BECKHOFF

156310

TwinCAT 2 | TCP/IP Connection Server

Supplement | Communication

2023-08-10 | Version: 1.3

BEGKHOFF Table of contents

Table of contents

1

N o a A~ WwDN

L o] =3V o c S 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
L o Yo TN T =Y |V USRS POPPPP 6
1.3 Notes on infOrmation SECUNITYcooi i 7
L0 Y= T PR 8
L0 Yo 11T T) o 9
SyStem reqUIrEMENTS......iierii i 1
L L= =11 1T o 12
Installation WIindoWs CE.............. e ssnn s s mmn e s e e e e s s e mmmmnnns 14
Lo IO 1o - T[> R 18
4% N I o [o 2 o ORI 18
711 FB_SOCKEICONNECT ...ttt e e e e e e e e e reaeaaaae s 18
71.2 FB_SOCKEICIOSE ...oeiiiieieiiieie ettt e et e e e e e e e e e e e e eeeeeeeaaeens 19
71.3 FB_SOCKEICIOSEAIL ...ttt e e e e e e 20
71.4 FB_SOCKEILISIEN ...t e e 22
71.5 S TS oo (] Voo~ o) SRR 23
7.1.6 FB_SOCKEISENM ..ot e e e a e 24
7.7 FB_SOCKEIRECEIVE.eiiiiiiiie e 25
71.8 FB_SOCKEIUAPCIEALEvvveieiiceee et e e e e e e e e e e e e e e eeeeaaaens 26
719 FB_SOCKEtUAPSENATO ...ttt e e e e e e e e e eaeaaaae s 27
7.1.10 FB_SocketUdpRECEIVEFTOM......cooiiiiiii i 29
7.1.11 FB_SocketUdpAddMURICASTAAAIESSuuuviiiiiiieieee e 30
7.1.12 FB_SocketUdpDropMultiCastAddressS.......cccuuviiiiiiieiee e aa e e 31
4% 0t X T e €= AV =T < (o I o] o | o R 32
A0 I S B S To Tor 102 [| SRS 33
T A5 T HSOCKET ...ttt e e et e e e e e e e e e et e e e e e sab e e e e e anbaeaeeeennees 33
4% 0t T = VAT g T o 4 = o SRR 34
% I Y A €1 o o F= T A= 4 =1 o] o SRS 36
7.2 TCSOCKEIHEIPEIIID ..ottt e e e e as 36
7.21 FB_ServerClientCoONNECHON.coiii i 37
7.2.2 FB_ClientServerCONNECHON.uiiiiieee e ettt s e e e e e e e e eeeaaaae s 40
7.2.3 F CreateServerHNd e e e 42
7.2.4 F_GetVersionTCSOCKEIHEIPETcoviiieeiicce e 43
7.2.5 T HSERVER. ...ttt ettt e e e et e e e e e e e e et e e e e e ennaes 43
7.2.6 E_SOCKEtACCEPIMOAEt a e e 44
7.2.7 E_SocketConNneCHONSTAtEueviiiiiiiii i 44
7.2.8 (€] [e] o F= 1 I oo g) 2=) <P 44
T3 TCONMIPLIID ottt e e e e e e e e e et aaaaaaaaas 45
7.3.1 FB_SEND_TRAP ...ttt e e e e ettt e e e e et e e e e nnbee e e e e ennees 45
7.3.2 = T = £ 1] o SRR 46
7.3.3 F GetVersioNTCSNMPuiiiieiiieee e 48
7.3.4 SNMP_ST_VariableBindiNguueiiiiiiiiee ettt 48
7.3.5 E_SNMP_GenericTrapNUMDET.........oooi e a e 49

TS6310 Version: 1.3 3

Table of contents BEGKHOFF

7.3.6 E_SNMP _DataTyPeScci oottt e e e e e e e e e e e areaeaaaae s 49

7.3.7 (€] o] o F= 1 IV =T =T o] =TSSR 49

S - 1141 o] 1= OO PRRR 51
< 70t I o o1 [o 10 1o RSO PRSPPI 51
8.1.1 TCP EXAMPIE ..ottt e e e e e e e e e — e aaaaaaeaaaaaaas 51

8.1.2 UDP ©XAMPIE ...ttt ettt e e e e e e e e e st e e e e e e ae e e e e s e nn b aanaaaaaaeans 70

8.2 TcSocketHelper.lib @XampPIES......coo oot e e e e ae s 80
TR T oo 1 o100 o I 11 o TSROSO 82
8.3.1 =T a0 o] (N O 1=T o =T o PR 82

8.3.2 Sample: SNMP multiple client trap....... .o 83

8.3.3 Sample: SNMP Get reqUESLE........cccueiiiiiiieee e 84

L T o oo T [87
9.1 Internal error codes of the TwWinCAT TCP/IP ConNection SErver.........ccccceeveiiiiiieee i 87
9.2 Troubleshooting/diagNOSHICSc.oiiiiiiiii e e e 87
9.3 SNMP_EITOrCOUESeeiiiiiieeeeeeee e e ettt e e e e e e e e e e e et eeeeaeaeeas 88

4 Version: 1.3 TS6310

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwWinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TWinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

—
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TS6310 Version: 1.3 5

Foreword BECKHOFF

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:
1 recommendations for action, assistance or further information on the product.

Version: 1.3 TS6310

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TS6310 Version: 1.3 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview BEGKHOFF

2 Overview

The TwinCAT TCP/IP Connection Server enables the implementation/realisation of one or several TCP/IP
server/clients in the TwinCAT PLC.

Product components
» Tcplp.Lib (implements basic TCP/IP and UDP functions);
» TcSocketHelper.Lib (implements TCP/IP helper functions);
e TcSnmp.Lib (implements SNMPv1 helper functions since v1.0.59);
» TwinCAT TCP/IP Connection Server (TwinCAT Server);

8 Version: 1.3 TS6310

BEGKHOFF Introduction

3 Introduction

TCP

TCP is a connection-oriented analog protocol that can be compared to a phone connection, where
participants have to establish the connection first. The TCP protocol is used in applications where
confirmation is required for the data sent by the client or server. Data integrity is managed by the protocol,
which requires more resources. The TCP protocol is well suited for sending larger data quantities.

TCP is a stream-oriented transport protocol, i.e. it transports a data stream without defined start and end.
No information about length, start and end of a message is transferred. For the transmitter this is not a
problem since he knows how many data bytes are transmitted. However, the receiver is unable to detect
where a message ends within the data stream and where the next data stream starts. A read call on the
receiver side only supplies the data currently in the receive buffer (this may be less or more than the data
block sent by the other device).

The transmitter has to specify a message structure that is known to the receiver and can be interpreted. In
simple cases the message structure may consist of the data and a final control character (e.g. carriage
return). The final control character indicates the end of a message.

The message structure for transferring binary data with variable length is often specified as follows: The first
data bytes contain a special control character (start delimiter) and the data length of the subsequent data.
This enables the receiver to detect the start and end of the message.

A minimum TCP/IP client implementation within the PLC requires the following function blocks:

« An instance of the FB SocketConnect [»_18] and FB SocketClose [P_19] function blocks for
establishing and closing the connection to the remote server (Hint: FB_ClientServerConnection [»_40]
encapsulates the functionality of both function blocks in one function block);

* Aninstance of the FB SocketSend [P 24] and/or FB SocketReceive [P 25] function block for the data
exchange with the remote server;

A minimum TCP/IP server implementation within the PLC requires the following function blocks:

* An instance of the FB_SocketListen [»_22] function block for opening the listener socket. An instance of
the FB SocketAccept [P 23] and FB SocketClose [»_19] function blocks for establishing and closing the

connection(s) to the remote clients (Hint: FB_ServerClientConnection [»_37] encapsulates the
functionality of all three function block in one function block);

* Aninstance of the FB SocketSend [P_24] and/or FB _SocketReceive [»_25] function block for the data
exchange with the remote clients;

An instance of the FB_SocketCloseAll [»_20] function block is required in each PLC runtime system in which
a socket is opened.

The instances of the FB SocketAccept [P 23] and FB SocketReceive [» 25] function blocks are called
cyclically (polling), all others are called as required.

UDP

UDP is a connection-less protocol. Data are sent between devices without an explicit connection. The UDP
protocol is well suited for sending small data quantities. An UDP application can be both a client or a server.
The UDP protocol does not guarantee that data that were sent actually reach the target (no confirmation for
the packets received is sent). The individual data packets may arrive in a different order or may be lost.

UDP is a packet-oriented/message-oriented transport protocol, i.e. the sent data block is received on
the receiver side as a complete data block.

TS6310 Version: 1.3 9

Introduction BEGKHOFF

The following function blocks are required for a minimum UDP server/client implementation:

* An instance of the FB_SocketUdpCreate [P 26] and FB_SocketClose [P_19] function blocks for opening
and closing an UDP socket;

* Aninstance of the FB SocketUdpSendTo [» 27] and/or FB SocketUdpReceiveFrom [P 29] function
blocks for the data exchange with other devices;

* In each PLC runtime system in which a UDP socket is opened an instance of the FB_SocketCloseAll
[»_20] function block is required;

The instances of the FB_SocketUdpReceiveFrom [P 29] function block are called cyclically (polling), all others
are called as required.

Further information can be found on the following documentation pages.

Glossary

Term Description

TwinCAT TCP/IP Connection A TwinCAT Server that enables opening, closing, sending and

Server receiving of data via the Windows sockets.

Remote-Client A client on a remote computer (from a server point of view) with which
the server wants to communicate.

Remote-Server A server on a remote computer (from a client point of view) with which
the client wants to communicate.

Local-Client A client on the local computer.

Local-Server A server on the local computer.

Connection handle (socket handle) |A PLC variable of type T HSOCKET [»_33]

10 Version: 1.3 TS6310

BEGKHOFF System requirements

4 System requirements

The following system requirements need to be met for the TwinCAT TCP/IP Server to run properly.

Windows XP-platform

Currently all Beckhoff Embedded-PC/IPC devices running one of the following operating systems are
supported: Windows XP, Windows XP Embedded, Windows Embedded Standard 2009, Windows Vista,

Windows 7. Any difference between these two systems will be described in the corresponding installation

manual [P_12]. Additionally, at least TwinCAT2 PLC needs to be installed on the TCP/IP Server and needs
to be either in Config- or Run-Mode during operation.

Windows CE-platform

All Beckhoff Embedded-PC/IPC devices running one of the following operating systems are supported:
Windows CE5, Windows CE6, Windows CE?7.

TS6310 Version: 1.3 11

Installation BEGKHOFF

5 Installation

This part of the documentation gives a step-by-step explaination of the TwinCAT TCP/IP Server setup
process for Windows XP based operating systems. The following topics are part of this document:

» Downloading the setup file
+ Starting the installation

Downloading the setup file

Like many other TwinCAT Supplement products, TCP/IP Server is available for download via the Beckhoff
FTP-Server. The download represents the most current version, which can be licensed either as a 30-Day
Demo or as a full version. To download the setup file, please perform the following steps:

» Select the TS6310 | TwinCAT TCP/IP Server from the BECKHOFF website.

» (Optional) Transfer the downloaded file to the TwinCAT runtime system, where you would like to install
the Supplement.

Starting the installation

To install the supplement, please follow the steps below:

@ Please start the installation under Windows 7 32-bit/64-bit using "Run as administrator" by clicking
on the setup file with the right mouse button and selecting the appropriate option in the context
menu.

» Double-click the downloaded file "TcplpServer.exe".
+ Select the language in which you wish to install the software.
+ Click on "Next" and then accept the license agreement.

TwinCAT TCPIP Server - InstallShield Wizard

License Agreement
Pleaze read the following license agreement carefully.

Software Uzage Agreement for Beckhoff Software Products -

g1 Subject katter of thiz Agreement B
1] Licensor grants Licenzee a non-tranzsferable, non-exclusive night to

Lize the data proceszing applications specified in Appendis 1 hereto

[hereinafter called *Software"] under the conditions specified hereinafter.

[<] The Software shall be delivered to Licensee on machine-readable

recording media az zpecified in Appendix 1. an which it iz recorded as an

object program in an executable status, One copy of the uger documentation

zhall be part of the application and it shall be delivered to Licenzes in

printed farm, or alzo an a machine-readable recording medium or online.

The form the uzer documentation iz delivered in iz specified in Appendix 1. -

T -~ i noa

i@ | accept the terms of the license agreement

(7| do miot accept the terms of the license agreement

< Back][M et »][Cancel]

12 Version: 1.3 TS6310

https://www.beckhoff.com/en-en/support/download-finder/search-result/?download_group=97262103&download_item=97262304

BEGKHOFF Installation

» Enter your user data. All visible fields are mandatory fields. If you want to install a 30-day demo
version, please enter "DEMO" as license key.

B e
[TwinCAT TCPIP Server - rver -InstallShield Wizard —— \M

Customer Information

Pleaze enter your information.

Pleaze enter your name, the name of the company far which pou work, and the product
zenal number.

IJzer Hame:

b ax bustermarnr]

Company Mame:

bugtermann ne.

Serial Mumber:

DEMO

[rztallS higld

< Back][M ext >][Cancel

» Click on "Install" to start the installation.

F . “ \
TwinCAT TCPIP Server -InstallShield Wizard — [
Setup Status '\ 9 . ‘ 1

The InstallShield Wizard iz instaling TwinCAT TCRIP Server

Inztalling

C:h. MFS50CEAS-DBSE-474F-3CB7-FBECDD45E 2B 115 Setup. dl

I ——— |

[rztallS higld

Cancel

+ To complete installation, please restart your computer.

TS6310 Version: 1.3 13

Installation Windows CE BEGKHOFF

6 Installation Windows CE

This part of the documentation describes, how you can install the supplement TwinCAT TCP/IP Server on a
Beckhoff Embedded PC Controller based on Windows CE, for example CX1000, CX1020, CX9000, CX9001,
CX9010, CP62xx, C69xX, ...
The setup process consists of four steps:

« Downloading the setup file

* |nstallation on a host computer

» Transfering the setup file to the Windows CE device

« Executing the setup on the Windows CE device

Downloading the setup file

Like many other TwinCAT Supplement products, TCP/IP Server for CE is available for download via the
Beckhoff FTP-Server. The download represents the most current version. To download the setup file, please
perform the following step:

» Select the TwinCAT TCP/IP Server CE from the BECKHOFF website.

Installation on the host PC

To access the installation files for Windows CE, the downloaded setup file must first be installed on a host
PC. This can be any Windows XP-based system. To do this, perform the following steps:

d Please note: a 30-day demo version of TCP/IP Server for Windows CE is currently not available. So

you need a valid product key for the installation.

» Double-click the downloaded file "TcTCPIPSvrCE.exe".
+ Select the language in which you wish to install the software.
+ Click on "Next" and then accept the license agreement.

TwinCAT TCP/IP Server CE v1.0.62 | s
License Agreement ‘ '
Pleaze read the following license agreement carefully. I‘*-h
Software Uzage Agreement for Beckhoff Software Products -
g1 Subject katter of thiz Agreement
1] Licenszor grants Licenzee a non-tranzsferable, non-exclusive night to

Lze the data proceszing applications zpecified in Appendix 1 hereto

[hereinafter called S oftware"] under the conditions specified hereinafter.

[£] The Saftware thall be delivered to Licensee on machine-readable

recording media az zpecified in Appendix 1. an which it iz recorded as an

object program in an executable statuz. One copy of the uzer documentation

zhall be part of the applization and it hall be delivered to Licenzes in

printed farm, or alzo an a machine-readable recording medium or online.

The form the uzer documentation iz delivered in iz specified in Appendix 1. -

i@ | accept the terms of the license agreement

(7| do miot accept the terms of the license agreement

< Back][M et »][Cancel]

14 Version: 1.3 TS6310

http://www.beckhoff.de/german/download/supplement_com.htm

BEGKHOFF Installation Windows CE

» Enter your user data. All visible fields are mandatory fields.

F T
TwinCAT TCP/IP Server CE v1.0.62 [

Customer Information

Fleaze enter pour infarmation.

Inzert the Soft-Fey. [Mao trial version available far now)

Uzer Mame:

M ax Mustermanr]

Company Mame:

kuzstermann ne.

Sernal Humber:

Pl -

[rztallS hield

< Back][Mext » J[Cancel

b

e Then click "Install" to start the installation.

F T
TwinCAT TCP/IP Server CE v1.0.62 [

Ready to Install the Program

The wizard iz ready to begin installation.

Click Inztall to begin the installation,
[F oL want o review ar change any of your ingtallation zettings, click Back. Click Cancel to exit
the wizard.
|
IriztallS hield
< Back][[rztall] [Cancel

b

After the installation, the Windows CE installation files are now located in the folder "\TwinCAT\CE". This
folder contains a variety of different CE installation files in the form of CAB files:

» TCPIP\Instal\TcTCPIPSvrCe.l586.cab: TCP/IP server for x86 based CPUs (like CX10xx, CP62xx,
C69xx, ...)

* TCPIPInstal\TcTCPIPSvrCe.ARMV4l.cab: TCP/IP server for ARM based CPUs (like CX9001,
CX9010, CP6608, ...)

TS6310 Version: 1.3 15

Installation Windows CE BEGKHOFF

Transfering the setup file to the Windows CE device

Transfer the corresponding setup file to you CE device. This can be done in the following ways:
* via a Shared Folder
* via the integrated FTP-Server
* via ActiveSync
+ viaa CF card

For more information, please consult the "Windows CE" section in our Infosys documentation system.

Running the installation on the Windows CE device

The installation file "TcTCPIPSvrCe.xxxx.CAB" transferred to the controller must now be installed. To do
this, please perform the following steps on the CE device:

» Navigate to the folder that you transferred the installation file to,

[Fle Edit View Go Favorites | & 2 %@ =~ X
AgldresisHard Disk? ftp v
Els
Dﬁ
TCTCRIPS. .

» Double-click the CAB file. If you get a MessageBox saying "Program is not compatible with current
operating system", check that you have used the correct CAB file (ARM, 1586) for your platform.

« If you are sure that the CAB file is correct, confirm the message with "Yes".

Unsupported System Version

The program is not compatible with the current operating system and, therefore, may not
tun o this device, Do you want to continue installation?

» Confirm the destination directory"\Hard Disk\System" with "Ok".

Install BECKHOFF TwinCAT TCFIP Ser... I 9| | [=] oK X
(3] \Hard Disk\System

I FPGA T CeConfi]
PRI CHCanf
_AUTOEXEC Fciregri
ATLCE400 i CxrunOy
CraddUser Ml Cxsuspd

< »

e = ((Install Here] Type:

16 Version: 1.3 TS6310

BECKHOFF

Installation Windows CE

» To start the installation, click in the upper right corner on "Ok"

Installing BECKHOFE TwinCAT TCPIP Server, CE

Copying files...

Yhard disk)systerm, TocplpServer, exe

h----

Cancel

After installation, the installation file deletes itself automatically.

1 The TCP/IP server will not be available until the next system reboot.

TS6310

Version: 1.3

17

BECKHOFF

PLC libraries

7 PLC libraries

7.1

The Tcplp.Lib function blocks can be used to realise client or server applications in the TwinCAT PLC.
These can exchange data with other communication devices either via User Datagram Protocol (UDP) or
via Transmission Control Protocol (TCP).

Teplp.lib

System requirements:

Development eniviroment:
* NT4, W2K, XP, XPe;
« TwinCAT System version 2.9 or higher;
» TwinCAT installation level: TwinCAT PLC or higher;

Target system:

* TwinCAT PLC runtime system version 2.8 or higher;

+ PC or CX (x86)
o TwinCAT TCP/IP Connection Server v1.0.0.0 or higher.
o NT4, W2K, XP, XPe, CE (image v1.75 or higher);

+ CX (ARM)
o TwinCAT TCP/IP Connection Server v1.0.0.44 or higher.
o CE (image v2.13 or higher);

Installation:

The PLC library is supplied with the TwinCAT TCP/IP Connection Server and copied into folder ...
\TwinCAT\PLC\Lib during installation.

711 FB_SocketConnect
FEB_SOCKETCOMMECT

—sSreMetld bBusyi—

—zRemaoteHost bErtror—

— nRemotePort hErridi—

—hExecute hSocket—

—tTirmeout

Using the function block FB_SocketConnect, a local client can establish a new TCP/IP connection to a
remote server via the TwinCAT TCP/IP Connection Server. If successful, a new socket is opened, and the
associated connection handle is returned at the hSocket output. The connection handle is required by the

function blocks FB SocketSend [P 24] and FB_SocketReceive [P 25], for example, in order to exchange data

with a remote server. If a connection is no longer required, it can be closed with the function block

FB SocketClose [»_19]. Several clients can establish a connection with the remote server at the same time.
For each new client, a new socket is opened and a new connection handle is returned. The TwinCAT TCP/IP
Connection Server automatically assigns a new IP port number for each client.

VAR_INPUT
VAR INPUT
sSrvNetId : T_AmsNetId := '';
sRemoteHost : STRING (15);
nRemotePort : UDINT;
bExecute : BOOL;
tTimeout : TIME := T#45s; (*!!!¥%)
END VAR

18

Version: 1.3 TS6310

BECKHOFF PLC libraries

sSrvNetld: string containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

sRemoteHost: IP address (Ipv4) of the remote server as a string (e.g. '172.33.5.1"). An empty string can be
entered on the local computer for a server.

nRemotePort: IP port number of the remote server (e.g. 200).
bExecute: the function block is enabled via a positive edge at this input.

tTimeout: maximum time that may not be exceeded when the function block is executed.

