
Manual | EN

TS6255-0030
TwinCAT 2 | Modbus RTU BC

2022-05-09 | Version: 1.0

Table of contents

TS6255-0030 3Version: 1.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 Safety instructions... 6
1.3 Notes on information security.. 7

2 Overview .. 8

3 ModbusRtuMaster_KL6x5B ... 9

4 ModbusRtuSlave_KL6x5B.. 11

5 ModbusRtuMaster_KL6x22B ... 13

6 ModbusRtuSlave_KL6x22B.. 15

7 Modbus station address... 17

8 Modbus address arrays.. 18

9 Modbus RTU Error Codes .. 20

10 Hardware assignment at the BC bus controller ... 21

11 Terminal configuration ... 23

Table of contents

TS6255-00304 Version: 1.0

Foreword

TS6255-0030 5Version: 1.0

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TS6255-00306 Version: 1.0

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

TS6255-0030 7Version: 1.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TS6255-00308 Version: 1.0

2 Overview
The Modbus RTU TwinCAT PLC library offers function blocks for serial communication with Modbus end
devices.

Typical end devices are operating terminals with a Modbus driver that are connected to a TwinCAT controller
via a serial RS-232, RS-422 or RS-485 interface. In this case, the TwinCAT PLC is a Modbus slave and the
operating terminal is a Modbus master. In this configuration, the programming effort on the PLC side is very
low.

Alternatively, Modbus master functions are available in the library, through which the PLC can address one
or several Modbus slaves. This configuration is less common and also not really recommended, since the
programming effort is higher.

Supported TwinCAT controllers
• TwinCAT PC
• CX1000 series
• Bus controller BC and BX

Supported interfaces
• serial port (COM port) of a PC or CX
• serial port of a BX controller
• serial Bus Terminals KL6001, KL6011, KL6021, KL6031 or KL6041, corresponding EL terminals

Boundary conditions

The Modbus protocol defines accurate timing to ensure, for example, the complete transfer of all characters
of a telegram. Since the communication Modbus RTU is realized on a PLC controller, accurate timing cannot
be guaranteed due to the cyclic execution of the PLC program. Most end devices are very tolerant and
function without problems in the event of short time gaps between characters. In individual cases, the
behavior of the end device should be checked.

The second channel of an EL60x2 is not suitable for Modbus RTU communication, because it is processed
with low priority, which means the frames are sent with gaps, which in turn could be detected by the remote
terminal as frame errors.

Note: With some serial interface terminals an internal buffer can be filled before sending (option continuous
sending). The ModbusRTU library can use this feature if it is set in the corresponding serial terminal. For
example, on the KL6031 continuous mode can be activated with the KL6configuration configuration function
block (register 34 bit 6). Up to 128 bytes are then placed in the internal buffer of the Bus Terminal and
transmitted continuously.

Further documentation

http://www.modicon.com/
http://www.modbus.org

http://www.modicon.com/
http://www.modbus.org

ModbusRtuMaster_KL6x5B

TS6255-0030 9Version: 1.0

3 ModbusRtuMaster_KL6x5B

The function block ModbusRtuMaster_KL6x5B implements a Modbus master that communicates via a serial
Bus Terminal KL6001, KL6011 or KL6021. The block is not called in its basic form, but individual actions of
that block are used within a PLC program. Each Modbus function is implemented as an action.

An https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455297291.zip bus
controller explains the operating principle.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bit per
byte) starting from address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bit per byte)
starting from address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads inputs registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (Coil) to a connected slave. The data is supposed to be stored in a compressed
form (8 bit pro byte) starting from address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write SingleRegister
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (Coils) to a connected slave. The data is supposed to be stored in a compressed
form (8 bit pro byte) starting from address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostics request with a user defined subfunction code to a connected slave. The
subfunction code is passed to the function by the MBAddr parameter. Additional data can be passed
by pMemoryAddr.

VAR_INPUT

VAR_INPUT
 UnitID : BYTE;
 Quantity : WORD;

https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455297291.zip

ModbusRtuMaster_KL6x5B

TS6255-003010 Version: 1.0

 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : DWORD;
 Execute : BOOL;
 Timeout : TIME;
END_VAR

UnitID: Modbus Station address [} 17] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

Quantity: Number of data words to be read or written for word-oriented Modbus functions. For bit-oriented
Modbus functions, Quantity specifies the number of bits (inputs or coils).

