartIndex has a reference
to a dilimiting-element (zero-entries).

0x0007 7 Scheduler-Modules: At least one input-parameter is not in its valid
range.

0x0008 8 Scheduler-Modules: No selection-parameter is set (Weekly-
scheduler: selection of weekdays, Monthly-scheduler: selection of
the month).

0x0009 9 Scheduler-Modules: A non-existant day of the month was
selected.

0x000A 10 FB_ConstantLightControlEco(): [} 24] The input-parameter
nMinLevel is greater or equal then nMaxLevel.

0x000B 11 FB_ScenesLighting() [} 49], FB_ScenesVenetianBlind(): [} 52] The
input-parameter sFile is invalid (empty).

0x000C 12 FB_ScenesLighting() [} 49], FB_ScenesVenetianBlind(): [} 52]
Internal error: File with the scenes values not found.

0x000D 13 FB_ScenesLighting() [} 49], FB_ScenesVenetianBlind(): [} 52]
Internal error: No more free file handles.

Appendix

TS801090 Version: 1.1

4 Appendix

4.1 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com
web: https://www.beckhoff.com

https://www.beckhoff.com/support
https://www.beckhoff.com
https://www.beckhoff.com

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/ts8010

mailto:info@beckhoff.de?subject=TS8010
https://www.beckhoff.com
https://www.beckhoff.com/ts8010

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 General information
	3 PLC API
	3.1 Lightings
	3.1.1 FB_Dimmer1Switch
	3.1.2 FB_Dimmer1SwitchEco
	3.1.3 FB_Dimmer2Switch
	3.1.4 FB_Dimmer2SwitchEco
	3.1.5 FB_Dimmer3Switch
	3.1.6 FB_Light
	3.1.7 FB_LightControl
	3.1.8 FB_ConstantLightControlEco
	3.1.9 FB_Ramp
	3.1.10 FB_Sequencer
	3.1.11 FB_StairwellDimmer
	3.1.12 FB_StairwellLight

	3.2 Facade
	3.2.1 FB_RoofWindow
	3.2.2 FB_VenetianBlind
	3.2.3 FB_VenetianBlindEx
	3.2.4 FB_VenetianBlindEx1Switch

	3.3 Scene Management
	3.3.1 FB_RoomOperation
	3.3.2 FB_ScenesLighting
	3.3.3 FB_ScenesVenetianBlind

	3.4 Signal Processing
	3.4.1 FB_ShortLongClick
	3.4.2 FB_SignallingContact
	3.4.3 FB_SingleDoubleClick
	3.4.4 FB_ThresholdSwitch

	3.5 Filter Functions
	3.5.1 FB_PT1
	3.5.2 FB_PT2

	3.6 Conversion Functions
	3.6.1 F_Scale
	3.6.2 Temperature conversion functions

	3.7 Time Switches
	3.7.1 Scheduler Overview
	3.7.1.1 FB_DailyScheduler
	3.7.1.2 FB_WeeklyScheduler
	3.7.1.3 FB_MonthlyScheduler1
	3.7.1.4 FB_MonthlyScheduler2
	3.7.1.5 FB_YearlyScheduler
	3.7.1.6 Scheduler Example

	3.7.2 FB_WeeklyTimeSwitch
	3.7.3 FB_CalcSunPosition
	3.7.4 FB_CalcSunriseSunset
	3.7.5 FB_CalcPublicHolidaysDE
	3.7.6 FB_CalcPublicHolidaysUS
	3.7.7 FB_CalcFederalHolidaysUS

	3.8 Energy Management
	3.8.1 FB_MaximumDemandController

	3.9 Error codes

	4 Appendix
	4.1 Support and Service

		documentation@beckhoff.com
	2022-10-28T15:24:17+0200
	Beckhoff Automation, Verl
	Documentation Publishing