@ The tTimeout value should not be set too low, since timeout periods of > 30 s may occur in the
event of a network interruption. If the value is too low, command execution would be interrupted
prematurely, and ADS error code 1861 (timeout elapsed) would be returned instead of the
Winsocket error WSAETIMEDOUT.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T HSOCKET;

END_VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

hSocket: TCP/IP connection handle [»_33] for the newly opened local client socket.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7.1.2 FB_SocketClose
FB_SOCKETCLOSE

—s5reMetld bBusy—
— hSocket bEror—
—kExecute nErld—
—fTimeout

The function block FB_SocketClose can be used to close an open TCP/IP or UDP socket.

TCPI/IP: The listener socket is opened with the function block FB SocketListen [P 22], a local client socket
with FB SocketConnect [P_18] and a remote client socket with FB_SocketAccept [P 23].

UDP: The UDP socket is opened with the function block: FB SocketUdpCreate [P _26].

TS6310 Version: 1.3 19

PLC libraries BECKHOFF
VAR_INPUT
VAR INPUT
sSrvNetId : T _AmsNetId := '';
hSocket : T HSOCKET;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

hSocket: TCP/IP: Connection handle [»_33] of the listener, remote or local client socket to be closed. UDP:
Connection handle of the UDP socket.

bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR _OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END_ VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrid : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Tceplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

71.3 FB_SocketCloseAll
FE_SOCKETCLOSEALL

—sSreMNetld bBusy—
—hExecute bLError—
—itTimeout hErld—

If TwinCAT is restarted or stopped, the TwinCAT TCP/IP Connection Server is also stopped. Any open
sockets (TCP/IP and UDP connection handles) are closed automatically. The PLC program is reset after a
"PLC reset", a "Rebuild all..." or a new "Download", and the information about already opened sockets
(connection handles) is no longer available in the PLC. Any open connections can then no longer be closed

properly.

The function block FB_SocketCloseAll can be used to close all connection handles (TCP/IP and UDP
sockets) that were opened by a PLC runtime system. This means that, if FB_SocketCloseAll is called in one
of the tasks of the first runtime systems (port 801), all sockets that were opened in the first runtime system
are closed. In each PLC runtime system that uses the socket function blocks, an instance of
FB_SocketCloseAll should be called during the PLC start (see below).

20 Version: 1.3 TS6310

BEGKHOFF PLC libraries

VAR_INPUT

VAR_INPUT
sSrvNetId : T _AmsNetId := '';
bExecute : BOOL;
tTimeout : TIME := T#5s;

END VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR OUTPUT
bBusy :BOOL;
bError :BOOL;
nErrId :UDINT;

END_ VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

Example of an implementation in ST:

The following program code is used to properly close the connection handles (sockets) that were open
before a "PLC reset" or "Download" before a PLC restart.

PROGRAM MAIN

VAR
fbSocketCloseAll : FB SocketCloseAll;
bCloseAll : BOOL := TRUE;
END VAR
IF bCloseAll THEN (*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;
fbSocketCloseAll (sSrvNetId:= '', bExecute:= TRUE, tTimeout:= T#10s);
ELSE

fbSocketCloseAll (bExecute:= FALSE);
END IFIFNOT fbSocketCloseAll.bBusy THEN (*...
. continue program execution...
)

END IF

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

TS6310 Version: 1.3 21

PLC libraries BEGKHOFF
71.4 FB_SocketListen
FE_SOCKETLISTEM
—sSreMetld bBusyi—
—sLocalHost bEror—
—nLocalFPor nErd—
—kExecute hListener—
—fTimeout

Using the function block FB_SocketListen, a new listener socket can be opened via the TwinCAT TCP/IP
Connection Server. Via a listener socket, the TwinCAT TCP/IP Connection Server can 'listen’ for incoming
connection requests from remote clients. If successful, the associated connection handle is returned at the
hListner output. This handle is required by the function block FB_SocketAccept [P 23] . If a listener socket is
no longer required, it can be closed with the function block FB SocketClose [»_19]. The listener sockets on an
individual computer must have unique IP port numbers.

VAR_INPUT
VAR INPUT
sSrvNetId : T AmsNetId := '';
sLocalHost : STRING (15);
nLocalPort : UDINT;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_ VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

sLocalHost: Local server IP address (Ipv4) as a string (e.g. '172.13.15.2"). For a server on the local
computer (default), an empty string may be entered.

nLocalPort: Local server IP port (e.g. 200).
bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hListener : T _HSOCKET;

END VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

hListener: Connection handle [P 33] for the new listener socket.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

22

Version: 1.3

TS6310

BEGKHOFF PLC libraries

71.5 FB_SocketAccept
FB_SOCKETACCEPT

—sareiNetld bAccepted—

—hListener bBusyi—
—hExecute bError—
—tTimeout nErrld—

hSocket—

The remote client connection requests arriving at the TwinCAT TCP/IP Connection Server have to be
acknowledged (accepted). The function block FB_SocketAccept accepts the incoming remote client
connection requests, opens a new remote client socket and returns the associated connection handle. The
connection handle is required by the function blocks FB SocketSend [P 24] and FB SocketReceive [P 25] in
order to exchange data with the remote client, for example. All incoming connection requests first have to be
accepted. If a connection is no longer required or undesirable, it can be closed with the function block

FB SocketClose [»_19].

A server implementation requires at least one instance of this function block. This instance has to be called
cyclically (polling) from a PLC task. The block can be activated cyclically via a rising edge at the bExecute
input (e.g. every 5 seconds).

If successful, the bAccepted output is set, and the connection handle to the new remote client is returned at
the hSocket output. No error is returned if there are no new remote client connection requests. Several
remote clients can establish a connection with the server at the same time. The connection handles of
several remote clients can be retrieved sequentially via several function block calls. Each connection handle
for a remote client can only be retrieved once. It is recommended to keep the connection handles in a list
(array). New connections are added to the list, and closed connections must be removed from the list.

VAR_INPUT
VAR INPUT
sSrvNetId : T AmsNetId := '';
hListener : T_HSOCKET;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

hListener: Connection handle [P_33] of the listener sockets. This handle must first be requested via the
function block FB SocketListen [P 22].

bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR OUTPUT
bAccepted : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T HSOCKET;

END VAR

bAccepted: This output is set if a new connection to a remote client was established.

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

TS6310 Version: 1.3 23

PLC libraries BEGKHOFF

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

hSocket: Connection handle [»_33] of a new remote client.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7.1.6 FB_SocketSend

FE_SOCKETSEND

—sSreMNetld bBusyi—

—hSocket bError—
—chlen nErrld—
—pSrc

—hExecute

—tTirmeout

Using the function block FB_SocketSend, data can be sent to a remote client or remote server via the
TwinCAT TCP/IP Connection Server. A remote client connection will first have to be established via the

function block FB_SocketAccept [P 23], or a remote server connection via the function block
FB SocketConnect [»_18].

VAR_INPUT
VAR _INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T_HSOCKET;
cbLen : UDINT;
pSrc : DWORD;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR

sSrvNetld: string containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

hSocket: connection handle [P_33] of the communication partner to which data are to be sent.

cbLen: number of data to be sent in bytes.
pSrc: address (pointer) of the transmit buffer.
bExecute: the function block is enabled via a positive edge at this input.

tTimeout: maximum time that may not be exceeded when the function block is executed.

@ [f the transmit buffer of the socket is full, for example because the remote communication partner
does not receive the transmitted data quickly enough or large quantities of data are transmitted, the

1 function block FB_SocketSend will return ADS timeout error 1861 after the tTimeout time. In this
case, the value of the tTimeout input variable must be increased accordingly.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END_ VAR

24 Version: 1.3 TS6310

BECKHOFF PLC libraries

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrid : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error

number [P 87].

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

71.7 FB_SocketReceive

FE_SOCKETRECEME
—ssreMetld bBusy—
—hSocket bErmor—
—ichlLen hErd—
—pDest nRecBwtes—
—hExecute
—itTirmeout

Using the function block FB_SocketReceive, data from a remote client or remote server can be received via
the TwinCAT TCP/IP Connection Server. A remote client connection must first be established via the

function block FB SocketAccept [P 23], and a remote server connection via the function block

FB SocketConnect [»_18]. The data can be received or sent in fragmented form (i.e. in several packets) within
a TCP/IP network. It is therefore possible that not all data may be received with a single call of the
FB_SocketReceive instance. For this reason, the instance must be called cyclically (polling) within the PLC
task, until all required data have been received. During this process, a rising edge is generated at the
bExecute input, e.g. every 100 ms. If successful, the data received last are copied into the receive buffer.
The nRecBytes output returns the number of the last successfully received data bytes. If no new data could
be read during the last call, the function block returns no error and nRecBytes == null.

In a simple protocol for receiving, for example, a null-terminated string on a remote server, the function block
FB_SocketReceive, for example, must be called repeatedly until the null-termination is detected in the data
received.

@ [fthe remote device was disconnected from the TCP/IP network (on the remote side only) while the
local device is still connected to the TCP/IP network, the function block FB_SocketReceive returns

1 no error and no data. The open socket still exists, but no data are received. The application may
then wait endlessly for the remaining frame data bytes. It is recommended to implement timeout
monitoring in the application. If not all frame data bytes were received after a certain period, e.g. 10
seconds, the connection must be closed and reinitialized.

VAR_INPUT
VAR _INPUT
sSrvNetId : T_AmsNetId := '';
hSocket : T HSOCKET;
cbLen : UDINT;
pDest : DWORD;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

TS6310 Version: 1.3 25

PLC libraries BEGKHOFF

hSocket: Connection handle [»_33] of the communication partner from which data are to be received.
cbLen: Maximum available buffer size in bytes for the data to be read.

pDest: Address (pointer) of the receive buffer.

bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR _OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
nRecBytes : UDINT;

END VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

nRecBytes: Number of the last successfully receive data bytes.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Tceplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7.1.8 FB_SocketUdpCreate

From product version: TwinCAT TCP/IP Connection Server v1,0,0,31 and higher

FB_SOCKETUDPCREATE
—sSrMNetld bBusy—
—slocalHost bErar—
—nLocalFart nErld—
—hExecute hSocket—
—tTimeout

The function block FB_SocketUdpCreate can be used to open a client/server socket for the User Datagram
Protocol (UDP). If successful, a new socket is opened, and the associated socket handle is returned at the

hSocket output. The handle is required by the function blocks FB SocketUdpSendTo [P 27] and
FB SocketUdpReceiveFrom [P 29], for example, in order to exchange data with a remote device. If a UDP

socket is no longer required, it can be closed with the function block FB SocketClose [P_19]. The port address
nLocalHost is internally reserved by the TCP/IP Connection Server for the UDP protocol (a "bind" is carried
out). Several network adapters may exist in a PC. The input parameter sLocalHost determines the network
adapter to be used. If the input variable sLocalHost is ignored (empty string), the TCP/IP Connection Server
uses the default network adapter. This is usually the first network adapter from the list of the network
adapters in the Control Panel.

26 Version: 1.3 TS6310

BECKHOFF

PLC libraries

) « If an empty string was specified for sLocalHost when FB_SocketUdpCreate was called and the
PC was disconnected from the network, the system will open a new socket under the software
1 loopback IP address: '127.0.0.1".

« If two or more network adapters are installed in the PC and an empty string was specified as
sLocalHost, and the default network adapter was then disconnected from the network, the new
socket will be opened under the IP address of the second network adapter.

* In order to prevent the sockets from being opened under a different IP address, you can specify
the sLocalHost address explicitly or check the returned address in the handle variable (hSocket),
close the socket and re-open it.

VAR_INPUT
VAR INPUT
sSrvNetId : T AmsNetId := '';
sLocalHost : STRING(15) ;
nLocalPort : UDINT;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

sLocalHost: The local IP address (Ipv4) of the UDP client/server socket as a string (e.g. '172.33.5.1"). An
empty string may be specified for the default network adapter

nLocalPort: The local IP port number of the UDP client/server socket (e.g. 200).
bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR _OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T _HSOCKET;

END_ VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

hSocket: The handle [P 33] of the newly opened UDP client/server socket.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib (v1.0.4 or higher)
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

71.9 FB_SocketUdpSendTo
Available in the product version: TwinCAT TCP/IP Connection Server v1,0,0,31 or higher

TS6310

Version: 1.3

PLC libraries BEGKHOFF

FE_SOCKETUDFSENDTO

—sSrMetld bBusy—
—hSocket bErrar—
—sRemoteHost nErrld—
—nRemaoteFart
—chlLen
—p3rc
—hExecute
—tTimeout

The function block FB_SocketUdpSendTo can be used to send UDP data to a remote device via the
TwinCAT TCP/IP Connection Server. The UDP socket must first be opened with the function block

FB SocketUdpCreate [» 26].

VAR_INPUT

VAR INPUT
sSrvNetId : T AmsNetId := '"';
hSocket : T _HSOCKET;

sRemoteHost : STRING(15);
nRemotePort : UDINT;

cbLen : UDINT;

pSrc : DWORD;

bExecute : BOOL;

tTimeout : TIME := T#5s;
END VAR

sSrvNetld: string containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

hSocket: the handle [»_33] of an opened UDP socket.

sRemoteHost: IP address (Ipv4) of the remote device to which data are to be sent as a string (e.g.
'172.33.5.1"). An empty string can be entered for a device on the local computer.

nRemotePort: IP port number of the remote device to which data are to be sent (e.g. 200).

cbLen: number of data to be sent in bytes. The maximum number of data bytes to be sent is limited to 8192
bytes by default (by declaring the TCPADS MAXUDP_BUFFSIZE constant in the library to conserve
memory resources).

pSrc: address (pointer) of the transmit buffer.
bExecute: the function block is enabled via a positive edge at this input.

tTimeout: maximum time that may not be exceeded when the function block is executed.

d From product version: TwinCAT TCP/IP Connection Server v1.0.50 and higher, the maximum
1 number of data bytes to be sent can be increased (if absolutely necessary).

1) In the PLC project, redefine the global constant (in our sample we want to increase the maximum number
of data bytes to 32000 bytes):

VAR GLOBAL CONSTANT
TCPADS MAXUDP BUFFSIZE : UDINT :=32000;
END VAR

2) Then activate the option "Replace constants” in TwinCAT PLC Control->"Project->Options...->Build"
dialog box.

3) Compile the project.

28 Version: 1.3 TS6310

BECKHOFF

VAR_OUTPUT

VAR _OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR

PLC libraries

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib (v1.0.4 or higher)
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7.1.10

FB_SocketUdpReceiveFrom

Available in the product version: TwinCAT TCP/IP Connection Server v1,0,0,31 or higher

FE_SOCKETUDPRECEMNEFROM
—sSreMNetld bBusyi—
—hSocket bEror—
—chlen nErd—
—pDest sRemoteHost—
—bExecute nRemoteFor—
—tTimeout nRecBytes—

Using the function block FB_SocketUdpReceiveFrom, data from an open UDP socket can be received via
the TwinCAT TCP/IP Connection Server. The UDP socket must first be opened with the function block

FB SocketUdpCreate [P 26]. The instance of the FB_SocketUdpReceive function block must be called

cyclically (polling) within the PLC task. During this process, a rising edge is generated at the bExecute input,
e.g. every 100ms. If successful, the data received last are copied into the receive buffer. The nRecBytes
output returns the number of the last successfully received data bytes. If no new data could be read during
the last call, the function block returns no error and nRecBytes == zero.

VAR_INPUT
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T _HSOCKET;
cbLen : UDINT;
pDest : DWORD;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR

sSrvNetld: string containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

hSocket: the handle [»_33] of an opened UDP socket whose data are to be received.

TS6310

Version: 1.3 29

PLC libraries BEGKHOFF

cbLen: the maximum available buffer size (in bytes) for the data to be read. The maximum number of data
bytes to be received is limited to 8192 bytes by default (by declaring the TCPADS_MAXUDP_BUFFSIZE
constant in the library to conserve memory resources).

pDest: the address (pointer) of the receive buffer.
bExecute: the function block is enabled via a positive edge at this input.

tTimeout: maximum time that may not be exceeded when the function block is executed.

d From product version: TwinCAT TCP/IP Connection Server v1.0.50 and higher, the maximum
1 number of data bytes to be sent can be increased (if absolutely necessary).

1) In the PLC project, redefine the global constant (in our sample we want to increase the maximum number
of data bytes to 32000 bytes):

VAR GLOBAL CONSTANT
TCPADS MAXUDP BUFFSIZE : UDINT :=32000;
END VAR

2) Then activate the option "Replace constants” in TwinCAT PLC Control->"Project->Options...->Build"
dialog box.

3) Compile the project.

VAR_OUTPUT

VAR _OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

sRemoteHost : STRING(15) ;
nRemotePort : UDINT;
nRecBytes : UDINT;

END VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

sRemoteHost: If successful, IP address (Ipv4) of the remote device whose data were received.
nRemotePort: If successful, IP port number of the remote device whose data were received (e.g. 200).

nRecBytes: Number of the last successfully receive data bytes.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib (v1.0.4 or higher)
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7.1.11 FB_SocketUdpAddMulticastAddress

Available since product version: TwinCAT TCP/IP Connection Server 1.0.64 or higher

30 Version: 1.3 TS6310

BECKHOFF

PLC libraries

FB_SocketUdpadd™ulticastAddress
—s5rvhletId bBusy F—
—hSocket bErrar —
—sMulkicast Addr nErId F—
—bExecute
—tTirnmeout

Binds the Server to a Multicast IP address so that Multicast UDP packets can be received. This function
blocks requires a previously established UDP socket handle, which can be requested using the function

block FB SocketUdpCreate [P _26].

VAR_INPUT
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
sMulticastAddr : STRING(15);
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_ VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

hSocket: Connection handle [»_33] of the listener sockets. This handle must first be requested via the
function block FB SocketUdpCreate [»_26].

sMulticastAddr: Multicast address to bind to.
bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error

number [P 87].

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM)

7.1.12 FB_SocketUdpDropMulticastAddress

Available since product version: TwinCAT TCP/IP Connection Server 1.0.64 or higher

TS6310 Version: 1.3 31

PLC libraries BECKHOFF
FB_SocketUdpDropMulticastAddress

—=5rwhetId bEusy —

—hSocket bError F—

—sMulticastaddr nErrId F—

—{bExecute

—tTirneout

Removes the binding to a Multicast IP address which has previously been added via the function block
FB SocketUdpAddMulticastAddress [P _30].

VAR_INPUT
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
sMulticastAddr : STRING(15);
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_VAR

sSrvNetld: String containing the network address of the TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.

hSocket: Connection handle [P 33] of the listener sockets. This handle must first be requested via the
function block FB_SocketUdpCreate [P 26].

sMulticastAddr: Multicast address for which the binding should be removed.
bExecute: The block is activated by a rising edge at this input.

tTimeout: Maximum time allowed for the execution of the function block.

VAR_OUTPUT

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END_VAR

bBusy: When the function block is activated this output is set. It remains set until and acknowledgement is
received.

bError: If an error should occur during the transfer of the command, then this output is set once the bBusy
output was reset.

nErrid : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [»_87].

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM)

7113 F_GetVersionTcplp

F_GETVERSIOMNTCFIP

— mersionElement : IMNT F_GetWersionToplp : LINT—

This function can be used to read PLC library version information.

32 Version: 1.3 TS6310

BEGKHOFF PLC libraries

FUNCTION F_GetVersionTcplp : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element to be read. Possible parameters:

* 1 : major number;
e 2 :minor number;
e 3 :revision number;

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7114 ST _SockAddr

Structure with address information for an open socket.

TYPE ST SockAddr : (* Local or remote endpoint address *)
STRUCT
nPort : UDINT; (* Internet Protocol (IP) port. *)
sAddr : STRING(15) ; (* String containing an (Ipv4) Internet Protocol dotted address. *)
END STRUCT
END TYPE

nPort: Internet Protocol (IP) port;
sAddr: Internet protocol address (Ipv4) separated by dots as a string, e.g. "172.34.12.3";

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Tcplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7115 T_HSOCKET

Variables of this type represent a connection handle or a handle of an open socket. Via this handle, data can
be sent to or received from a socket. The handle can be used to close an open socket.

TYPE T HSOCKET

STRUCT
handle : UDINT;
localAddr : ST SockAddr; (* Local address ¥*)
remoteAddr : ST SockAddr; (* Remote endpoint address *)
END_STRUCT
END TYPE

handle: Internal TwinCAT TCP/IP Connection Server socket handle;
localAddr: Local socket address;
remoteAddr: Remote socket address;

The following sockets can be opened and closed via the TwinCAT TCP/IP Connection Server: listener
socket, remote client socket, or local client socket. Depending on which of these sockets was opened by the
TwinCAT TCP/IP Connection Server, suitable address information is entered into the localAddr and
remoteAddr variables.

TS6310 Version: 1.3 33

PLC libraries BEGKHOFF

Connection handle on the server side

» The function block FB Socketlisten [P 22] opens a listener socket and returns the connection handle of
the listener socket;

* The connection handle of the listener sockets is transferred to the function block FB_SocketAccept
[» 23]. FB_SocketAccept will then return the connection handles of the remote clients.

» The function block FB_SocketAccept returns a new connection handle for each connected remote
client.

* The connection handle is then transferred to the function blocks FB SocketSend [P_24] and/or
FB SocketReceive [P 25], in order to be able to exchange data with the remote clients;

« A connection handle of a remote client that is not desirable or no longer required is transferred to the
function block FB_SocketClose [P_19], which closes the remote client socket.

« A listener socket connection handle that is no longer required is also transferred to the function block
FB_SocketClose, which closes the listener socket.

Connection handle on the client side

» The function block FB SocketConnect [P_18] returns the connection handle of a local client socket.

* The connection handle is then transferred to the function blocks FB SocketSend [» 24] and
FB SocketReceive [P 25], in order to be able to exchange data with a remote server;

* The same connection handle is then transferred to the function block FB_SocketClose [» 19], in order to
close a connection that is no longer required.

The function block FB SocketCloseAll [P 20] can be used to close all connection handles (sockets) that were
opened by a PLC runtime system. This means that, if FB_SocketCloseAll is called in one of the tasks of the
first runtime systems (port 801), all sockets that were opened in the first runtime system are closed.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Tcplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

Also see about this
ST_SockAddr [33]

7.1.16 E_WinsockError

TYPE E WinsockError :
(

WSOK,

WSAEINTR r= 10004 , (* A blocking operation was interrupted by a call to
WSACancelBlockingCall. *)

WSAEBADF 1= 10009 , (* The file handle supplied is not valid. *)

WSAEACCES i= 10013 , (* An attempt was made to access a socket in a way
forbidden by its access perm1551ons)

WSAEFAULT 10014

(* The system detected an 1nvalld pointer address in attempting to use a pointer argument in a call.
*)

WSAEINVAL = 10022 , (* An invalid argument was supplied. *)
WSAEMFILE = 10024 , (* Too many open sockets. ¥*)
WSAEWOULDBLOCK 5= 10035 , (* A non-
blocking socket operation could not be completed immediately. *)
WSAEINPROGRESS i= 10036 , (* A blocking operation is currently executing. ¥*)
WSAEALREADY = 10037 , (* An operation was attempted on a non-
blocking socket that already had an operation in progress. *)
WSAENOTSOCK 5= 10038 ’
(* An operation was attempted on something that is not a socket. *)
WSAEDESTADDRREQ 1= 10039 ’
(* A required address was omitted from an operation on a socket. *)
WSAEMSGSIZE 1= 10040 , (* A message sent on a datagram socket was larger than

34 Version: 1.3 TS6310

BEGKHOFF PLC libraries

the internal message buffer or some other network limit, or the buffer used to receive a datagram
into was smaller than the datagram itself. *)

WSAEPROTOTYPE := 10041 p
(* A protocol was specified in the socket function call that does not support the semantics of the s
ocket type requested. ¥*)

WSAENOPROTOOPT = 10042
(* An unknown, invalid, or unsupported optlon or level was specified in a getsockopt or setsockopt c
all. *)

WSAEPROTONOSUPPORT 8= 10043 ’
(* The requested protocol has not been configured into the system, or no implementation for it exist
s.)

WSAESOCKTNOSUPPORT i= 10044 , (* The support for the specified socket type does not
exist in this address family. *)

WSAEOPNOTSUPP = 10045)
(* The attempted operation is not supported for the type of object referenced. *)

WSAEPEFNOSUPPORT 5= 10046 ’

(* The protocol family has not been configured into the system or no implementation for it exists.
*)

WSAEAFNOSUPPORT t= 10047 p
(* An address incompatible w1th the requested protocol was used. *)
WSAEADDRINUSE 1= 10048 , (* Only one usage of each socket address (protocol/
network address/port) is normally permitted. *)
WSAEADDRNOTAVAIL = 10049 , (* The requested address is not valid in its context. o))
WSAENETDOWN i= 10050 , (* A socket operation encountered a dead network. *)
WSAENETUNREACH = 10051 7
(* A socket operation was attempted to an unreachable network. *)
WSAENETRESET = 10052 , (* The connection has been broken due to keep-alive
activity detecting a failure while the operation was in progress. *)
WSAECONNABORTED g= 10053 P
(* An established connection was aborted by the software in your host machine. ¥*)
WSAECONNRESET = 10054 o
(* An existing connection was forcibly closed by the remote host. *)
WSAENOBUFS g= 10055 ’
(* An operation on a socket could not be performed because the system lacked sufficient buffer space
or because a queue was full.)
WSAEISCONN := 10056 p
(* A connect request was made on an already connected socket. ¥*)
WSAENOTCONN 8= 10057 p

(* A request to send or receive data was disallowed because the socket is not connected and (when se
nding on a datagram socket using a sendto call) no address was supplied. *)
WSAESHUTDOWN g= 10058 p
(* A request to send or receive data was disallowed because the socket had already been shut down in
that direction with a previous shutdown call. ¥*)
WSAETOOMANYREFS = 10059 , (* Too many references to some kernel object. A8
WSAETIMEDOUT g= 10060 v
(* A connection attempt failed because the connected party did not properly respond after a period o
f time, or established connection failed because connected host has failed to respond. *)

WSAECONNREFUSED = 10061 7
(* No connection could be made because the target machine actively refused it. *)
WSAELOOP i= 10062 , (* Cannot translate name. *)
WSAENAMETOOLONG i= 10063 , (* Name component or name was too long. *)
WSAEHOSTDOWN = 10064 p
(* A socket operation failed because the destination host was down.)
WSAEHOSTUNREACH g= 10065 P
(* A socket operation was attempted to an unreachable host. *)
WSAENOTEMPTY i= 10066 , (* Cannot remove a directory that is not empty. *)
WSAEPROCLIM = 10067 7

(* A Windows Sockets implementation may have a limit on the number of applications that may use it s
imultaneously. *)

WSAEUSERS = 10068 , (* Ran out of quota.)
WSAEDQUOT s = 10069 , (* Ran out of disk quota. *)
WSAESTALE i= 10070 , (* File handle reference is no longer available. *)
WSAEREMOTE i= 10071 , (* Item is not available locally. *)
WSASYSNOTREADY = 10091 , (* WSAStartup cannot function at this time because the
underlying system it uses to provide network services is currently unavailable. *)
WSAVERNOTSUPPORTED g= 10092 ’
(* The Windows Sockets version requested is not supported. *)
WSANOTINITIALISED = 10093 P
(* Either the application has not called WSAStartup, or WSAStartup failed. *)
WSAEDISCON 8= 10101 p
(* Returned by WSARecv or WSARecvFrom to indicate the remote party has initiated a graceful shutdown
sequence. ¥*)
WSAENOMORE = 10102 ’
(* No more results can be returned by WSALookupServiceNext.)
WSAECANCELLED g= 10103 ’

(* A call to WSALookupServiceEnd was made while this call was still processing. The call has been ca
nceled.)

WSAEINVALIDPROCTABLE := 10104 , (* The procedure call table is invalid. *)
WSAEINVALIDPROVIDER = 10105 , (* The requested service provider is invalid. *)
WSAEPROVIDERFAILEDINIT 8= 10106 p

TS6310 Version: 1.3 35

PLC libraries BEGKHOFF

(* The requested service provider could not be loaded or initialized. *)

WSASYSCALLFAILURE = 10107 , (* A system call that should never fail has failed.)
WSASERVICE NOT_FOU ND := 10108 p
(* No such service is known. The service cannot be found in the specified name space. *)
WSATYPE NOT FOUND i= 10109 , (* The specified class was not found. *)
WSA E NO_| MORE = 10110 p
(* No more results can be returned by WSALookupServiceNext.)
WSA E CANCELLED g= 10111 p

(* A call to WSALookupServiceEnd was made while this call was still processing. The call has been ca
nceled. =)

WSAEREFUSED := 10112 p
(* A database query failed because it was actively refused. *)

WSAHOST_NOT_FOUND 8= 11001 ; (* No such host is known. *)

WSATRY AGAIN = 11002)
(* This is usually a temporary error during hostname resolution and means that the local server did
not receive a response from an authoritative server. ¥*)

WSANO RECOVERY 5= 11003 , (* A non-
recoverable error occurred during a database lookup. *)

WSANO DATA = 11004 (* The requested name is valid and was found in the data
base, but it does not have the correct associated data being resolved for. *)

)i

END TYPE

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7117 Global Variables

VAR_GLOBAL CONSTANT

VAR GLOBAL CONSTANT

AMSPORT TCPIPSRV :UINT := 10201;

TCPADS IGR CONLIST :UDINT =16#80000001;

TCPADS_IGR CLOSEBYHDL :UDINT ':16#80000002'

TCPADS_IGR SENDBYHDL :UDINT =16#80000003;

TCPADS TIGR PEERBYHDL :UDINT .—16#80000004;

TCPADS IGR RECVBYHDL :UDINT :=16#80000005;

TCPADS IGR RECVFROMBYHDL :UDINT :=16#80000006; (* TCP/
IP Connection Server v1,0,0,31 and higher *)

TCPADS TIGR SENDTOBYHDL :UDINT :=16#80000007; (* TCP/

IP Connection Server v1,0,0,31 and higher *)

TCPADSCONLST IOF CONNECT :UDINT :=1;

TCPADSCONLST IOF LISTEN :UDINT 3=28

TCPADSCONLST IOF CLOSEALL :UDINT 8=3p

TCPADSCONLST IOF ACCEPT :UDINT :=4;

TCPADSCONLST IOF UDPBIND :UDINT :=5; (* TCP/IP Connection Server v1,0,0,31 and higher *)

TCPADS MAXUDP BUFFSIZE : UDINT :=1472; (* TCP/IP Connection Server v1,0,0,31 and higher *)
END VAR

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT version 2.8.0 or higher |PC or CX (x86) Tcplp.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib are included
automatically)

7.2 TcSocketHelper.lib

The TcSocketHelper.lib contains usefull TCP/IP helper functions and function blocks.

36 Version: 1.3 TS6310

BEGKHOFF PLC libraries

System requirements:

Development eniviroment:

» TwinCAT System version 2.9 or higher (NT4, W2K, XP, XPe);
* Installation level: TwinCAT PLC or higher.

Target system:

« TwinCAT PLC runtime system version 2.9 or higher.

* PC or CX (x86)
o TwinCAT TCP/IP Connection Server v1.0.0.41 or higher.
o NT4, W2K, XP, XPe, CE (image v1.75 or higher);

+ CX (ARM)
o TwinCAT TCP/IP Connection Server v1.0.0.44 or higher.
o CE (image v2.13 or higher);

Installation:

The PLC library is supplied with the TwinCAT TCP/IP Connection Server and copied into folder ...
\TwinCAT\PLC\Lib during installation.

7.21 FB_ServerClientConnection
FB ServerClientConnection

—eMode bBusy—

'—sRemoteHost bError—

—nRemoteFort hErlD—

—hEnable hSocket—

—tReconnect eState—

—hSerer

The function block FB_ServerClientConnection can be used to manage (establish or remove) a server
connection. FB_ServerClientConnection simplifies the implementation of a server application by
encapsulating the functionality of the three function blocks FB_SocketListen [P 22], FB SocketAccept [P 23]
and FB SocketClose [P_19] internally. The integrated debugging output of the connection status facilitates
troubleshooting in the event of configuration or communication errors. In addition, a minimum server
application only requires an instance of the FB SocketSend [P_24] function block and/or an instance of the
FB SocketReceive [P_25] function block.

In the first step a typical server application establishes the connection with the client via the
FB_ServerClientConnection function block (more precisely, the server application accepts the incoming
connection request). In the next step instances of FB_SocketSend and/or FB_SocketReceive can be used to
exchange data with the server. When a connection is closed depends on the requirements of the application.

VAR_IN_OUT

VAR IN OUT
hServer : T HSERVER;
END_VAR

hServer: server handle [P 43]. This input variable must be initialized via the F CreateServerHnd [» 42]
function.

VAR_INPUT

VAR _INPUT
eMode : E_SocketAcceptMode := eACCEPT_ ALL;
sRemoteHost : STRING(15) := '';
nRemotePort : UDINT := 0;

TS6310 Version: 1.3 37

PLC libraries BEGKHOFF

bEnable : BOOL;
tReconnect : TIME := T#ls;
END_ VAR

eMode: Determines whether all or only certain connections should be accepted [P 44].

sRemoteHost: IP address (Ipv4) of the remote client whose connection is to be accepted as a string (e.g.:
'172.33.5.1"). For a client on the local computer an empty string may be specified.

nRemotePort: IP port number of the remote client whose connection is to be accepted (e.g. 200).

bEnable: As long as this input is TRUE, the system attempts to establish a connection at regular intervals
until a connection was established successfully. Once established, a connection can be closed again with
FALSE.

tReconnect: Cycle time used by the function block to try and establish a connection.

VAR_OUTPUT
VAR OUTPUT

bBusy : BOOL;

bError : BOOL;

nErrID : UDINT;

hSocket : T_HSOCKET;

eState : E _SocketConnectionState := eSOCKET DISCONNECTED;
END_VAR

bBusy: This output is TRUE as long as the function block is active.

bError: Becomes TRUE as soon as an error has occurred.

nErrld : If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

hSocket: Connection handle for the newly opened remote client socket. If successful, this variable is

transferred to the instances of the function blocks FB_SocketSend [P 24] and/or FB _SocketReceive [P 25].

eState: Returns the current connection status [P 44].

Example in FBD:

The following example illustrates initialisation of a server handle variable. The server handle is then
transferred to three instances of the FB_ServerClientConnection function block.

PROGRAM MAIN

VAR

END

hServer
bListen

fbServerConnectionl
bConnectl

bBusyl

bErrorl

nErrIDl

hSocketl

eStatel

fbServerConnection2
bConnect2

bBusy2

bError2

nErrID2

hSocket2

eState2

fbServerConnection3
bConnect3

bBusy3

bError3

nErrID3

hSocket3

eState3

VAR

Online View:

: T_HSERVER;
: BOOL;

FB ServerClientConnection;

: BOOL;

: BOOL;

: BOOL;

: UDINT;

: T HSOCKET;

: E_SocketConnectionState;

FB_ServerClientConnection;

: BOOL;

: BOOL;

: BOOL;

: UDINT;

: T HSOCKET;

: E_SocketConnectionState;

FB ServerClientConnection;

: BOOL;

: BOOL;

: BOOL;

: UDINT;

: T HSOCKET;

: E_SocketConnectionState;

38

Version: 1.3

TS6310

BECKHOFF

PLC libraries

F_CreateServerHnd
"sSrletlD
—sLocalHost
2ald—nLocalPort
LISTEN_MODE_CLOSEALL OR COMMECT_MODE_EMABLEDEG—nhode
bListen—bEnable
hSererqhSerer &
thSemerConnection
FB_ServerClientConnection
eACCERT _ALLqeMode bBusy hBusy1
"—sRemoteHost bError—bError
OI—nRemotePort hE D F—nErlD1=16&010000000
hCannect!qhEnable hSocket—hSocketl
T#! s—tReconnect eState—eState1=e30CEET_ZSUSPENDED
hSemwerqhServer &

thSemerConnection?

FB_ServerClientConnection
eACCEPT_SEL_HOST-{eMode bBusy hBusy? i
1727 2194 9sRemoteHost bError—bError2
OI—nRemotePort hE D F—nErlDZ2="16&10000000
bCannect2—bEnable hSocketr—hZ=ocket
T#1=—tReconnect eState—eStatel=eS0CKET _DISCOMMECTED
hSemwerqhServer &

thSemerConnection3

FB_ServerClientConnection
eACCERT _SEL_HOSTHeMode bBusy hBusy3
172166195 9sRemoteHost bError—bErrord
OI—nRemotePort hE D F—nErlDE="16&10000000
bCannect3qbEnable hSocketr—h=ockets
T#1s—qtReconnect eStater—eStated=eS0OCKET_CONMECTED
hSemwerqhServer &

The first connection is activated (bConnect1=TRUE), although the connection has not yet been established

(passive open).

The second connection has not yet been activated (bConnect2=FALSE) (closed).

The third connection was activated (bConnect3=TRUE), and a connection to the remote client has been

established.

Further application examples (including source co

Requirements

de) can be found here: Examples [» 80]

Development Environment Target System PLC libraries to include

TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;
TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically)

TS6310 Version: 1.3 39

PLC libraries BEGKHOFF

7.2.2 FB_ClientServerConnection
FB_ClientServerConnection

HsSrlletlD bBusy—

—nkdode bError—

‘—sRemoteHost nErld—

—nRemoteFort hSocket—

—hEnable eState—

—tReconnect

The function block FB_ClientServerConnection can be used to manage (establish or remove) a client
connection. FB_ClientServerConnection simplifies the implementation of a client application by
encapsulating the functionality of the two function blocks FB SocketConnect [P 18] and FB SocketClose [P_19]
internally. The integrated debugging output of the connection status facilitates troubleshooting in the event of
configuration or communication errors. In addition, a minimum client application only requires an instance of
the FB SocketSend [»_24] function block and/or an instance of the FB SocketReceive [P_25] function block.

In the first step, a typical client application establishes the connection with the server via the
FB_ClientServerConnection function block. In the next step instances of FB_SocketSend and/or
FB_SocketReceive can be used to exchange data with the server. When a connection is closed depends on
the requirements of the application.

VAR_INPUT
VAR INPUT
sSrvNetID : T _AmsNetID := ''
nMode : DWORD := 0;
sRemoteHost : STRING(15) := '';
nRemotePort : UDINT;
bEnable : BOOL;
tReconnect : TIME := T#45s;
END VAR

sSrvNetID: string containing the Ams network address of the TwinCAT TCP/IP Connection Server. For the
local computer (default) an empty string may be specified.

nMode: parameter flags (modes). The permissible parameters are listed in the table and can be combined
via an OR operation:

Flag Description

CONNECT_MODE_ENABLEDBG Activates logging of debug messages in the
application log. In order to view the debugging
messages open the TwinCAT System Manager and
activate log view.

sRemoteHost: IP address (Ipv4) of the remote server as a string (e.g. '172.33.5.1"). An empty string can be
entered on the local computer for a server.

nRemotePort: IP port number of the remote server (e.g. 200).

bEnable: as long as this input is TRUE, the system attempts to establish a connection at regular intervals
until a connection was established successfully. Once established, a connection can be closed again with
FALSE.

tReconnect: cycle time with which the function block attempts to establish the connection. After this time at
the latest, the attempt is aborted and a new one is started.

@ The tReconnect value should not be set too low, since timeout periods of > 30 s may occur in the
event of a network interruption. If the value is too low, command execution would be interrupted

1 prematurely, and ADS error code 1861 (timeout elapsed) would be returned instead of the
Winsocket error WSAETIMEDOUT.

40 Version: 1.3 TS6310

BEGKHOFF PLC libraries

VAR_OUTPUT
VAR _OUTPUT

bBusy : BOOL;

bError : BOOL;

nErrId : UDINT;

hSocket : T HSOCKET;

eState : E_SocketConnectionState := eSOCKET DISCONNECTED;
END VAR

bBusy: This output is TRUE as long as the function block is active.

bError: Becomes TRUE as soon as an error has occurred.

nErrID: If the bError output is set, this parameter returns the TwinCAT TCP/IP Connection Server error
number [P 87].

hSocket: Connection handle for the newly opened local client socket. If successful, this variable is
transferred to the instances of the function blocks FB _SocketSend [P 24] and/or FB _SocketReceive [P 25].

eState: Returns the current connection status [P 44].

Example of a call in FBD:

PROGRAM MAIN

VAR
fbClientConnectionl : FB ClientServerConnection;
bConnectl : BOOL;
bBusyl : BOOL;
bErrorl : BOOL;
nErrID1 : UDINT;
hSocketl : T HSOCKET;
eStatel : E SocketConnectionState;
END_VAR
fhClientConnection
FB_ClientZerverConnection
‘—sSnhetlD bBusy bBusy1
COMMECT MODE EMABLEDBG=16#30000000—nhode bErrar—bErrarl
172 16.6.195'9sRemateHost nErrldf—nErrlD1=16#00000000
2404qnRemotePart hSocket—hSocket]
bConnect!—<bEnable eState—eState1=eSOCKET_COMNNECTED
T#45stReconnect

Further application examples (including source code) can be found here: Examples [P 80]

Requirements

Development Environment Target System PLC libraries to include
TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically)

TS6310 Version: 1.3

PLC libraries BEGKHOFF

7.2.3 F_CreateServerHnd

F_CreateSenerHnd
sSrMetlD —
sLocalHost
hLocalPor
hhdode
bEnable
hServer &=

The function F_CreateServerHnd is used to initialize/set the internal parameters of a server handle variable
hServer. The server handle is then transferred to the instances of the FB_ServerClientConnection [P 371
function block via VAR_IN_OUT. An instance of the FB_ServerClientConnection function block can be used
to manage (establish or remove) a sever connection in a straightforward manner. The same server handle
can be transferred to several instances of the FB_ServerClientConnection function block, in order to enable
the server to establish several concurrent connections.

FUNCTION F_CreateServerHnd : BOOL

VAR IN OUT
hServer : T _HSERVER;
END VAR
VAR INPUT
sSrvNetID : T AmsNetID := '';
sLocalHost : STRING(15) := '"';
nLocalPort : UDINT := 0;
nMode : DWORD := LISTEN MODE CLOSEALL (* OR CONNECT MODE ENABLEDBGY*) ;
bEnable : BOOL := TRUE;
END_VAR

hServer: Server handle [» 43] variable whose internal parameters are to be initialised.

sSrvNetID: String containing the Ams network address of the TwinCAT TCP/IP Connection Server. For the
local computer (default) an empty string may be specified.

sLocalHost: Local server IP address (Ipv4) as a string (e.g., '172.13.15.2"). For a server on the local
computer (default), an empty string may be entered.

nLocalPort: Local server IP port (e.g., 200).

nMode: parameter flags (modes). The permissible parameters are listed in the table and can be combined
via an OR operation:

Flag Description
LISTEN_MODE_CLOSEALL All previously opened socket connections are closed (default).
CONNECT_MODE_ENABLEDBG Activates logging of debugging messages in the application log.

In order to view the debugging messages open the TwinCAT
System Manager and activate log view.

bEnable: This input determines the behavior of the listener socket. Once opened, a listener socket remains
open until this input becomes TRUE. If this input is FALSE, the listener socket is closed automatically, but
only once the last (previously) accepted connection was also closed.

Return value Description

TRUE No error

FALSE Error, invalid parameter value
Example:

See in the FB ServerClientConnection [»_37] function block description.

42 Version: 1.3 TS6310

BECKHOFF PLC libraries

Requirements

Development Environment Target System PLC libraries to include
TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically)

7.2.4 F_GetVersionTcSocketHelper

F_GETYERSIOMNTCSOCKETHELPER

—nersionElement F_GetfersionTcSocketHelper—

This function reads version information from the PLC library.

FUNCTION F_GetVersionTcSocketHelper : UINT

VAR _INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element, that is to be read. Possible parameters:

* 1 : major number;
e 2 :minor number;
* 3 :revision number;

Requirements

Development Environment Target System PLC libraries to include
TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically)

7.2.5 T_HSERVER

A variable of this type represents a TCP/IP server handle. The handle must be initialized before use with the
function F_CreateServerHnd [P _42]. This sets the internal parameters of the T_HSERVER variables.

o
1 The structural elements should not be written to or modified directly.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically

TS6310 Version: 1.3 43

PLC libraries BEGKHOFF

7.2.6 E_SocketAcceptMode

TYPE E SocketAcceptMode:
(* Connection accept modes *)

(

eACCEPT_ALL, (* Accept connection to all remote clients *)
eACCEPT SEL HOST, (* Accept connection to selected host address ¥*)
eACCEPT SEL PORT, (* Accept connection to selected port address *)
eACCEPT SEL HOST_PORT (* Accept connection to selected host and port address *)
);
END TYPE

The variable E_SocketAcceptMode defines which connections are to be accepted by a server.

Requirements

Development Environment Target System PLC libraries to include
TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically)

71.2.7 E_SocketConnectionState

TYPE E SocketConnectionState:

(
eSOCKET_DISCONNECTED,
eSOCKET CONNECTED,
e€SOCKET SUSPENDED

)

END_TYPE

TCP/IP Socket Connection Staus (eSOCKET_SUSPENDED == the status changes e.g.from
eSOCKET_CONNECTED=>eSOCKET_DISCONNECTED).

Requirements

Development Environment Target System PLC libraries to include
TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib
TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;

TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically)

7.2.8 Global constants

Constant Value Description

LISTEN _MODE_CLOSEALL 16#00000001 FORCED close of all previous opened

sockets

LISTEN_MODE_USEOPENED 16#00000002 Try to use already opened listener socket

CONNECT_MODE_ENABLEDBG 16#80000000 Enables/Disables debugging messages

Requirements

Development Environment Target System PLC libraries to include

TwinCAT v2.9.0 Build >= 1030 PC or CX (x86) TcSocketHelper.Lib

TwinCAT v2.10.0 Build >= 1301 CX (ARM) (Standard.Lib; TcBase.Lib;
TcSystem.Lib; TcUtilities.Lib;
Tcplp.Lib are included
automatically)

44 Version: 1.3 TS6310

BEGKHOFF PLC libraries

7.3 TcSnmp.lib

The TeSnmp.Lib function blocks can be used to send SNMP Traps or receive SNMP GET using the
TwinCAT TCPI/IP Connection Server. A TwinCAT TCP/IP Connection Server must be running.

Product components
e TcSnmp.Lib

Installation

Windows NT (NT4, W2K, XP, XPe, 7)

Please do the following steps:
* Copy the library into ..\TwinCAT\Lib folder.

* Install the TwinCAT TCP/IP Connection Server. The Server will start automatically after starting
TwinCAT

7.3.1 FB_SEND_TRAP

The function block allows to send SNMPv1 Traps. You can add variable bindings for sending additional
information to the manager along with the trap. The following SNMP Data Types are supported by the
function block for the variable bindings: OCTET_STRING, INTEGER32, COUNTER32, GAUGE32,
TIMETICKS, OBJECT_ID

The uptime field is always zero.

The maximum paket size is limited to 2000 byte. If more bytes are committed the function block will return a
error.

The function block FB_SEND_TRAP should be called in each cycle for a proper operation.

VAR INPUT
bEnable :BOOL;
bExecute :BOOL;
sLocalHostIp :STRING(15) ;
sLocalHostPort :UDINT;
sManagerIP :STRING(15) ;
sTcIpConnSvrAddr :T AmsNetId;
sObjectID :T_MAXSTRING;
sCommunity :STRING (60) ;
iGenericTrapNumber :INT;
bySpecificTrapNumber :BYTE;
nVarBindings :USINT;
pArrVarBinding :POINTER TO ARRAY[1..iMAX TRAPBUF SIZE] OF ST SNMP VariableBinding;

END_ VAR

bEnable: With a rising edge on this input the system attempts to create a Socket. Once established the
Output bEnabled is set to TRUE. The Socket can be closed again with a falling edge.

bExecute: Send one Trap with a rising edge on bExecute. A rising edge will clear the output nErrID and
bError. A opened Socket is required.

sLocalHostIP: String containing the (IPv4) dotted network address of the local host (e.g. '"172.33.5.1"). If
there is more than one network adapter present on the machine, the sLocalHostIP parameter allows you to
specify which adapter to use.

sLocalHostPort(optional): The local IP port number.
sManagerlP: IP address (IPv4) of the SNMP Manager.
sTclpConnSvrAddr: not supported

sObjectID: String containing the dotted numerical value that represents the MIB (Management Information
Base) of the device. Maximum length of the string is 255. Valid values for each number between the dots is
0...65535. (e.g. '1.3.1.3.2555.3")

TS6310 Version: 1.3 45

PLC libraries BEGKHOFF

sCommunity: String containing the SNMP Community String (e.g. public)
iGenericTrapNumber: The SNMP Generic Trap Number defined in E_SNMP_GenericTrapNumber.

bySpecificTrapNumber: The SNMP Specific Trap Number. Automatically set to 0 if iGenericTrapNumber is
not Ox06(E_SNMP_EnterpriseSpecific). Valid values are 1...255.

pArrVarBinding (optional): Pointer to an array of SNMP_ST_VariableBinding.

nVarBindings (optional): Number of the elements in pArrVarBinding. Maximum is iIMAX_TRAPBUF_SIZE
(defined in Global_Variables)

VAR OUTPUT
bBusy :BOOL;
bEnabled :BOOL;
bError :BOOL;
nErrID :DINT;
END_VAR

bBusy: When the function block is activated this output is set while sending.
bEnabled: This output is set if a Socket is open.
bError: Becomes TRUE as soon as an error has occurred

nErrID: If the bError output is set, this parameter returns a TwinCAT TCP/IP Connection Server error [P 87]
or E. SNMP_ErrorCodes.

The function block is tested with the following software:
SNMP Trap Watcher (BTT Software)
Wireshark 1.2.5

iReasoning MIB Browser Personal Edition 7.0

Requirements

Development environment Target system type PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86) Tcplp.Lib (Standard.Lib;
TcBase.Lib; TcSystem.Lib are
included automatically)

7.3.2 FB_GetSnmp

The Function Block allows to receive SNMPv1 GET-commands. You can add variable bindings for sending
additional information to the SNMP. The following SNMP Data Types are supported by the function block for
the variable bindings: OCTET_STRING, INTEGER32, COUNTER32, GAUGE32, TIMETICKS, OBJECT_ID

VAR INPUT
bEnable :BOOL;
bReceive :BOOL;
bSendTrap :BOOL;
bSendResponse :BOOL;
sLocalHostIp :STRING(15) ;
nLocalHostPort :UDINT;
sManagerIP :STRING (15) ;
sTcIpConnSvrAddr :T_AmsNetId :='"';
sObjectID : T _MAXSTRING;
sCommunity :STRING (60) ;
iGenericTrapNumber :INT;
iSpecificTrapNumber :BYTE;
nVarBindings :USINT := 0;
pArrVarBinding :POINTER TO ARRAY[1..iMAX TRAPBUF SIZE] OF ST SNMP VariableBinding;
iError :INT;

END_ VAR

bEnable: With a rising edge on this input the system attempts to create a Socket. Once established the
Output bEnabled is set to TRUE. The Socket can be closed again with a falling edge.

bReceive: Signal a received GET command.

46 Version: 1.3 TS6310

BEGKHOFF PLC libraries

bSendTrap: Signal a sended TRAP.

bSendResponse: Signal an answer is ready to send.

sLocalHostIP: String containing the (IPv4) dotted network address of the local host (e.g. '"172.33.5.1"). If
there is more than one network adapter present on the machine, the sLocalHostIP parameter allows you to
specify which adapter to use.

sLocalHostPort(optional): The local IP port number.
sManagerlP: IP address (IPv4) of the SNMP Manager.
sTclpConnSvrAddr: not supported

sObjectID: String containing the dotted numerical value that represents the MIB (Management Information
Base) of the device. Maximum length of the string is 255. Valid values for each number between the dots are
0...65535. (e.g., '1.3.1.3.2555.3")

sCommunity: String containing the SNMP Community String (e.g. public)
iGenericTrapNumber: The SNMP Generic Trap Number defined in E_SNMP_GenericTrapNumber.

iSpecificTrapNumber: The SNMP Specific Trap Number. Automatically set to O if iGenericTrapNumber is
not Ox06(E_SNMP_EnterpriseSpecific). Valid values are 1...255.

pArrVarBinding (optional): Pointer to an array of SNMP_ST_VariableBinding.

nVarBindings (optional): Number of the elements in pArrVarBinding. Maximum is iMAX_TRAPBUF_SIZE
(defined in Global_Variables)

iError: Returns specific SNMP error code.

VAR OUTPUT
bBusy :BOOL;
bError :BOOL;
bEnabled :BOOL;
bReceived :BoOL;
iRecSNMPVersion :INT; (* SNMP Version, sample SNMPvl = 0 *)
sRecCommunity :STRING (60) ; (*Community Name *)
1iRecPDUType :INT; (* SNMP PDU Type, sample GET = A0 *)
arrRecPDURequestID :ARRAY[0..3] OF BYTE; (* SNMP PDU Request ID *)
iRecPDUError :INT; (*SNMP PDU Error *)
iRecPDUErrorIndex :INT; (* SNMP PDU Error Index¥*)
sRecObjectID :T_MAXSTRING; (* Object Identifier *)
arrRecObjectID :ARRAY[0..128] OF UDINT;
nErrID :UDINT;

END_VAR

bBusy: When the function block is activated this output is set while sending.
bError: Becomes TRUE as soon as an error has occurred
bEnabled: This output is set if a Socket is open.

bReceived: This oputput is set if a get command has occured..
iRecSNMPVersion: Info about SNMP version. SNMPv1 = 0.
sRecCommunity: Info about the received community strings.
iRecPDUType: Info about the PDU type.
arrRecPDURequestID: Array with PDU request IDs.
iRecPDUError: Output of the PDU erroriD.
iRecPDUErrorindex: Output of error index.

sRecObjectID: String with the objectID.

arrRecObjectID: Array with the received objectIDs .

TS6310 Version: 1.3 47

PLC libraries BEGKHOFF

nErriD: If the bError output is set, this parameter returns a TwinCAT TCP/IP Connection Server error [P 87]
or E_SNMP_ErrorCodes.

The function block is tested with:
SNMP Trap Watcher (BTT Software)
Wireshark 1.2.5

iReasoning MIB Browser Personal Edition 7.0

Requirements

Development environment Target system type PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib (Standard.Lib;
TcBase.Lib; TcSystem.Lib are
included automatically)

7.3.3 F_GetVersionTcSNMP

This function can be used to read PLC library version information.

FUNCTION F_GetVersionTcSNMP : UINT

VAR INPUT
nVersionElement : INT;
END VAR

nVersionElement : Version element to be read. Possible parameters:

* 1 : major number;
e 2 :minor number;
e 3 :revision number;

Requirements

Development environment Target system type PLC libraries to be linked

TwinCAT version 2.8.0 oor higher |PC or CX (x86) Teplp.Lib (Standard.Lib;
TcBase.Lib; TcSystem.Lib are
included automactically)

7.3.4 SNMP_ST_VariableBinding

Structure for SNMP variable bindings

TYPE ST SNMP VariableBinding :

STRUCT

iType :INT;

iLength :INT;

pArrValue :POINTER TO ARRAY[1..10000] OF BYTE;
sOID :STRING (300) ;

END_ STRUCT

END_TYPE

iType: The SNMP Data Type defined in E_SNMP_DataTypes.
iLength: The number of elements of pArrValue.
pArrValue: A pointer to the array filled with the values.

sOID: String containing the dotted numerical value of the variable binding.

48 Version: 1.3 TS6310

BECKHOFF

PLC libraries

Requirements

Development environment Target system type

PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86)

Teplp.Lib (Standard.Lib;
TcBase.Lib; TcSystem.Lib are
included automatically)

7.3.5 E_SNMP_GenericTrapNumber

TYPE E_SNMP GenericTrapNumber :
(

E SNMP ColdStart:= 16#00,

E SNMP WarmStart:= 16#01,

E SNMP LinkDown:=16#02,
E_SNMP LinkUp:= 16#03,

E SNMP AuthentificationFailure:= 16#04,
E SNMP EgpNeighborLoss:= 16#05,
E_SNMP EnterpriseSpecific:= 16#06

)i

END TYPE

Requirements

Development environment Target system type

PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86)

TcSnmp.lib, Teplp.Lib

(Standard.Lib; TcBase.Lib;
TcSystem.Lib are included
automatically)

7.3.6 E_SNMP_DataTypes

TYPE E SNMP DataTypes :

(
E_SNMP INTEGER:= 16#02,
E_SNMP OCTETSTRING:= 16#04,
E_SNMP_OBJECTID:=16#06,
E_SNMP_SEQUENCE := 16#30,

E_SNMP IPADDRESS:= 16#40,

E_SNMP COUNTER32:= 16#41,
E SNMP GAUGE32:= 16#42,
E_SNMP_TIMETICKS:= 16#43,
E_SNMP_TRAPTYPE:= 16#A4
)
END TYPE

Requirements

Development environment Target system type

PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86)

Teplp.Lib (Standard.Lib;
TcBase.Lib; TcSystem.Lib werden
automatisch hinzugefiigt)

7.3.7 Global Variables

VAR_GLOBAL CONSTANT

VAR _GLOBAL CONSTANT
iMAX TRAPBUF SIZE :USINT := 255;
END VAR

iIMAX_TRAPBUF_SIZE: Maximum Number of elements in pArrVarBinding (POINTER TO

ARRAY[1..iIMAX_TRAPBUF_SIZE] OF ST_SNMP_VariableBinding;)

TS6310 Version: 1.3

49

PLC libraries BEGKHOFF

Requirements

Development environment Target system type PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86) Teplp.Lib (Standard.Lib;
TcBase.Lib; TcSystem.Lib wird
automatisch hinzugefugt)

50 Version: 1.3 TS6310

BECKHOFF Samples

8 Samples
8.1 Tcplp.lib

8.1.1 TCP example

The following example shows an implementation of an "echo" client/server. The local client should send a
test string to the remote server at certain intervals (e.g. every second). The remote server should then
immediately resend the same string unchanged to the client.

The client should be implemented as a function block, of which several instances can be created. The server
should be able to communicate with several clients.

Several instances of the server may be created. Each server instance is then addressed via a different port
number. The server implementation is more difficult if the server has to communicate with more than one
client. An implementation of a suitable client in .NET is also presented. The example can be used as a basis
for realising more complex implementations.

System requirements
* TwinCAT v2.8 or higher. Level: TwinCAT PLC as a minimum.

e Installed TwinCAT TCP/IP Connection Server. If two PCs are used for the test, the TwinCAT TCP/IP
Connection Server should be installed on both PCs.

Project sources
* https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383886219/.zip
* https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383887627/.zip
* https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383889035/.zip

Project description
e FB LocalClient function block [» 55]
» FB LocalServer function block [»_60]
» Testing the function blocks [» 52]
» .NET client project [» 66]

Auxiliary functions in the project example

In the example several functions, constants and function blocks are used, which are briefly described below:

FUNCTION LogError : DINT

LOGERROR

—imsg : STRIMG(E0 LogError: DIMNT—
—{nErrld : DWORD

The function writes a message with the error code into the log book of the operating system (Event Viewer).
The global variable bLogDebugMessages must first be set to TRUE.

FUNCTION LogMessage : DINT

LOGMESSAGE

—msd : STRIMNGE0) Loghessane : DINTH—
—{hSocket: T_HSOCKET

TS6310 Version: 1.3 51

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383886219.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383887627.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383889035.zip

Samples BEGKHOFF

The function writes a message into the log book of the operating system (Event Viewer) if a new socket was
opened or closed. The global variable bLogDebugMessages must first be set to TRUE.

FUNCTION SCODE_CODE : DWORD

SCODE_CODE

—sc UDINT SCODE_CODE : DWORD—

The function masks the lower 16bits of a Win32 error code returns them.

Global constants/variables

Name Default value Description

bLogDebugMessages TRUE Activates/deactivates writing of messages
into the log book of the operating system;

MAX_CLIENT_CONNECTIONS 5 Maximum number of remote clients that

can simultaneously establish a connection
with the server;

MAX_PLCPRJ_RXBUFFER_SIZE 1000 Max. length of the internal receive buffer;

PLCPRJ_RECONNECT_TIME T#3s SERVER: After this time has elapsed, the
local server will attempt to re-open the
listener socket;

CLIENT: Once this time has elapsed, the
local client will attempt to re-establish the
connection with the remote server;

PLCPRJ_SEND_CYCLE_TIME T#1s The test string is sent cyclically at these
intervals from the local client to the remote
server;

PLCPRJ_RECEIVE_POLLING_TIME T#1s SERVER and CLIENT: The client and

server reads (polls) data from the server or
client using this cycle;
PLCPRJ_RECEIVE_TIMEOUT T#50s (SERVER) |SERVER: After this time has elapsed, the
local server aborts the reception if no data
T#10s (CLIENT) bytes could be received during this time;

CLIENT: After this time has elapsed, the
local client aborts the reception if no data
bytes could be received during this time;

PLCPRJ_ACCEPT_POLLING_TIME T#1s At these intervals, the local server will
attempt to accept the connection requests
of the remote client;

PLCPRJ_ERROR_RECEIVE_BUFFER_O [16#8101 Sample project error code: Too many

VERFLOW characters without zero termination were
received,;

PLCPRJ_ERROR_RECEIVE_TIMEOUT |16#8102 Sample project error code: No new data

could be received within the timeout time
(PLCPRJ_RECEIVE_TIMEOUT).

8.1.1.1 Testing the client and server function blocks

1. Open the https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383886219/.zip on the local
PC. The IP address of the server has to be adapted to your remote system (initialisation values of the
sRemoteHost variables). Load the project into the PLC runtime system on the local PC. Start the PLC.
PROGRAM MAIN

VAR

fbClientl : FB LocalClient := (sRemoteHost:= '172.16.11.83' (* IP address of remote s
erver! *), nRemotePort:= 200);

52 Version: 1.3 TS6310

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383886219.zip

BEGKHOFF Samples

fbClient2 : FB LocalClient := (sRemoteHost:= '172.16.11.83', nRemotePort:= 200);
fbClient3 : FB LocalClient := (sRemoteHost:= '172.16.11.83', nRemotePort:= 2
00)
fbClient4 : FB LocalClient := (sRemoteHost:= '172.16.11.83', nRemotePort:= 2
00)
fbClient5 : FB LocalClient := (sRemoteHost:= '172.16.11.83', nRemotePort:= 2
00)
bEnableClientl : BOOL := TRUE;
bEnableClient2 : BOOL := FALSE;
bEnableClient3 : BOOL := FALSE;
bEnableClient4 : BOOL := FALSE;
bEnableClient5 : BOOL := FALSE;
fbSocketCloseAll : FB SocketCloseAll := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT) ;
bCloseAll : BOOL := TRUE;
nCount : UDINT;
END_VAR
IF bCloseAll THEN (*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;
fbSocketCloseAll (bExecute:= TRUE) ;
ELSE
fbSocketCloseAll (bExecute:= FALSE) ;
END IF

IF NOT fbSocketCloseAll.bBusy THEN

nCount := nCount + 1;

fbClientl (bEnable := bEnableClientl, sToServer := CONCAT('CLIENT1-', UDINT TO STRING(nCount)
))

fbClient2 (bEnable := bEnableClient2, sToServer := CONCAT('CLIENT2-', UDINT TO STRING(nCount)

))
fbClient3 (bEnable

))i

bEnableClient3, sToServer CONCAT ('CLIENT3-', UDINT TO STRING(nCount)

fbClient4 (bEnable := bEnableClient4);
fbClient5(bEnable := bEnableClient5);
END IF

Up to 5 client instances can be activated by setting the bEnableCientX variable. Each client sends a string
(default: 'TEST') to the server approximately every second. The server returns the same string to the client
(echo server). For the test, a string with a counter value is generated automatically for the first three
instances. The first client is activated automatically when the program is started.

2. Open the https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383887627/.zip also on the
local PC. Select a PLC runtime system on a remote PC as the target system. Load the PLC program into the
runtime system. Start the PLC.

PROGRAM MAIN

VAR
fbServer : FB LocalServer := (sLocalHost := '172.16.11.83' (*own IP address!
*), nLocalPort := 200);
bEnableServer : BOOL := TRUE;
fbSocketCloseAll : FB_SocketCloseAll := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT)
bCloseAll : BOOL := TRUE;
END_VAR
IF bCloseAll THEN (*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;
fbSocketCloseAll (bExecute:= TRUE) ;
ELSE
fbSocketCloseAll (bExecute:= FALSE);
END IF

IF NOT fbSocketCloseAll.bBusy THEN
fbServer (bEnable := bEnableServer);
END IF

3. Set the bEnableCilent4 variable in the client project to TRUE. The second client will then attempt to
establish a connection with the server. If successful, the "TEST' string is sent cyclically. Now open the
fbClient4 instance of the FB_LocalClient function block.

TS6310 Version: 1.3 53

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383887627.zip

Samples

BECKHOFF

----- fhConnect

----- fhClose

----- fhClientDataExcha

----- fhCannectTOM

----- fhDataExchaToOM
eStep = CLIEMT_STATE_DATAEXCHA WAIT
sRemoteHost="172.16.5 36"
nRemotePort= 200

sToSemwer= TEST'

bEnable = ligllE
hConnected =
----- hSocket

bBusy =

hErrar =

Write Yariable ‘sToServer"

OldValue: [TEST'

Cancel

X
IIIKI
[e |

M e W alue: I'H allo’

FALSE
nErrid =10
sFromSerer= TEST'

Double-click to open the dialog for writing the sToString variable. Change the value of the string variable, for
example to 'Hello'. Close the dialog with OK. Write the new value into the PLC (CTRL+F7). Shortly

afterwards, the value read back by the server can also be seen online.

El-fhClientd
-~ fhConnect

- fhCGonnectTON

- fhDataBxchaTON

------- eStep = CLIENT_STATE_DATAEXCHA_WAIT
- sRemoteHost= "172.16.5.36'

= nReruePort = 200

e 5T 3EMET = Hallo'

----- fhClientDataBxcha

------- hEnabie - H‘l!l'l'lﬂ__._

------- hConnected = FNE

B hSocket

------- bBusy = ENE

------- bError = [FEmss

------- nErridg

------- SFrorgSerner = ‘Hallo'
----- fhcClients

hEnahleClient! =

4. Now open the fbServer instance of the FB_LocalServer function block in the server project. Our string:

'Hello' can be seen in the online data of the server.

54 Version: 1.3

TS6310

BEGKHOFF Samples

----- fhListen
----- fhloze
----- fhConnectTOM
eStep = SERVER_STATE_IDLE
E--hRemoteClient
----- fhRemoteClient[1]
E--fhRemateClient]2]
H-- fhAccept
- fhizlose
H--- fhServerDataExcha
H-- fhAcceptToOMN
------- .eStep = CLIENT_STATE_DATAEXCHA_WAIT
B hListener
------- hEnable = [IEHE
------- bAccepted = IENIS

- hSocket

....... bBusy=

....... bErrror = (R

E
E
E
E

...... sFromClient = "Hallo'
----- hRemMOw iz

----- fbRemoteClient4]

----- fbRemoteClient]3]

i=6

sLocalHost="

nLocalPort= 200
bEnabIe=

blListening =

----- hlListener
nacceptedClients = 2

hBusy =
FALSE
nErrid =10

5. In the server and client examples, messages are written into the log book of the operating system during
establishment/closing of the connection and in the event of an error. This facilitates troubleshooting. These
messages can be displayed in the logger output of the TwinCAT System Manager. Start the TwinCAT
System Manager on the local system and activate the logger output. Now deactivate the two clients (set
bEnableClient1 and bEnableClient4 to FALSE).

Server [Park) | Timeskarmp | Meldung

ﬂTCF‘LC (501) 10.02,2004 09:38:52 838 s LOCAL client CLOSED! Internal handle: 1
ﬂTCF‘LC (501) 10.02,2004 09:38:52 118 ms LOCAL client CLOSED! Internal handle: 2

Ready

The server messages can also be displayed on the local PC. To this end, you have to open a second
instance of the TwinCAT System Manager on the local PC and select the remote PC as the target system in
the TwinCAT System Manager.

8.1.1.2 PLC Client

8.1.1.21 FB_LocalClient

Here you can unpack the complete source for the client project: https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383886219/.zip;

TS6310 Version: 1.3 55

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383886219.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383886219.zip

Samples

BECKHOFF

FBE_LocalClient
—“sFemoteHost bConnected—
—nRemoteFort hSocket—
—sToServer bBusy—
—kbEnahle bError—

hErld—
sFromSerser—

If the bEnable input is set, the system will keep trying to establish the connection to the remote server once
the PLCPRJ_RECONNECT_TIME has elapsed. The remote server is identified via the sRemoteHost IP
address and the nRemotePort IP port address. The data exchange with the server was encapsulated in a

separate function block (FB

ClientDataExcha [P 58]). Data exchange is always cyclic once

PLCPRJ_SEND_CYCLE_TIME has elapsed. The sToServer string variable is sent to the server, and the
string sent back by the server is returned at output sFormServer. Another implementation, in which the
remote server is addressed as required is also possible. In the event of an error, the existing connection is
closed, and a new connection is established.

Interface

FUNCTION_ BLOCK FB_LocalClient

VAR INPUT
sRemoteHost : STRING (15) := '127.0.0.1"'; (* IP adress of remote server *)
nRemotePort : UDINT := 0;
sToServer : T _MaxString:= 'TEST';
bEnable : BOOL;

END VAR

VAR OUTPUT
bConnected : BOOL;
hSocket : T HSOCKET;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sFromServer 5 TiMaxString;

END VAR

VAR
fbConnect : FB_SocketConnect := (sSrvNetId := "');
fbClose : FB SocketClose := (sSrvNetId := '', tTimeout DEFAULT ADS TIMEOUT) ;
fbClientDataExcha FB ClientDataExcha;
fbConnectTON : TON := (PT := PLCPRJ_RECONNECT TIME);
fbDataExchaTON : TON := (PT := PLCPRJ SEND CYCLE TIME);
eStep : E ClientSteps;

END VAR

Implementation

CASE eStep OF
CLIENT STATE IDLE:
IF bEnable XOR bConnected THEN
bBusy := TRUE;
bError := FALSE;
nErrid := 0;
sFromServer := '"';
IF bEnable THEN
fbConnectTON(IN := FALSE);
eStep := CLIENT STATE CONNECT START;
ELSE
eStep := CLIENT STATE CLOSE_START;
END IF
ELSIF bConnected THEN
fbDataExchaTON(IN := FALSE);
eStep := CLIENT STATE DATAEXCHA START;
ELSE
bBusy := FALSE;
END IF

CLIENT STATE CONNECT START:

fbConnectTON(IN := TRUE, PT := PLCPRJ RECONNECT TIME) ;
IF fbConnectTON.Q THEN
fbConnectTON(IN := FALSE);
fbConnect (DbExecute := FALSE);
fbConnect (sRemoteHost := sRemoteHost,
nRemotePort := nRemotePort,

56 Version: 1.3

TS6310

BECKHOFF

Samples

bExecute := TRUE);

eStep := CLIENT STATE CONNECT WAIT;
END IF

CLIENT STATE CONNECT WATIT:
fbConnect (bExecute := FALSE);
IF NOT fbConnect.bBusy THEN
IF NOT fbConnect.bError THEN

bConnected := TRUE;

hSocket := fbConnect.hSocket;

eStep := CLIENT STATE IDLE;

LogMessage ('LOCAL client CONNECTED!', hSocket);
ELSE

LogError ('FB SocketConnect', fbConnect.nErrId);

nErrId := fbConnect.nErrId;

eStep := CLIENT_STATE ERROR;
END IF

END IF

CLIENT STATE DATAEXCHA START:

fbDataExchaTON(IN := TRUE, PT := PLCPRJ SEND CYCLE TIME) ;
IF fbDataExchaTON.Q THEN
fbDataExchaTON(IN := FALSE);
fbClientDataExcha (bExecute := FALSE);
fbClientDataExcha (hSocket := hSocket,
sToServer := sToServer,
bExecute := TRUE) ;
eStep := CLIENT STATE DATAEXCHA WAIT;
END IF

CLIENT STATE DATAEXCHA WAIT:
fbClientDataExcha (bExecute := FALSE);
IF NOT fbClientDataExcha.bBusy THEN
IF NOT fbClientDataExcha.bError THEN

sFromServer := fbClientDataExcha.sFromServer;
eStep := CLIENT STATE IDLE;
ELSE
(* possible errors are logged inside of fbClientDataExcha function block *)
nErrId := fbClientDataExcha.nErrId;
eStep :=CLIENT_ STATE ERROR;
END IF

END IF

CLIENT STATE CLOSE START:

fbClose (bExecute := FALSE);

fbClose (hSocket:= hSocket,
bExecute:= TRUE) ;

eStep := CLIENT STATE CLOSE WAIT;

CLIENT STATE CLOSE WAIT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN

LogMessage ('LOCAL client CLOSED!', hSocket);
bConnected := FALSE;

MEMSET (ADR (hSocket), 0, SIZEOF (hSocket));

IF fbClose.bError THEN

LogError('FB SocketClose (local client)', fbClose.nErrId);

nErrId := fbClose.nErrId;

eStep := CLIENT STATE ERROR;
ELSE

bBusy FALSE;

bError := FALSE;

nErrId := 0;

eStep := CLIENT STATE IDLE;
END IF

END IF

CLIENT STATE ERROR: (* Error step *)

bError := TRUE;
IF bConnected THEN
eStep := CLIENT STATE CLOSE_START;
ELSE
bBusy := FALSE;
eStep := CLIENT_ STATE IDLE;
END IF
END CASE

Also see about this

TS6310 Version: 1.3

57

Samples

BECKHOFF

FB_SocketConnect [18]
FB_SocketClose [19]
FB_ClientDataExcha [58]

8.1.1.2.2 FB_ClientDataExcha
FB_ClientDataExcha
—h=ocket bBusy—
—“sToServer bError—
—bExecute nErdf—
sFromsener—

In the event of an rising edge at the bExecute input, a zero-terminated string is sent to the remote server,
and a string returned by the remote server is read. The function block will try reading the data until zero
termination was detected in the string received. Reception is aborted in the event of an error, and if no new
data were received within the PLCPRJ_RECEIVE_TIMEOUT timeout time. Data are attempted to be read
again after a certain delay time, if no new data could be read during the last read attempt. This reduces the

system load.
Interface
FUNCTION BLOCK FB ClientDataExcha
VAR INPUT
hSocket T_HSOCKET;
sToServer T MaxString;
bExecute BOOL;
END VAR
VAR OUTPUT
bBusy BOOL;
bError BOOL;
nErrId UDINT;
sFromServer T MaxString;
END VAR
VAR
fbSocketSend FB SocketSend := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
fbSocketReceive FB SocketReceive := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
fbReceiveTON TON;
fbDisconnectTON TON;
RisingEdge : R_TRIG;
eStep E DataExchaSteps;
cbReceived, startPos, endPos, idx UDINT;
cbFrame UDINT;
rxBuffer : ARRAY[0..MAX PLCPRJ RXBUFFER SIZE] OF BYTE;
END VAR

Implementation

RisingEdge (CLK
CASE eStep OF
DATAEXCHA STATE IDLE:
IF RisingEdge.Q THEN

bExecute

)i

bBusy := TRUE;

bError := FALSE;

nErrid := 0;

cbReceived := 0;

fbReceiveTON(IN := FALSE, PT := T#0s); (* don't wait, read the first answer data immed
iately *)

fbDisconnectTON(IN := FALSE, PT := T#0s); (* disable timeout check first *)

eStep := DATAEXCHA STATE SEND START;

END IF

DATAEXCHA STATE SEND START:

fbSocketSend (bExecute := FALSE);

fbSocketSend (hSocket := hSocket,
pSrc = ADR(sToServer)
cbLen = LEN(sToServer)
bExecute:= TRUE) ;

eStep := DATAEXCHA STATE SEND WAIT;

DATAEXCHA STATE_ SEND WAIT:
fbSocketSend (bExecute

FALSE) ;

’

+ 1, (* string length inclusive zero delimiter *)

58

Version: 1.3 TS6310

BEGKHOFF Samples

IF NOT fbSocketSend.bBusy THEN
IF NOT fbSocketSend.bError THEN

eStep := DATAEXCHA STATE RECEIVE_ START;
ELSE
LogError ('FB SocketSend (local client)', fbSocketSend.nErrId);
nErrId := fbSocketSend.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE RECEIVE START:

fbDisconnectTON();

fbReceiveTON(IN := TRUE);

IF fbReceiveTON.Q THEN
fbReceiveTON(IN := FALSE);
fbSocketReceive (bExecute := FALSE);
fbSocketReceive (hSocket:= hSocket,

pDest:= ADR(rxBuffer) + cbReceived,

cbLen:= SIZEOF(rxBuffer) - cbReceived,
bExecute:= TRUE) ;
eStep := DATAEXCHA STATE RECEIVE WAIT;

END IF

DATAEXCHA STATE RECEIVE WAIT:
fbSocketReceive (bExecute := FALSE);
IF NOT fbSocketReceive.bBusy THEN
IF NOT fbSocketReceive.bError THEN
IF (fbSocketReceive.nRecBytes > 0) THEN (* bytes received *)

startPos := cbReceived; (* rxBuffer array index of first data byte *)
endPos := cbReceived + fbSocketReceive.nRecBytes - 1;
(* rxBuffer array index of last data byte *)
cbReceived := cbReceived + fbSocketReceive.nRecBytes;
(* calculate the number of received data bytes *)
cbFrame := 0; (* reset frame length *)
IF cbReceived < SIZEOF(sFromServer) THEN(* no overflow *)
fbReceiveTON(PT := T#0s); (* bytes received => increase the read (polling)
speed *)
fbDisconnectTON(IN := FALSE); (* bytes received => disable timeout check *)
(* search for string end delimiter *)
FOR idx := startPos TO endPos BY 1 DO
IF rxBuffer[idx] = 0 THEN(* string end delimiter found *)
cbFrame := idx + 1;

(* calculate the length of the received string (inclusive the end delimiter) *)

MEMCPY (ADR(sFromServer), ADR(rxBuffer), cbFrame);
(* copy the received string to the output variable (inclusive the end delimiter) *)

MEMMOVE (ADR(rxBuffer), ADR(rxBuffer[cbFrame]), cbReceived -
cbFrame); (* move the reamaining data bytes *)

cbReceived := cbReceived - cbFrame;
(* recalculate the remaining data byte length *)
bBusy := FALSE;
eStep := DATAEXCHA STATE IDLE;
EXIT;
END IF

END FOR
ELSE (* there is no more free read buffer space => the answer string should be te
rminated *)
LogError('FB SocketReceive (local client)', PLCPRJ ERROR RECEIVE BUFFER OV

ERFLOW) ;
nErrId := PLCPRJ ERROR RECEIVE BUFFER OVERFLOW; (* buffer overflow !*)
eStep := DATAEXCHA STATE ERROR;
END IF
ELSE (* no bytes received *)
fbReceiveTON (PT := PLCPRJ RECEIVE POLLING TIME) ;
(* no bytes received => decrease the read (polling) speed ¥*)
fbDisconnectTON(IN := TRUE, PT := PLCPRJ RECEIVE TIMEOUT) ;

(* no bytes received => enable timeout check*)
IF fbDisconnectTON.Q THEN (* timeout error*)
fbDisconnectTON(IN := FALSE);
LogError('FB SocketReceive (local client)', PLCPRJ ERROR RECEIVE TIMEOUT)

nErrID := PLCPRJ_ERROR RECEIVE TIMEOUT;
eStep := DATAEXCHA STATE ERROR;
ELSE (* repeat reading *)
eStep := DATAEXCHA STATE RECEIVE START; (* repeat reading *)
END IF
END IF
ELSE (* receive error *)
LogError('FB SocketReceive (local client)', fbSocketReceive.nErrId);
nErrId := fbSocketReceive.nErrId;
eStep := DATAEXCHA STATE ERROR;

TS6310 Version: 1.3 59

Samples BEGKHOFF

END IF
END IF

DATAEXCHA STATE ERROR: (* error step *)

bBusy := FALSE;
bError := TRUE;
cbReceived := 0;
eStep := DATAEXCHA STATE IDLE;

END CASE

Also see about this
FB_SocketSend [24]
FB_SocketReceive [25]

8.1.1.3 PLC Server

8.1.1.31 FB_LocalServer

Here you can unpack the complete source for the server project: https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383887627/.zip;

FBE_LocalSerser
—sLocalHost blistening—
—nLocalFort hListener—
—bEnahkle nacceptedClients—

bBusyvi—
bError—
nErrld—

The server must first be allocated a unique sLocalHost IP address and an nLocaPort IP port number. If the
bEnable input is set, the local server will repeatedly try to open the listener socket once the
PLCPRJ_RECONNECT_TIME has elapsed. The listener socket can usually be opened at the first attempt, if
the TwinCAT TCP/IP Connection Server resides on the local PC. The functionality of a remote client was
encapsulated in the function block FB_RemoteClient [»_62]. The remote client instances are activated once
the listener socket was opened successfully. Each instance of the FB_RemoteClient corresponds to a
remote client, with which the local server can communicate simultaneously. The maximum number of remote
clients communicating with the server can be modified via the value of the MAX_CLIENT_CONNECTIONS
constant. In the event of an error, first all remote client connections are closed, followed by the listener
sockets. The nAcceptedClients output provides information about the current number of connected clients.

Interface
FUNCTION_ BLOCK FB LocalServer
VAR INPUT
sLocalHost : STRING(15) := '127.0.0.1"'; (* own IP address! *)
nLocalPort : UDINT := 0;
bEnable : BOOL;
END VAR
VAR OUTPUT
bListening : BOOL;
hListener : T_HSOCKET;
nAcceptedClients : UDINT;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
VAR
fbListen : FB SocketListen := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT
) i
fbClose : FB _SocketClose := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT
)i
fbConnectTON : TON := (PT := PLCPRJ_RECONNECT TIME) ;
eStep : E_ServerSteps;
fbRemoteClient : ARRAY[1..MAX CLIENT CONNECTIONS] OF FB_RemoteClient;
i : UDINT;
END_VAR

60 Version: 1.3 TS6310

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383887627.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383887627.zip

BEGKHOFF Samples

Implementation
CASE eStep OF

SERVER STATE IDLE:
IF bEnable XOR bListening THEN
bBusy := TRUE;
bError := FALSE;
nErrId := 0;
IF bEnable THEN
fbConnectTON(IN := FALSE);
eStep := SERVER STATE LISTENER OPEN START;
ELSE
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
END IF
ELSIF bListening THEN
eStep := SERVER STATE REMOTE CLIENTS_ COMM;
END IF

SERVER STATE LISTENER OPEN_START:
fbConnectTON (IN := TRUE, PT := PLCPRJ_RECONNECT TIME)8
IF fbConnectTON.Q THEN
fbConnectTON(IN := FALSE);
fbListen(bExecute := FALSE);
fbListen (sLocalHost:= sLocalHost,
nLocalPort:= nLocalPort,
bExecute := TRUE);
eStep := SERVER STATE LISTENER OPEN WAIT;
END IF

SERVER STATE LISTENER OPEN WAIT:
fbListen (bExecute := FALSE);
IF NOT fbListen.bBusy THEN
IF NOT fbListen.bError THEN

bListening := TRUE;

hListener := fbListen.hListener;

eStep := SERVER STATE IDLE;

LogMessage ('LISTENER socket OPENED!', hListener);
ELSE

LogError('FB SocketListen', fblListen.nErrId);

nErrId := fblListen.nErrId;

eStep := SERVER STATE ERROR;
END IF

END IF

SERVER STATE REMOTE CLIENTS_ COMM:
eStep := SERVER STATE IDLE;
nAcceptedClients := 0;
FOR i:= 1 TO MAX CLIENT CONNECTIONS DO
fbRemoteClient[1] (hListener := hlListener, bEnable := TRUE);
IF NOT fbRemoteClient[i].bBusy AND fbRemoteClient[i].bError THEN (*FB SocketAccept
returned error!*)
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
EXIT;
END IF
(* count the number of connected remote clients *)
IF fbRemoteClient[i].bAccepted THEN
nAcceptedClients := nAcceptedClients + 1;
END IF
END FOR

SERVER STATE REMOTE_CLIENTS_ CLOSE:

nAcceptedClients := 0;
eStep := SERVER STATE LISTENER CLOSE START; (* close listener socket too *)
FOR i:= 1 TO MAX CLIENT CONNECTIONS DO
fbRemoteClient[i] (bEnable := FALSE); (* close all remote client (accepted) sockets *)

(* check if all remote client sockets are closed *)
IF fbRemoteClient[i].bAccepted THEN

eStep := SERVER STATE REMOTE CLIENTS CLOSE; (* stay here and close all remote client
s first *)
nAcceptedClients := nAcceptedClients + 1;
END IF

END FOR

SERVER STATE LISTENER CLOSE_START:

fbClose (bExecute := FALSE);

fbClose (hSocket := hListener,
bExecute:= TRUE) ;

eStep := SERVER STATE LISTENER CLOSE WAIT;

TS6310 Version: 1.3 61

Samples

BECKHOFF

SERVER STATE LISTENER CLOSE WAIT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN

LogMessage ('LISTENER socket CLOSED!', hListener);

bListening := FALSE;

MEMSET (ADR (hListener), 0, SIZEOF (hListener));

IF fbClose.bError THEN

LogError ('FB SocketClose (listener)',
nErrId := fbClose.nErrId;
eStep := SERVER STATE ERROR;
ELSE
bBusy := FALSE;
bError := FALSE;
nErrId := 0;
eStep := SERVER STATE IDLE;
END IF

END IF

SERVER STATE ERROR:

bError := TRUE;
IF bListening THEN
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
ELSE
bBusy := FALSE;
eStep := SERVER STATE IDLE;
END IF
END_CASE

Also see about this
FB_SocketListen [22]
FB_SocketClose [19]
FB_RemoteClient [62]

8.1.1.3.2 FB_RemoteClient
FB_RemoteClient

—hListener bAccepted—
—bEnakle hSocket—
bBusy—
bLErrar—
nErD—
sFromClient—

fbClose

.nErrId);

If the bEnable input is set, an attempt is made to accept the connection request of a remote client, once the
PLCPRJ_ACCEPT_POOLING_TIME has elapsed. The data exchange with the remote client was

encapsulated in a separate function block (FB_ServerDataExcha [P_64]). Once the connection was

established successfully, the instance is activated via the FB_ServerDataExcha function block. In the event

of an error, the accepted connection is closed, and a new connection is established.

Interface
FUNCTION_ BLOCK FB_RemoteClient
VAR INPUT
hListener : T _HSOCKET;
bEnable : BOOL;
END VAR
VAR OUTPUT
bAccepted : BOOL;
hSocket : T HSOCKET;
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
sFromClient : T MaxString;
END VAR
VAR
fbAccept : FB SocketAccept := (sSrvNetID := ''
fbClose : FB SocketClose := (sSrvNetID

fbServerDataExcha FB_ServerDataExcha;

, tTimeout

:= ''", tTimeout :

DEFAULT ADS TIMEOUT) ;
DEFAULT ADS TIMEOUT);

62 Version: 1.3

TS6310

BEGKHOFF Samples

fbAcceptTON : TON := (PT := PLCPRJ ACCEPT POLLING TIME) ;
eStep : E ClientSteps;
END_VAR

Implementation
CASE eStep OF

CLIENT STATE IDLE:
IF bEnable XOR bAccepted THEN
bBusy := TRUE;
bError FALSE;
nErrId 0;
sFromClient := '';
IF bEnable THEN
fbAcceptTON(IN := FALSE);
eStep := CLIENT STATE CONNECT START;
ELSE
eStep := CLIENT STATE CLOSE START;
END IF
ELSIF bAccepted THEN
eStep := CLIENT STATE DATAEXCHA START;
ELSE
bBusy := FALSE;
END IF

CLIENT STATE CONNECT START:

fbAcceptTON(IN := TRUE, PT := PLCPRJ_ACCEPT POLLING TIME)8
IF fbAcceptTON.Q THEN

fbAcceptTON(IN := FALSE);

fbAccept (DbExecute := FALSE);

fbAccept (hListener := hListener,

bExecute:= TRUE) ;

eStep := CLIENT STATE CONNECT WAIT;

END IF

CLIENT STATE CONNECT WAIT:
fbAccept (bExecute := FALSE);
IF NOT fbAccept.bBusy THEN
IF NOT fbAccept.bError THEN
IF fbAccept.bAccepted THEN
bAccepted := TRUE;
hSocket := fbAccept.hSocket;
LogMessage ('REMOTE client ACCEPTED!', hSocket);
END IF
eStep := CLIENT STATE IDLE;
ELSE
LogError ('FB_SocketAccept', fbAccept.nErrId);
nErrId := fbAccept.nErrId;
eStep := CLIENT STATE ERROR;
END IF
END IF

CLIENT STATE DATAEXCHA START:

fbServerDataExcha (bExecute := FALSE);

fbServerDataExcha (hSocket := hSocket,
bExecute := TRUE);

eStep := CLIENT STATE DATAEXCHA WAIT;

CLIENT STATE DATAEXCHA WAIT:
fbServerDataExcha (bExecute := FALSE, sFromClient=>sFromClient);
IF NOT fbServerDataExcha.bBusy THEN
IF NOT fbServerDataExcha.bError THEN

eStep := CLIENT STATE IDLE;
ELSE
(* possible errors are logged inside of fbServerDataExcha function block *)
nErrId := fbServerDataExcha.nErrID;
eStep := CLIENT STATE ERROR;
END IF

END IF

CLIENT STATE CLOSE START:

fbClose (bExecute := FALSE);

fbClose (hSocket:= hSocket,
bExecute:= TRUE) ;

eStep := CLIENT STATE CLOSE WAIT;

TS6310 Version: 1.3 63

Samples

BECKHOFF

CLIENT STATE CLOSE WAIT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN

LogMessage ('REMOTE client CLOSED!', hSocket);
bAccepted := FALSE;
MEMSET (ADR(hSocket), 0, SIZEOF(hSocket));

IF fbClose.bError THEN

LogError('FB SocketClose (remote client)',
nErrId := fbClose.nErrId;
eStep := CLIENT STATE ERROR;

ELSE
bBusy := FALSE;
bError := FALSE;
nErrId := 0;
eStep := CLIENT STATE IDLE;

END IF

END IF

CLIENT STATE ERROR:

bError := TRUE;
IF bAccepted THEN
eStep := CLIENT STATE CLOSE START;
ELSE
eStep := CLIENT STATE IDLE;
bBusy := FALSE;
END IF
END_CASE

Also see about this
FB_SocketAccept [23]
FB_SocketClose [19]
FB_ServerDataExcha [64]

8.1.1.3.3 FB_ServerDataExcha
FB_ServerDataExcha
“hSocket bBusy—
“bExecute bErrar—
nErD—
sFromClient—

fbClose.nErrId);

In the event of an rising edge at the bExecute input, a zero-terminated string is read by the remote client and
returned to the remote client, if zero termination was detected. The function block will try reading the data

until zero termination was detected in the string received. Reception is aborted in the event of an error, and if
no new data were received within the PLCPRJ_RECEIVE_TIMEOUT timeout time. Data are attempted to be
read again after a certain delay time, if no new data could be read during the last read attempt. This reduces

the system load.

Interface
FUNCTION BLOCK FB ServerDataExcha
VAR INPUT
hSocket : T HSOCKET;
bExecute : BOOL;
END VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
sFromClient : T MaxString;
END VAR
VAR
fbSocketReceive FB SocketReceive := (sSrvNetId := '', tTimeout := DEFAULT ADS TIMEOUT) ;
fbSocketSend FB SocketSend := (sSrvNetId := '', tTimeout := DEFAULT ADS TIMEOUT);
eStep : E DataExchaSteps;
RisingEdge : R _TRIG;
fbReceiveTON : TON;
fbDisconnectTON : TON;
cbReceived, startPos, endPos, idx : UDINT;
64 Version: 1.3 TS6310

BECKHOFF

Samples

cbFrame UDINT;
rxBuffer ARRAY[O..MAX_PLCPRJ_RXBUFFER_SIZE
END_VAR

Implementation

RisingEdge (CLK
CASE eStep OF

:= bExecute);

DATAEXCHA STATE IDLE:
IF RisingEdge.Q THEN

1 OF BYTE;

s); (* disable timeout check first *)
(* receive first request immediately ¥*)

bBusy = TRUE;

bError = FALSE;

nErrId = 0;

fbDisconnectTON(IN := FALSE, PT := T#0

fbReceiveTON(IN := FALSE, PT := T#0s);

eStep = DATAEXCHA STATE RECEIVE_ START;
END TF

DATAEXCHA STATE RECEIVE START:
fbReceiveTON(IN TRUE
IF fbReceiveTON.Q THEN

Receive remot

(*
)i

fbReceiveTON(IN := FALSE);

fbSocketReceive (bExecute := FALSE);

fbSocketReceive (hSocket := hSocket,
pDest = ADR(rxBuffer) + cb
cbLen = SIZEOF (rxBuffer) -
bExecute = TRUE) ;

eStep := DATAEXCHA STATE RECEIVE WAIT;

END IF

DATAEXCHA STATE RECEIVE WAIT:
fbSocketReceive (bExecute FALSE
IF NOT fbSocketReceive.bBusy THEN
IF NOT fbSocketReceive.bError THEN

)i

IF (fbSocketReceive.nRecBytes > 0)
startPos = cbReceived; (
endPos := cbReceived +
(* rxBuffer array index of last data byte *)
cbReceived = cbReceived +

(* calculate the number of received data bytes *)
cbFrame 0; (* reset frame

IF cbReceived < SIZEOF(sFromCl

fbReceiveTON (IN FALSE,

ead (polling) speed ¥*)

fbDisconnectTON(IN FALS

(* bytes received => disable timeout check *)

(* search for string end de

e client data *)

Received,
cbReceived,

THEN (* bytes received ¥*)

* rxBuffer array index of first data byte *)

fbSocketReceive.nRecBytes - 1;
fbSocketReceive.nRecBytes;
length *)
ient) THEN(* no overflow *)
PT := T#0s); (* bytes received => increase the r
E, PT := PLCPRJ RECEIVE TIMEOUT);

limiter *)

FOR idx := startPos TO endPos BY 1 DO
IF rxBuffer[idx] = 0 THEN(* string end delimiter found *)
cbFrame := idx + 1;
(* calculate the length of the received string (inclusive the end delimiter) *)
MEMCPY (ADR(sFromClient), ADR(rxBuffer), cbFrame);
(* copy the received string to the output variable (inclusive the end delimiter) *)
MEMMOVE (ADR(rxBuffer), ADR(rxBuffer[cbFrame]), cbReceived -
cbFrame); (* move the reamaining data bytes *)
cbReceived := cbReceived - cbFrame;
(* recalculate the reamaining data byte length *)
eStep := DATAEXCHA STATE SEND START;
EXIT;
END IF

END FOR

ELSE (* there is no more free re
rminated *)

ad buffer space => the answer string should be te
(remote client)', PLCPRJ ERROR RECEIVE BUFFER O

IVE BUFFER OVERFLOW; (* buffer overflow !*)

LogError('FB SocketReceive
VERFLOW) ;

nErrId := PLCPRJ ERROR RECE

eStep := DATAEXCHA STATE ERROR;

END IF

ELSE (* no bytes received *)

fbReceiveTON(IN := FALSE, PT := PLCPRJ RECEIVE POLLING TIME) ;
(* no bytes received => decrease the read (polling) speed ¥*)
fbDisconnectTON(IN := TRUE, PT := PLCPRJ RECEIVE TIMEOUT);
TS6310 Version: 1.3 65

Samples BEGKHOFF

(* no bytes received => enable timeout check¥)
IF fbDisconnectTON.Q THEN (* timeout error¥*)
fbDisconnectTON(IN := FALSE);
LogError ('FB SocketReceive (remote client)', PLCPRJ ERROR RECEIVE TIMEOUT

nErrID := PLCPRJ ERROR RECEIVE TIMEOUT;

eStep := DATAEXCHA STATE ERROR;
ELSE (* repeat reading *)

eStep := DATAEXCHA STATE RECEIVE START; (* repeat reading ¥*)
END IF

END IF
ELSE (* receive error *)
LogError ('FB SocketReceive (remote client)', fbSocketReceive.nErrId);

nErrId := fbSocketReceive.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE SEND_ START:

fbSocketSend (bExecute := FALSE);

fbSocketSend (hSocket := hSocket,
pSrc := ADR(sFromClient),
cbLen := LEN(sFromClient) + 1,

(* string length inclusive the zero delimiter ¥*)
bExecute:= TRUE) ;
eStep := DATAEXCHA STATE SEND WAIT;

DATAEXCHA STATE SEND WAIT:
fbSocketSend (bExecute := FALSE);
IF NOT fbSocketSend.bBusy THEN
IF NOT fbSocketSend.bError THEN
bBusy := FALSE;

eStep := DATAEXCHA STATE IDLE;
ELSE
LogError ('fbSocketSend (remote client)', fbSocketSend.nErrId);
nErrId := fbSocketSend.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE ERROR:

bBusy := FALSE;
bError := TRUE;
cbReceived := 0; (* reset old received data bytes *)
eStep := DATAEXCHA STATE IDLE;
END CASE

Also see about this
FB_SocketReceive [25]
FB_SocketSend [24]

8.1.14 .NET sample client

This project example shows how a client for the PLC TCP/IP server can be realised by writing a .NET4.0
application using C#.

66 Version: 1.3 TS6310

BECKHOFF Sampies
[™
i TCP/P Sample Client NS lecului=i

Host: 127.0.01 Port: |200
Enable Disable
Send to host:
Received from host:

28.06.2012 12:32:05: Hello World
28.06.2012 12:32:12: How are you doing?

Status messages:

28.06.2012 12:31:57: Connectection to host established!
28.06 2012 12:32:04: Message successfully sent!
28.06.2012 12:32:11: Message successfully sent!

This sample client makes use of the .NET libraries System.Net and System.Net.Sockets which enable a
programmer easy access to socket functionalities. By pressing the button "Enable", the application attempts
to cyclically (depending on the value of TIMERTICK in [ms]) establish a connection with the server. If
successful, a string with a maximum length of 255 characters can be sent to the server via the "Send" button.
The server will then take this string and send it back to the client. On the server side, the connection is
closed automatically if the server was unable to receive new data from the client within a defined period, as
specified by PLCPRJ_RECEIVE_TIMEOUT in the server sample - by default 50 seconds.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Net;

using System.Net.Sockets;

JF FEH R R R R

* This sample TCP/IP client connects to a TCP/IP-Server, sends a message and waits for the

* response. It is being delivered together with our TCP-Sample, which implements an echo server
* in PLC.
O R R R ~/
namespace TcpIpServer SampleClient

{

public partial class Forml : Form

{
VA
* Constants

WREEE SRR R E R R R R R RS EREEEEE R R R RS RS EEEE R E L L L
private const int RCVBUFFERSIZE = 256; // buffer size for receive buffer

TS6310 Version: 1.3 67

Samples BEGKHOFF

private const string DEFAULTIP = "127.0.0.1";
private const string DEFAULTPORT = "200";
private const int TIMERTICK = 100;

VAR EEE TS S S S S S S EEEEEEEEE S S S EEEEEEEEEEEEEEEEE S L L L LR
* Global variables

O R R R ~/
private static bool _isConnected; // signals whether socket connection is active or not
private static Socket _socket; // object used for socket connection to TCP/IP-Server
private static IPEndPoint ipAddress; // contains IP address as entered in text field
private static byte[] rcvBuffer; // receive buffer used for receiving response from TCP/IP-

Server

public Forml ()

{

InitializeComponent () ;

}

private void Forml Load(object sender, EventArgs e)

{
_rcvBuffer = newbyte[RCVBUFFERSIZE];

/
R iisdisaiisssiatissssaiisasaiisndsatianisatisadatisgiatisasatisassatisasatisaisiatistii
* Prepare GUI
FORHEA AR R
*/
cmd_send.Enabled = false;
cmd_enable.Enabled = true;
cmd_disable.Enabled = false;
rtb_rcvMsg.Enabled = false;
rtb sendMsg.Enabled = false;
rtb_statMsg.Enabled = false;
txt host.Text = DEFAULTIP;
txt port.Text = DEFAULTPORT;

timerl.Enabled = false;
timerl.Interval = TIMERTICK;
_isConnected = false;

}

private void cmd enable Click(object sender, EventArgs e)
{
/
X HEH AR AR A A A R R
* Parse IP address in text field, start background timer and prepare GUI
B
*/
try
{
_1pAddress = newIPEndPoint (IPAddress.Parse (txt host.Text), Convert.ToInt32 (txt port.Text

timerl.Enabled = true;
cmd_enable.Enabled = false;
cmd_disable.Enabled = true;
rtb_sendMsg.Enabled = true;
cmd_send.Enabled = true;
txt host.Enabled = false;
txt port.Enabled = false;
rtb sendMsg.Focus () ;

}

catch (Exception ex)

{
MessageBox.Show ("Could not parse entered IP address. Please check spelling and retry. "

+ ex);

}
/F HEFH R AR AR A R AR R R R R R R R R R R R R R R R R R R

* Timer periodically checks for connection to TCP/IP-Server and reestablishes if not connected
* O R R ~/
private void timerl Tick(object sender, EventArgs e)
{
if (! _isConnected)
connect () ;

}

private void connect ()
{
/
XORHAA A A R R R

68 Version: 1.3 TS6310

BEGKHOFF Samples

* Connect to TCP/IP-Server using the IP address specified in the text field
* HEE AR A A A R R R R R R R

*/
try
{
_socket = newSocket (AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);
_socket.Connect (_ipAddress) ;
_isConnected = true;
if (_socket.Connected)
rtb statMsg.AppendText (DateTime.Now.ToString() + ": Connectection to host establishe
d!'\n");
else
rtb statMsg.AppendText (DateTime.Now.ToString() + ": A connection to the host could n

ot be established!\n");
}
catch (Exception ex)
{

MessageBox.Show ("An error occured while establishing a connection to the server: " + ex)

}

private void cmd send Click(object sender, EventArgs e)
{
/
KRR A A R
* Read message from text field and prepare send buffer, which is a byte[] array. The last
* character in the buffer needs to be a termination character, so that the TCP/IP-
Server knows
* when the TCP stream ends. In this case, the termination character is '0'.
XORHAA AR AR AR AR AR A A A A R
*/
ASCIIEncoding enc = new ASCIIEncoding();
byte[] tempBuffer = enc.GetBytes(rtb sendMsg.Text);
byte[] sendBuffer = new byte[tempBuffer.Length + 1];
for (int i = 0; i < tempBuffer.Length; i++)
sendBuffer[i] = tempBuffer[i];
sendBuffer |[tempBuffer.Length] = 0;

/

R E A A R R A R R
* Send buffer content via TCP/IP connection

*ORAH AR R R R R R R A R R R R R R R R

*/

try

{
int send = socket.Send(sendBuffer);
if (send == 0)

throw new Exception () ;

else
{
/

R ER A A R R
* As the TCP/IP-
Server returns a message, receive this message and store content in receive buffer.
* When message receive is complete, show the received message in text field.
* R ER A A R R
#H#44 </
rtb statMsg.AppendText (DateTime.Now.ToString() + ": Message successfully sent!\n");
IAsyncResult asynRes = socket.BeginReceive(rcvBuffer, 0, 256, SocketFlags.None, nu
11, null);
if (asynRes.AsyncWaitHandle.WaitOne())
{
int res = socket.EndReceive (asynRes);
char[] resChars = newchar[res + 1];
Decoder d = Encoding.UTF8.GetDecoder () ;
int charLength = d.GetChars(rcvBuffer, 0, res, resChars, 0, true);
String result = newString (resChars) ;
rtb_rcvMsg.AppendText("\n" + DateTime.Now.ToString() + ": " + result);
rtb_sendMsg.Clear () ;

}
}
catch (Exception ex)
{
MessageBox.Show ("An error occured while sending the message: " + ex);
}
}

private void cmd disable Click(object sender, EventArgs e)

TS6310 Version: 1.3 69

Samples BEGKHOFF

{

/
XA H A A A A A R R A R A R R R R R
* Disconnect from TCP/IP-Server, stop the timer and prepare GUI
* HEHER AR R R R R R R
%/
timerl.Enabled = false;
__socket.Disconnect (true);
if (! socket.Connected)
{
_isConnected = false;
cmd _disable.Enabled = false;
cmd_enable.Enabled = true;
txt host.Enabled = true;
txt port.Enabled = true;
rtb_sendMsg.Enabled = false;
cmd_send.Enabled = false;
rtb statMsg.AppendText (DateTime.Now.ToString() + ": Connectection to host closed!\n") ;
rtb rcvMsg.Clear();
rtb_statMsg.Clear();

8.1.2 UDP example

The following example shows the implementation of a simple peer-to-peer application in the PLC. The PLC
application presented can send a test string to a remote PC and at the same time receive test strings from a
remote PC. The test strings are displayed in a message box on the monitor of the target computer. A simple
implementation of a suitable communication partner in .NET is also presented. The example can be used as
a basis for realizing more complex implementations.

System requirements
» TwinCAT v2.8 or higher. Level: TwinCAT PLC as a minimum.

* Installed TwinCAT TCP/IP connection server (v1.0.0.31 or higher). If two PCs are used for the test, the
TwinCAT TCP/IP Connection Server should be installed on both PCs.

» TwinCAT PLC library Tcplp.Lib (v1.0.4 or higher).

Project sources

The sources of the two PLC devices only differ in terms of different IP addresses of the remote
communication partners.

» PLC project: https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383890443/.zip
« PLC project: https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383891851/.zip
* .NET: https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383893259/.zip

Project description
« peer-to-peer PLC application [P 73]
» .NET communication partner for the PLC [P 77]
+ Testing the applications [P 72]

Auxiliary functions in the project example

In the example several functions, constants and function blocks are used, which are briefly described below:

FUNCTION BLOCK FB Fifo
VAR INPUT

new : ST FifoEntry;
END_VAR
VAR OUTPUT

bOk : BOOL;

old : ST FifoEntry;
END_VAR

70 Version: 1.3 TS6310

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383890443.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383891851.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383893259.zip

BECKHOFF Samples

A simple Fifo function block. One instance of this block is used as "send Fifo", another one as "receive Fifo".
The messages to be sent are stored in the send Fifo, the received messages are stored in the receive Fifo.
The bOk output variable is set to FALSE if errors occurred during the last action (AddTail or RemoveHead)
(Fifo empty or overfilled).

A Fifo entry consists of the following components:

TYPE ST FifoEntry :

STRUCT
sRemoteHost : STRING(15); (* Remote address. String containing an (Ipv4) Internet Protocol
dotted address. *)
nRemotePort : UDINT; (* Remote Internet Protocol (IP) port. *)
msg : STRING; (* Udp packet data *)
END_ STRUCT
END TYPE

FUNCTION LogError : DINT

LOGERROR

—msg : STRIMG{30) LogError: DIMNT—
—{nErrld : DWORD

The function writes a message with the error code into the log book of the operating system (Event Viewer).
The global variable bLogDebugMessages must first be set to TRUE.

FUNCTION LogMessage : DINT

LOGMESSAGE

—msg STRIMGE0) Loghessane : DINT—
—{hSocket: T_HSOCKET

The function writes a message into the log book of the operating system (Event Viewer) if a new socket was
opened or closed. The global variable bLogDebugMessages must first be set to TRUE.

FUNCTION SCODE CODE : DWORD

SCODE_CODE

—5c : UDINT SCODE_CODE : DWORD—

The function masks the lower 16bits of a Win32 error code returns them.

Global constants/variables

Name Default Description
value

g_sTclpConnSvrAddr " Network address of the TwinCAT
TCP/IP Connection Server. Default:
Empty string (the server is located on
the local PC);

bLogDebugMessages TRUE Activates/deactivates writing of
messages into the log book of the
operating system;

PLCPRJ_ERROR_SENDFIFO_OVERFLOW 16#8103 Sample project error code: The send
Fifo is full.
PLCPRJ_ERROR_RECFIFO_OVERFLOW 16#8104 Sample project error code: The

receive Fifo is full.

TS6310 Version: 1.3 71

Samples BEGKHOFF

8.1.21 Testing the peer-to-peer applications

The test requires two PCs. Alternatively, the test may be carried out with two runtime systems on a single
PC. The constants with the port numbers and the IP addresses of the communication partners must be
modified accordingly.

Example test configuration with 2 PCs:
Device A is located on the local PC and has the IP address '172.16.2.209'
Device B is located on the remote PC and has the IP address '172.16.6.195'

Testing the PLC devices

1. Open the https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383890443/.zip on the local
PC. The constant REMOTE_HOST _IP in MAIN has to be adapted to the real IP address of your remote
system (in our example: '172.16.6.195'"). Load the project into the PLC runtime system. Start the PLC.

2. Local PC: In online mode, write the value TRUE to the boolean variable bSendOnceToltself in MAIN.
Shortly afterwards, a message box with the test string should appear. The UDP data were sent to the local
port and IP address.

o e re e iver g

o010 = sendToEntry

oot = entryReceivedFrom

o012 tmp = 'RECEINVED from: 172.16.2.209 Port: 1001, msa: %s'

0013 hSendOnceToltzelf =
0014 hSendOnceToRemote =

0014
0016 _
o017 TwinCAT PLC Seryer § El
o018
IF hCloseAll THE @ RECEIVED from: 172.16.2.209, Port: 1001, msg: Hello itselft | BCl0S
bhCloseAll =F hilos
fhSocketClos o_sTe
ELSE
fhSocketClos
EMD_IF

3. Remote PC: Open the https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383891851/.zip
on the remote PC. The constant REMOTE_HOST _IP in MAIN has to be adapted to the IP address of your
local PC (in our example: '172.16.2.209"). Load the project into the PLC runtime system. Start the PLC.

4. Remote PC: In online mode, write the value TRUE to the boolean variable bSendOnceToRemote in
MAIN. Shortly afterwards, a message box with the test string should appear on the local PC.

- —— e —— —— e a = e e e e =

0013 hSendOnceToltzelf = [
nnt4
nnt1a
0016
ooty
nnta
o014
anzo
0021
nnzz

00733

ﬁIF hCloseAll THEM FCOn PLC reset or program download close all old connections *f k

Test with the Visual Basic application

Here you can unpack the Visual Basic sources: https://infosys.beckhoff.com/content/1033/tcpipserver/
Resources/11383894667/.zip.

5. Local PC: Start the Visual Basic application (PeerToPeer.exe).

72 Version: 1.3 TS6310

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383890443.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383891851.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383894667.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383894667.zip

BECKHOFF Samples

6. Local PC: In the VB dialog, the IP address of the remote host has to be adapted to the real IP address of
the remote PC (in our example '172.16.6.195").

. Peer-to-peer -0l x|

172 16.6.195[1001]<< T est meszage

Local host: |1 72162 209 Local port: |1 onz
Remate ozt |-|;-'2_1 EE195 Remate part: |-||:||:|-|
Text to zend:

ITest meszags Send |

7. Local PC: Click the send button. A test string is sent to the remote device with port number 1001. In our
case it is the PLC application.

8. Remote PC: Shortly afterwards, a message box with the test string should appear.

L]
,‘_]:) RECEIVED from: 172.16.2.209, Port: 1002, msg: Test message!

8.1.2.2 PLC Client/Server

8.1.2.21 UDP example: peer-to-peer PLC devices A and B

Here you can unpack the complete sources: https://infosys.beckhoff.com/content/1033/tcpipserver/
Resources/11383890443/.zip, and https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/
11383891851/.zip.

The required functionality was encapsulated in the function block FB_PeerToPeer. Each of the
communication partners uses an instance of the FB_PeerToPeer function block. The block is activated
through a rising edge at the bEnable input. A new UDP socket is opened, and data exchange commences.
The socket address is specified via the variables sLocalHost and nLocalPort. A falling edge stops the data
exchange and closes the socket. The data to be sent are transferred to the block through a reference
(VAR_IN_OUT) via the variable sendFifo. The data received are stored in the variable receiveFifo.

FUNCTION_BLOCK FB_PeerToPeer

FB_FeerToPeer

—sLocalHost hCreated—
—nLocalPaort hBusy—
—khEnahle hErrar—
—sendFifo = nErtldf—

receiveFifo =

TS6310 Version: 1.3 73

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383890443.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383890443.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383891851.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383891851.zip

BECKHOFF

Samples

Interface

VAR IN OUT
sendFifo : FB Fifo;
receiveFifo : FB Fifo;

END VAR

VAR_INPUT
sLocalHost : STRING(15);
nLocalPort : UDINT;
bEnable : BOOL;

END VAR

VAR OUTPUT
bCreated : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

VAR
fbCreate : FB_SocketUdpCreate;
fbClose : FB_SocketClose;
fbReceiveFrom : FB_SocketUdpReceiveFrom;
fbSendTo : FB SocketUdpSendTo;
hSocket : T HSOCKET;
eStep : E ClientServerSteps;
sendTo : ST _FifoEntry;
receivedFrom : ST FifoEntry;

END VAR

Implementation

CASE eStep OF
UDP_STATE IDLE:
IF bEnable XOR bCreated THEN

bBusy := TRUE;
bError := FALSE;
nErrid := 0;
IF bEnable THEN

eStep := UDP_STATE CREATE START;
ELSE

eStep := UDP_STATE CLOSE START;
END IF

ELSIF bCreated THEN
sendFifo.RemoveHead (old => sendTo);
IF sendFifo.bOk THEN
eStep := UDP_STATE SEND START;
ELSE (* empty ¥*)
eStep := UDP_STATE RECEIVE START;
END IF
ELSE
bBusy := FALSE;
END IF

UDP_STATE CREATE START:

fbCreate(DbExecute := FALSE);
fbCreate (sSrvNetId:= g sTcIpConnSvrAddr,
sLocalHost:= sLocalHost,

nLocalPort:= nlLocalPort,
bExecute:= TRUE) ;
eStep := UDP_STATE CREATE WAIT;

UDP_STATE CREATE WAIT:
fbCreate (bExecute := FALSE);
IF NOT fbCreate.bBusy THEN
IF NOT fbCreate.bError THEN

bCreated := TRUE;

hSocket := fbCreate.hSocket;

eStep := UDP_STATE IDLE;

LogMessage ('Socket opened (UDP)!', hSocket
ELSE

LogError ('FB SocketUdpCreate', fbCreate.nErrId

nErrId := fbCreate.nErrId;

eStep := UDP_STATE ERROR;
END IF

END IF

UDP_STATE SEND_START:
fbSendTo (bExecute := FALSE);
fbSendTo (sSrvNetId:=g sTcIpConnSvrAddr,
sRemoteHost := sendTo.sRemoteHost,
nRemotePort := sendTo.nRemotePort,

74 Version: 1.3

TS6310

BECKHOFF

Samples

hSocket:= hSocket,
pSrc:= ADR(sendTo.msg),
cbLen:= LEN(sendTo.msg) + 1,
bExecute:= TRUE) ;
eStep := UDP_STATE SEND WAIT;

UDP_STATE SEND WAIT:
fbSendTo (bExecute := FALSE);
IF NOT fbSendTo.bBusy THEN
IF NOT fbSendTo.bError THEN

(* include the end delimiter ¥*)

(UDP) ', fbSendTo.nErrId);

eStep := UDP_STATE RECEIVE START;
ELSE
LogError ('FB SocketSendTo
nErrId := fbSendTo.nErrId;
eStep := UDP_STATE ERROR;
END IF

END IF

UDP_STATE RECEIVE START:

MEMSET (ADR(receivedFrom), 0, SIZEOF (
fbReceiveFrom(bExecute := FALSE);
fbReceiveFrom(

hSocket:= hSocket,

pDest:= ADR(receivedFrom.msg),
cbLen:= SIZEOF(receivedFrom.msg) - 1, (*without string delimiter *)

bExecute:= TRUE) ;
eStep := UDP_STATE RECEIVE WAIT;

UDP STATE RECEIVE WAIT:
fbReceiveFrom(bExecute := FALSE);

IF NOT £

bReceiveFrom.bBusy THEN

IF NOT fbReceiveFrom.bError THEN

ELSI

ELSE

IF fbReceiveFrom.nRecBytes >

receivedFrom.nRemotePort
receivedFrom. sRemoteHost
receiveFifo.AddTail (new :

IF NOT receiveFifo.bOk THEN (* Check for fifo overflow *)
LogError ('Receive fifo overflow!',

END IF
END IF
eStep := UDP_STATE IDLE;

receivedFrom));

sSrvNetId:=g sTcIpConnSvrAddr,

0 THEN

fbReceiveFrom.nRemotePort;
fbReceiveFrom.sRemoteHost;
receivedFrom) ;

F fbReceiveFrom.nErrId = 16#80072746 THEN

LogError ('The connection is reset by remote side.',

eStep := UDP_STATE IDLE;

LogError ('FB SocketUdpReceiveFrom (UDP client/server)',

nErrId := fbReceiveFrom.nErrId;

eStep := UDP_STATE ERROR;

END IF

END IF

UDP_STATE CL
fbClose (
fbClose (

hSoc
bExe
eStep :=

UDP_STATE CL
fbClose (
IF NOT f

OSE_START:
bExecute := FALSE);

sSrvNetId:= g sTcIpConnSvrAddr,

ket:= hSocket,
cute:= TRUE) ;
UDP_STATE CLOSE WAIT;

OSE_WAIT:
bExecute := FALSE);
bClose.bBusy THEN

LogMessage ('Socket closed (UDP)!',

bCre
MEMS
IF f

ELSE

END_
END IF

UDP_STATE ER
bError
IF bCrea

ated := FALSE;

hSocket);

ET (ADR (hSocket), 0, SIZEOF (hSocket)):;

LogError ('FB_SocketClose (UDP)', fbClose.nErrId);

bClose.bError THEN
nErrId := fbClose.nErrId;
eStep := UDP_STATE_ERROR;
bBusy := FALSE;

bError := FALSE;

nErrId := 0;

eStep := UDP_STATE IDLE;
IF

ROR: (* Error step *)

:= TRUE;

ted THEN

eStep := UDP_STATE CLOSE START;

PLCPRJ ERROR RECFIFO OVERFLOW) ;

fbReceiveFrom.nErrId);

fbReceiveFrom.nErrId) ;

TS6310

Version: 1.3

75

Samples BEGKHOFF

ELSE
bBusy := FALSE;
eStep := UDP_STATE IDLE;
END IF
END CASE

MAIN program

Previously opened sockets must be closed after a program download or a PLC reset. During PLC start-up,
this is done by calling an instance of the FB SocketCloseAll [»_20] function block. If one of the variables
bSendOnceToltself or bSendOnce ToRemote has an raising edge, a new Fifo entry is generated and stored
in the send Fifo. Received messages are removed from the receive Fifo and displayed in a message box.

PROGRAM MAIN
VAR CONSTANT

LOCAL_HOST IP : STRING(15) ="y
LOCAL HOST PORT : UDINT = 1001;
REMOTE HOST IP : STRING(15) = '172.16.2.209"';
REMOTE HOST_ PORT : UDINT := 1001;

END_ VAR

VAR
fbSocketCloseAll : FB_SocketCloseAll;
bCloseAll : BOOL := TRUE;
fbPeerToPeer : FB_PeerToPeer;
sendFifo : FB Fifo;
receiveFifo : FB Fifo;
sendToEntry : ST FifoEntry;
entryReceivedFrom : ST FifoEntry;
tmp : STRING;
bSendOnceToItself : BOOL;
bSendOnceToRemote : BOOL;

END VAR

IF bCloseAll THEN (*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;

fbSocketCloseAll (sSrvNetId:= g sTcIpConnSvrAddr, bExecute:= TRUE, tTimeout:= T#10s);
ELSE

fbSocketCloseAll (bExecute:= FALSE) ;
END IF

IF NOT fbSocketCloseAll.bBusy AND NOT fbSocketCloseAll.bError THEN

IF bSendOnceToRemote THEN

bSendOnceToRemote := FALSE; (* clear flag *)
sendToEntry.nRemotePort = REMOTE HOST PORT; (* remote host port number*)
sendToEntry.sRemoteHost = REMOTE HOST IP; (* remote host IP address *
)
sendToEntry.msg := 'Hello remote host!'; (* message text¥*);
sendFifo.AddTail (new := sendToEntry); (* add new entry to the send queue*)
IF NOT sendFifo.bOk THEN (* check for fifo overflow*)
LogError('Send fifo overflow!', PLCPRJ ERROR SENDFIFO OVERFLOW) ;
END IF
END IF
IF bSendOnceTolItself THEN
bSendOnceToltself := FALSE; (* clear flag *)
sendToEntry.nRemotePort = LOCAL HOST PORT; (* nRemotePort == nLocalPort =>
send it to itself *)
sendToEntry.sRemoteHost := LOCAL HOST IP; (* sRemoteHost == sLocalHos
t =>send it to itself *)
sendToEntry.msg := 'Hello itself!'; (* message text*);
sendFifo.AddTail (new := sendToEntry); (* add new entry to the send queue*)
IF NOT sendFifo.bOk THEN (* check for fifo overflow*)
LogError('Send fifo overflow!', PLCPRJ ERROR SENDFIFO OVERFLOW) ;
END IF
END IF
(* send and receive messages *)
fbPeerToPeer (sendFifo := sendFifo, receiveFifo := receiveFifo, sLocalHost := LOCAL_HOST IP, nLocal
Port := LOCAL HOST PORT, bEnable := TRUE);

(* remove all received messages from receive queue *)
REPEAT
receiveFifo.RemoveHead(old => entryReceivedFrom) ;
IF receiveFifo.bOk THEN
tmp := CONCAT('RECEIVED from: ', entryReceivedFrom.sRemoteHost);
tmp CONCAT (tmp, ', Port: ');

76 Version: 1.3 TS6310

BEGKHOFF Samples

tmp := CONCAT(tmp, UDINT TO STRING(entryReceivedFrom.nRemotePort));
tmp := CONCAT(tmp, ', msg: %s');
ADSLOGSTR(ADSLOG MSGTYPE HINT OR ADSLOG MSGTYPE MSGBOX, tmp, entryReceivedFrom.msg);
END IF
UNTIL NOT receiveFifo.bOk
END_REPEAT

END_IF

Also see about this
FB_SocketUdpCreate [26]
FB_SocketClose [19]
FB_SocketUdpReceiveFrom [29]
FB_SocketUdpSendTo [27]
T_HSOCKET [33]

8.1.2.3 .NET Peer-to-Peer communication

This sample demonstrates how a .NET communication partner for PLC samples Peer-to-Peer device A or B
can be realized.

TwinCAT_Project9.PeerToPeerA.MAIN

Expression Type Value Prepared value
& LOCAL_HOST_IP STRING(15) 10.1.128.21' E - - 2)
& LOCAL HOST PORT UDINT @ o Clendatlen :
& REMOTE_HOST_IP STRING(15) 10112820 [
@ REMOTE HOST PORT UDINT 0 1002 28.06.2012 17:17:40: Hello remote host!

+ @ fbSocketCloseall FB_SocketClosesl
@ bClozeal BOOL FALSE

+ & fbPeerToPeer FB_PeerToPeer

¥ % sendfifo FB_Fifo Host: 127001 Pot: 1001

+ & receiveFifo FB_Fifa

+ & sendToEntry ST_FifoEntry Message: Send

+ @ entryReceivedFrom ST_FifoEntry
& tmp STRING " . o
% bSendOnceToltself BOOL
@ bSendOnceToRemaote BOOL FALSE

How it works

The sample uses the includes System.Net and System.Net.Sockets to implement a UDP client (class
UdpClient). While listening for incoming UDP packets in a background thread, a string can be sent to a
remote device by specifying its IP address and port number and clicking the "Send" button.

For a better understanding of this article, imagine the following setup:

» The PLC project Peer-to-Peer device A is running on a computer with IP address 10.1.128.21
« The .NET application is running on a computer with IP address 10.1.128.30

How to set up the PLC sample

This .NET sample may be used together with the PLC samples Peer-to-Peer device A or B. If you run the
application on separate computer than the PLC runtime, you need to configure IP addresses in both
applications according to the assumed specifications from above.

Setting Type Description

LOCAL_HOST _IP Global constant Needs to be set to 10.1.128.21 (IP of computer which
runs PLC)

LOCAL_HOST_PORT Global constant Set this constant to 1001 (default value)

TS6310 Version: 1.3 77

Samples BEGKHOFF

Setting Type Description

REMOTE_HOST _IP Global constant Needs to be set to 10.1.128.30 (IP of computer which
runs .NET sample)

REMOTE_HOST_PORT Global constant Set this constant to 1002 (default value)

bSendOnceToRemote Global variable If set to TRUE, a UDP packet will be send to
REMOTE_HOST _IP

How to set up the .NET sample

Setting Type Description

DEFAULTIP Global constant Will be used in text field "Host" as default value. Set
it to 10.1.128.21.

DEFAULTDESTPORT Global constant Will be used in text field "Port" as default value. Set
it to 1001.

DEFAULTOWNPORT Global constant Will be used by PLC sample in
REMOTE_HOST PORT. Set it to 1002.

DEFAULTSOURCEPORT Global constant Used as source port for sending out UDP packet.
Not important in this sample.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using System.Net;
using System.Net.Sockets;
using System.Threading;

namespace TcplIpServer SampleClientUdp
{

publicpartialclassForml : Form

{

/
O AEHE AR AR R AR A R A R R A R R A R R R R A R R R A R ®
onstants *AEE A A A A A R R A R R R R A
*/privateconststring DEFAULTIP = "127.0.0.1";

privateconstint DEFAULTDESTPORT = 1001; // Used as destination portprivateconstint DEFAULTOWNPOR
T = 1002; // Used for binding when listening for UDP messagesprivateconstint DEFAULTSOURCEPORT = 110
00; // Only used as source port when sending UDP messages/
SO 0 * G
lobal variables SO 3
#H##H#H####H */privatestaticUdpClient udpClient;

privatestaticIPEndPoint _ipAddress; // Contains IP address as entered in text fieldprivatestatic
Thread rcvThread; // Background thread used to listen for incoming UDP packetspublic Forml ()

{

InitializeComponent () ;

}

/
X OHAH AR A A A A A R A R R R R R * E
vent handler method called when button "Send" is pressed WSS EEE LR
C i A
privatevoid cmd send Click(object sender, EventArgs e)
{
byte[] sendBuffer = null;

/
SO 8
* Preparing UdpClient, connecting to UDP server and sending content of text field * HEHEEAE

FHEHHHH AR F AR A R R R R R Yty
{
_ipAddress = newIPEndPoint (IPAddress.Parse (txt host.Text), Convert.ToInt32(txt port.Text));
_udpClient = newUdpClient (DEFAULTSOURCEPORT) ;
_udpClient.Connect (_ipAddress);

sendBuffer = Encoding.ASCII.GetBytes (txt send.Text);

78 Version: 1.3 TS6310

BEGKHOFF Samples

_udpClient.Send(sendBuffer, sendBuffer.Length);

_udpClient.Close();
}

catch (Exception ex)

{

MessageBox.Show ("An unknown error occured: " + ex);
}
}
/
FORHAH A R R * K
vent handler method called when application starts RIS s s TR e LR

FEEEH AR R R 4 ¥ /privatevoid Forml Load (object sender, EventArgs e)
{
txt host.Text = DEFAULTIP;
txt port.Text = DEFAULTDESTPORT.ToString();
rtb rcv.Enabled = false;

/
RIS E SRR E RS RS RS EEEEEEEEEEEEEEEEEEEEEEEEEEE SR EEEEEEEEES
* Creating background thread which synchronously listens for incoming UDP packets * dRHAEAE

FHEf A F AR R R R R R R R </
_rcvThread = newThread (rcvThreadMethod) ;
_rcvThread.Start () ;

/
KRR R R R R R R R R R R R R * D
elegate, so that background thread may write into text field on GUI X FHAERAE A

B i i A
publicdelegatevoidrcvThreadCallback (string text);

/
R * M
ethod called by background thread RIS E R SRR R R SRR R RS E L LR
#H#dHHHF AR F A F SR HHE ¥ /privatevoid rcvThreadMethod ()

{

/
RIS E R R R R R R R R R RS R R SRR R R R SRR SRR SRR RS SR L L L
* Listen on any available local IP address and specified port (DEFAULTOWNPORT) * hHHERAESAE

A
byte[] rcvBuffer = null;
IPEndPoint ipEndPoint = newIPEndPoint (IPAddress.Any, DEFAULTOWNPORT) ;;
UdpClient udpClient = newUdpClient (ipEndPoint) ;

/
KRR A R R
* Continously start a synchronous listen for incoming UDP packets. If a packet has arrived,
* write its content to receive buffer and then into the text field. After that, start circle
* again. FORHHH AR R R R R R
#H######### */while (true)
{
rcvBuffer = udpClient.Receive (ref ipEndPoint); // synchronous call
rtb_rcv.Invoke (newrcvThreadCallback (this.AppendText), newobject[] { "\n" + DateTime.Now.ToSt
ring() + ": " + Encoding.ASCII.GetString(rcvBuffer) });
}
}

/
* HEH AR A A A A R R R R R R w Il
elper method for delegate *OHAH AR A R A A A R R R R R R R R R R
FHEFF A F A F A E A FEAHES ¥ /privatevoid AppendText (string text)
{
rtb rcv.AppendText (text);
}

/
X R = §
top background thread when application closes FORHHE AR R

FhEH AR AR AR R R R R R R R Y/

privatevoid Forml FormClosed(object sender, FormClosedEventArgs e)

{
_rcvThread.Abort () ;

TS6310 Version: 1.3 79

Samples BEGKHOFF

8.2 TcSocketHelper.lib examples

The examples presented here are based on the functionality offered by TcSocketHelper.Lib.

System requirements:

« TwinCAT version 2.10 Build 1331 (or higher)

» TwinCAT Connection Server v1.0.0.47 or higher installed on the client and server PC;
Communication settings used in the examples:

» PLC client application: Port and IP address of the remote server: 200, "127.0.0.1";

» PLC server application: Port and IP address of the local server: 200, "127.0.0.1";

To test the client and server application on two different PCs, you have to adjust the port address and the IP
address accordingly (use the PING command in the prompt to check the connection).

You can test the client and server with the default values on one PC by loading the client application into the
first PLC runtime system (801) and the server application into the second PLC runtime system (811).

The behaviour of the PLC project example is determined by the following constants.

Constant Value Description

PLCPRJ_MAX_ CONNECTIONS 5 Max. number of server->client
connections. A server can establish
connections to more than one client. A
client can establish a connection to only
one server at a time.

PLCPRJ_SERVER RESPONSE_TIMEOUT T#10s Max. delay time (timeout time) after which
a server should send a response to the
client.

PLCPRJ_CLIENT_SEND_CYCLE_TIME T#1s Cycle time based on which a client sends

send data (TX) to the server.
PLCPRJ_RECEIVER_POLLING_CYCLE_TIME T#200ms Cycle time based on which a client or
server polls for receive data (RX).
PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

The PLC examples define and use the following internal error codes:

Error code Value Description
PLCPRJ_ERROR_RECEIVE_BUFFER_OVERFL |16#8101 The internal receive buffer reports an
ow overflow.
PLCPRJ_ERROR_SEND BUFFER OVERFLOW |16#8102 The internal send buffer reports an
overflow.
PLCPRJ_ERROR_RESPONSE_TIMEOUT 16#8103 The server has not sent the response

within the specified timeout time.

PLCPRJ_ERROR_INVALID _FRAME_FORMAT 16#8104 The telegram formatting is incorrect (size,
faulty data bytes etc.).

PLC project Description

https://infosys.beckhoff.com/content/1033/ Implementation of an "echo" client/server. The client
tcpipserver/Resources/11383896075/.zip (Client) |cyclically sends a test string (sToServer) to the remote
server. The server returns the same string to the client
unchanged (sFromServer).

https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383897483/.zip (Server)

80 Version: 1.3 TS6310

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383896075.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383896075.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383897483.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383897483.zip

BECKHOFF

Samples

PLC project

Description

https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383898891/.zip (Client)

https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383900299/.zip (Server)

As above, with the difference that the server can
establish up to 5 connections. The client application has
5 client instances. Each instance establishes a
connection to the server.

https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383901707/.zip (Client)

https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383903115/.zip (Server)

A client-server application for the exchanging of binary
data.

A simple sample protocol is used. The length of the
binary data and a frame counter for the sent and
received telegrams are transferred in the protocol
header.

The structure of the binary data is defined by the PLC
structure ST_ApplicationBinaryData. The binary data
are appended to the headers and transferred. The
instances of the binary structure are called toServer,
fromServer on the client side and toClient, fromClient
on the server side.

The structure declaration on the client and server sides
can be adapted as required. The structure declaration
must be identical on both sides.

The maximum size of the structure must not exceed the
maximum buffer size of the send/receive Fifos. The
maximum buffer size is determined by a constant.

The server functionality is implemented in the function
block FB_ServerApplication and the client
functionality in the function block
FB_ClientApplication.

In the standard implementation the client cyclically
sends the data of the binary structure to the server and
waits for a response from the server. The server
modifies some data and returns them to the client.

If you require a functionality, you have to modify the
function blocks FB_ServerApplication and
FB_ClientApplication accordingly.

https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383904523/.zip (Client)

https://infosys.beckhoff.com/content/1033/
tcpipserver/Resources/11383905931/.zip (Server)

As above, with the difference that the server can
establish up to 5 connections. The client application has
5 client instances. Each instance establishes a
connection to the server.

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

For troubleshooting purposes you can set the input variable bDbg to TRUE, thereby activating the debugging
output for the sent data in the TwinCAT System Manager Log View:

TS6310

Version: 1.3 81

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383898891.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383898891.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383900299.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383900299.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383901707.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383901707.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383903115.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383903115.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383904523.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383904523.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383905931.zip
https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383905931.zip

Samples

BECKHOFF

Helper_SingleClientBinary.pro* - [MAIN (PRG-5T)]

ien Extras Online Fenster Hilfe

S| % |E|]

00071} E--fhaApplication
goozf @ fromServer
ks oooz @ toSerser
oong B fhClient
oons B T
B Y O
ooz N=Tgquly
nong clock
nony shd Tirmer
na1o roTimer
0011
oz .
0013 sRemoteHost="127.0.0.1"
0014 r-nRemotePort = 200
0015 - BEnahle = RN
001k b 2State = eS0OCKET_CONNECTED
0017 hEnakle =
00718 H-fhClosesll
0014 bClozeasll =
M0

8.3 TcSnmp.lib

8.3.1 Sample: Client trap

This sample describes a simple Trap send from a PLC to a SNMP management server. Traps can be used

to alert thresholds. On every hundred increment of the counter a trap will be send.

Download: https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383907339/.zip

Variable Declaration
PROGRAM MAIN

VAR

SendTrap: FB SendTrap;

iState: INT := 0;

iCounter: UDINT:= 0;

stVarBind: ST _SNMP VariableBinding;
END_ VAR

PLC Program
CASE iState OF

0: (* send trap on every hundred cycle *)

iCounter := iCounter + 1;

IF ((iCounter MOD 100) = 0) THEN
iState := 10;

END IF

10: (* enable FB *)

SendTrap.bEnable := TRUE;

IF SendTrap.bEnabled THEN
iState := 20;

END IF

20: (* set SNMP trap parameter *)

stVarBind.iType := E SNMP INTEGER;
stVarBind.iLength := SIZEOF (iCounter) ;
stVarBind.pArrValue := ADR(iCounter);

(* TODO: assign object ID of management information base (MIB) *)
SendTrap.sObjectID := '1.3.6.1.2.1.1.5.0";

82 Version: 1.3

TS6310

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383907339.zip

BECKHOFF

Samples

(* TODO: check default community string *)

SendTrap.sCommunity:= 'public';
SendTrap.iGenericTrapNumber:= E SNMP WarmStart;
SendTrap.bExecute := TRUE;
iState := 30;
30: (* reset *)
SendTrap.bExecute := FALSE;
SendTrap.bEnable := FALSE;
IF NOT SendTrap.bBusy THEN
iState := 0;
END IF

IF SendTrap.bError THEN

SendTrap.bEnable := FALSE;
iState := 99;
END IF

99: (* Error case *)

END CASE

SendTrap (
(* TODO: add device IP of TwinCAT device *)
sLocalHostIp := '"',
(* TODO: add SNMP Manager IP ¥*)
sManagerIP := "'
)i

Requirements

Development environment Target system type

PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86)

TwinCAT v2.10.0 Build >= 1301 CX (ARM)

TcSnmp.lib (Teplp.Lib;
Standard.Lib; TcBase.Lib;
TcSystem.Lib are included
automatically)

8.3.2 Sample: SNMP multiple client trap

This Sample describes the sending of a trap by multiple values. Traps can be used to alert thresholds. On

every hundred increment of the counter a trap will be send.

Download: https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383908747/.zip

Variablen Declaration
PROGRAM MAIN

VAR

SendTrap: FB_SendTrap;

iState: INT := 0;

iCounter: UINT:= O;

sObjectId: STRING :="'1.3.6.1.4.1.2";

sMessage: T MaxString:='Information string';

iGauge: UDINT:= 4294967295;

iTimeTicks: UDINT:= 1000000;

arrVarBind: ARRAY[1..5] OF ST _SNMP VariableBinding;
END VAR

PLC Program
CASE iState OF

0: (* send trap on every hundred cycle *)
iCounter := iCounter + 1;
IF ((iCounter MOD 100) = 0) THEN
iState := 10;
END IF

10: (* enable FB ¥*)

SendTrap.bEnable := TRUE;

IF SendTrap.bEnabled THEN
iState := 20;

END IF

TS6310 Version: 1.3

83

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383908747.zip

Samples

BECKHOFF

20: (* set SNMP trap parameter *)

arrVarBind[1] .iType := E_SNMP_ INTEGER;
arrVarBind[1l].iLength := 4;

arrVarBind[1l] .pArrValue := ADR(iCounter);
arrVarBind[1] .sOID := '1.3.1.3.255.1.1";

(*Variable Binding 2%*)

arrVarBind([2] .iType := E SNMP OBJECTID;
arrVarBind[2] .iLength := LEN(sObjectId);
arrVarBind[2] .pArrValue: = ADR(sObjectId);
arrVarBind[2] .sOID:= '1.3.6.1.3.255.2"';

(*Variable Binding 3*)

arrVarBind[3] .iType := E_SNMP_OCTETSTRING;
arrVarBind[3].iLength := LEN (sMessage);
arrVarBind[3] .pArrValue := ADR(sMessage);
arrVarBind[3] .sOID := '1.3.6.1.3.255.3';

(*Variable Binding 4%*)

arrVarBind[4] .iType := E
arrVarBind([4] .iLength :=
arrVarBind[4] .pArrValue
arrVarBind[4] .sOID := '1

MP GAUGE32;

SN
4;
= ADR (iGauge) ;
.3.6.1.3.255.4";
(*Variable Binding 5%*)

arrVarBind([5] .iType := E SNMP TIMETICKS;

arrVarBind[5] .iLength := 4;

arrVarBind[5] .pArrValue := ADR(iTimeTicks);

arrVarBind[5] .sOID := '1.3.6.1.3.255.5"';

SendTrap.sCommunity := 'public';

SendTrap.iGenericTrapNumber := E SNMP WarmStart;

SendTrap.bExecute := TRUE;
iState := 30;

30: (* reset *)
SendTrap.bExecute := FALSE;
SendTrap.bEnable := FALSE;
IF NOT SendTrap.bBusy THEN

iState := 0;
END IF

IF SendTrap.bError THEN
SendTrap.bEnable
iState := 99;

END IF

FALSE;

99: (* Error case ¥*)

END CASE

SendTrap (
(* TODO: add device IP of TwinCAT device *)
sLocalHostIp := '',
(* TODO: add SNMP Manager IP ¥*)
sManagerIP := '',
pArrVarBinding := ADR(arrVarBind),
nVarBindings := 5

);

Requirements

Development environment Target system type

PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86)

TwinCAT v2.10.0 Build >= 1301 CX (ARM)

TcSnmp.lib (Teplp.Lib;
Standard.Lib; TcBase.Lib;
TcSystem.Lib are included
automatically)

8.3.3 Sample: SNMP Get request

This samples describes how a TwinCAT device can answer on a SNMP GET-request from SNMP manager.
If a GET-Request arrived in the PLC, the requested information will be sent if the object id match.

Download: https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383910155/.zip

84 Version: 1.3

TS6310

https://infosys.beckhoff.com/content/1033/tcpipserver/Resources/11383910155.zip

BEGKHOFF Samples

Variablen Declaration
PROGRAM MAIN

VAR
GetSnmp: FB GetSnmp;
ivalue: DINT;
sValue: T MaxString;
arrVarBind: ARRAY[0..1] OF ST SNMP VariableBinding;
iState : INT := 0;
END VAR

PLC Program

CASE iState OF
0: (* Enable *)

GetSnmp.bEnable := TRUE;

IF GetSnmp.bEnabled THEN
iState := 10;

END IF

10: (* Wait for SNMP GET request *)
GetSnmp.bReceive := TRUE;
IF GetSnmp.bReceived THEN
GetSnmp.bReceive := FALSE;
iState := 20;
END IF

20: (* Compare oid's *)

(* TODO: Assign your own ObjectID (oid) of the management information base (MIB) *)

IF GetSnmp.sRecObjectID = '1.3.6.1.2.1.1.5.0"' THEN
sValue := 'BECKHOFF DEVICE';
arrVarBind[0].iType := E_SNMP OCTETSTRING;
arrVarBind[0].iLength :=LEN(sValue);
arrVarBind[0] .pArrValue := ADR(sValue);
arrVarBind[0].sOID := GetSnmp.sRecObjectID;
GetSnmp.pArrVarBinding := ADR(arrVarBind) ;
GetSnmp.nVarBindings := 1;

GetSnmp.iError := 0;
GetSnmp.bSendResponse := TRUE;

ELSE

(* The requested ObjectID was not found *)
GetSnmp.nVarBindings := 0;

GetSnmp.iError := 2;
GetSnmp.bSendResponse := TRUE;
END IF
iState := 30;

30 (* reset *)
GetSnmp.bSendResponse := FALSE;
GetSnmp.bSendTrap := FALSE;
IF NOT GetSnmp.bBusy THEN

iState := 10;
END IF
IF GetSnmp.bError THEN
GetSnmp.bEnable := FALSE;
iState := 0;
END IF
END_CASE

GetSnmp (

(* TODO: check community string *)
sCommunity := 'public',
iGenericTrapNumber:= E_SNMP WarmStart,

(* TODO: add device IP of TwinCAT device *)
sLocalHostIp := '',

(* use SNMP Port 163, if default port 161 is in use by 0S *)
sLocalHostPort := 163,

(* TODO: ADD SNMP Manager IP ¥*)
sManagerIP := '',

)i

TS6310 Version: 1.3 85

Samples

BECKHOFF

Requirements

Development environment Target system type PLC libraries to be linked

TwinCAT version 2.8.0 or higher |PC or CX (x86) TcSnmp.lib (Teplp.Lib;

TwinCAT v2.10.0 Build >= 1301 |CX (ARM) Standard.Lib; TcBase.Lib;
TcSystem.Lib are included
automatically)

86 Version: 1.3 TS6310

BECKHOFF Error codes

9

Error codes

Requirements

Codes (hex) Codes (dec) Error source Description
0x00000000-0x0 |0-30720 TwinCAT system TwinCAT system error (including ADS error
0007800 error codes codes)
0x00008000-0x0 |32768-33023 Internal TwinCAT Internal error of the TwinCAT TCP/IP
00080FF TCP/IP Connection |Connection Server

Server error codes

871
0x00009000-0x0 [36864-37119 Internal SNMP error |Internal SNMP error codes
00090FF codes [» 88]
0x80070000-0x8 |2147942400-2148 |Error source = Code |Win32 system error (including Windows sockets
007FFFF 007935 - 0x80070000 = error codes)

Win32 system error
codes

9.1

Internal error codes of the TwinCAT TCP/IP Connection
Server

Code (hex) Code Symbolic constant Description

(dec)

0x00008001 32769 |TCPADSERROR_NOMOREENTRIES |No new sockets can be created (for

FB_SocketListen and
FB_SocketConnect).

0x00008002 32770 [TCPADSERROR_NOTFOUND Socket handle is invalid (for

FB_SocketReceive,
FB_SocketAccept, FB_SocketSend
etc.).

0x00008003 32771 |TCPADSERROR_ALREADYEXISTS Is returned when FB_SocketListen is

called, if the Tcplp port listener
already exists.

0x00008004 32772 |TCPADSERROR_NOTCONNECTED Is returned when FB_SocketReceive

is called, if the client socket is no
longer connected with the server.

0x00008005 32773 |TCPADSERROR_NOTLISTENING Is returned when FB_SocketAccept

is called, if an error was registered in
the listener socket.

9.2 Troubleshooting/diagnostics

1.

In the event of connection problems the PING command can be used to ascertain whether the
external communication partner can be reached via the network connection. If this is not the case,
check the network configuration and firewall settings.

. Sniffer tools such as Wireshark enable logging of the entire network communication. The log can then

be analyzed by Beckhoff support staff.

. Check the hardware and software requirements described in this documentation (TwinCAT version,

CE image version etc.).

. Check the software installation hints described in this documentation (e.g. installation of CAB files on

CE platform).

. Check the input parameters that are transferred to the function blocks (network address, port number,

data etc., connection handle.) for correctness. Check whether the function block issues an error code.
The documentation for the error codes can be found here: Overview of error codes [» 87].

TS6310 Version: 1.3 87

Error codes

BECKHOFF

6. Check if the other communication partner/software/device issues an error code.

7. Activate the debug output integrated in the TcSocketHelper.Lib during connection establishment/
disconnect process (keyword: CONNECT_MODE_ENABLEDBG). Open the TwinCAT System

Manager and activate the LogView window. Analyze/check the debug output strings.

9.3 SNMP_ErrorCodes

Hex Dec Description
0x9001 36865 INCORRECT PARAMETER SIZE
0x9002 36866 INVALID PARAMETER

88 Version: 1.3

TS6310

More Information:
www.beckhoff.com/ts6310

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TS6310
https://www.beckhoff.com
https://www.beckhoff.com/ts6310

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Introduction
	4 System requirements
	5 Installation
	6 Installation Windows CE
	7 PLC libraries
	7.1 TcpIp.lib
	7.1.1 FB_SocketConnect
	7.1.2 FB_SocketClose
	7.1.3 FB_SocketCloseAll
	7.1.4 FB_SocketListen
	7.1.5 FB_SocketAccept
	7.1.6 FB_SocketSend
	7.1.7 FB_SocketReceive
	7.1.8 FB_SocketUdpCreate
	7.1.9 FB_SocketUdpSendTo
	7.1.10 FB_SocketUdpReceiveFrom
	7.1.11 FB_SocketUdpAddMulticastAddress
	7.1.12 FB_SocketUdpDropMulticastAddress
	7.1.13 F_GetVersionTcpIp
	7.1.14 ST_SockAddr
	7.1.15 T_HSOCKET
	7.1.16 E_WinsockError
	7.1.17 Global Variables

	7.2 TcSocketHelper.lib
	7.2.1 FB_ServerClientConnection
	7.2.2 FB_ClientServerConnection
	7.2.3 F_CreateServerHnd
	7.2.4 F_GetVersionTcSocketHelper
	7.2.5 T_HSERVER
	7.2.6 E_SocketAcceptMode
	7.2.7 E_SocketConnectionState
	7.2.8 Global constants

	7.3 TcSnmp.lib
	7.3.1 FB_SEND_TRAP
	7.3.2 FB_GetSnmp
	7.3.3 F_GetVersionTcSNMP
	7.3.4 SNMP_ST_VariableBinding
	7.3.5 E_SNMP_GenericTrapNumber
	7.3.6 E_SNMP_DataTypes
	7.3.7 Global Variables

	8 Samples
	8.1 TcpIp.lib
	8.1.1 TCP example
	8.1.1.1 Testing the client and server function blocks
	8.1.1.2 PLC Client
	8.1.1.2.1 FB_LocalClient
	8.1.1.2.2 FB_ClientDataExcha

	8.1.1.3 PLC Server
	8.1.1.3.1 FB_LocalServer
	8.1.1.3.2 FB_RemoteClient
	8.1.1.3.3 FB_ServerDataExcha

	8.1.1.4 .NET sample client

	8.1.2 UDP example
	8.1.2.1 Testing the peer-to-peer applications
	8.1.2.2 PLC Client/Server
	8.1.2.2.1 UDP example: peer-to-peer PLC devices A and B

	8.1.2.3 .NET Peer-to-Peer communication

	8.2 TcSocketHelper.lib examples
	8.3 TcSnmp.lib
	8.3.1 Sample: Client trap
	8.3.2 Sample: SNMP multiple client trap
	8.3.3 Sample: SNMP Get request

	9 Error codes
	9.1 Internal error codes of the TwinCAT TCP/IP Connection Server
	9.2 Troubleshooting/diagnostics
	9.3 SNMP_ErrorCodes

		documentation@beckhoff.com
	2023-08-10T14:21:09+0200
	Beckhoff Automation, Verl
	Documentation Publishing