MBAddr: Modbus data address, from which the data are read from the end device (slave). This address is
transferred to the slave unchanged and interpreted as a data address.
MBAddr holds a subfuntion code when the Diagnostics function is used.

cbLength : Size of the data variable used for send or read actions in bytes. cbLength must be greater than
or equal to the transferred data quantity as specified by Quantity. Example for word access: [cbLength >=
Quantity * 2]. cbLength can be calculated via SIZEOF (Modbus data).

pMemoryAddr: Memory address in the PLC, calculated with ADR (Modbus data). For read actions, the read
data are stored in the addressed variable. For send actions, the data are transferred from the addressed
variable to the end device.

Execute : Start signal. The action is initiated via a rising edge at the Execute input.

Timeout : Timeout value for waiting for a response from the addressed slave.

VAR_OUTPUT

VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
ND_VAR

Busy: Indicates that the function block is active. Busy becomes TRUE with a rising edge at Execute and
becomes FALSE again once the started action is completed. At any one time, only one action can be active.

Error: Indicates that an error occurred during execution of an action.

ErrorId: Indicates an error number [} 20] in the event of disturbed or faulty communication.

cbRead: Provides the number of read data bytes for a read action

Hardware connection

The data structures required for the link with the communication port are included in the function block. The
allocation in the TwinCAT System Manager on a PC is carried out according to the description in Chapter
Serial Bus Terminal. On a BC bus controller, the I/O addresses have to be assigned manually. See
Hardware assignment at the BC bus controller [} 21].

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT from V2.8 PC (i386), CX1000 ModbusRTU.lb (Version 2.2 or

higher)
TwinCAT from V2.8 Bus controller BC ModbusRTU.lb6 (Version 2.2 or

higher)

ModbusRtuSlave_KL6x5B

TS6255-0030 11Version: 1.0

4 ModbusRtuSlave_KL6x5B

The function block ModbusRtuSlave_KL6x5B implements a Modbus slave that communicates via a serial
Bus Terminal KL6001, KL6011 or KL6021. The block is passive until it receives telegrams from a connected
Modbus master.

An example program for a https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/
zip/455300235.zip explains the operating principle.

VAR_INPUT

VAR_INPUT
 UnitID : UINT;
 AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
 SizeInputBytes : UINT;
 AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
 SizeOutputBytes : UINT;
 AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
 SizeMemoryBytes : UINT;
END_VAR

UnitID : Modbus station address [} 17] (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

AdrInputs: Start address of the Modbus input array [} 18]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (input variable).

SizeInputBytes: Size of the Modbus input array in bytes. The size can be calculated with SIZEOF (input
variable).

AdrOutputs : Start address of the Modbus output array [} 18]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (output variable).

SizeOutputBytes: Size of the Modbus output array in bytes. The size can be calculated with SIZEOF (output
variable.

AdrMemory : Start address of the Modbus memory array [} 18]. The data array is usually declared as a
PLC array, and the address can be calculated with ADR (memory variable).

SizeMemoryBytes : Size of the Modbus memory array in bytes. The size can be calculated with SIZEOF
(memory variable).

VAR_OUTPUT

VAR_OUTPUT
 ErrorId : Modbus_ERRORS;
ND_VAR

ErrorId: Indicates an error number [} 20] in the event of disturbed or faulty communication.

https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455300235.zip
https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455300235.zip

ModbusRtuSlave_KL6x5B

TS6255-003012 Version: 1.0

Hardware connection

The data structures required for the link with the communication port are included in the function block. The
allocation in the TwinCAT System Manager on a PC is carried out according to the description in Chapter
Serial Bus Terminal. On a BC bus controller, the I/O addresses have to be assigned manually. See
Hardware assignment at the BC bus controller [} 21].

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT from V2.8 PC (i386), CX1000, ModbusRTU.lib
TwinCAT from V2.8 Bus controller BC ModbusRTU.lb6

ModbusRtuMaster_KL6x22B

TS6255-0030 13Version: 1.0

5 ModbusRtuMaster_KL6x22B

The function block ModbusRtuMaster_KL6x22B implements a Modbus master that communicates via a
serial Bus Terminal KL6021 or KL6041. The block is not called in its basic form, but individual actions of that
block are used within a PLC program. Each Modbus function is implemented as an action.

An example program for a BC bus controller (https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/
Resources/zip/455297291.zip) explains the operating principle.

Supported Modbus functions (actions)
• ModbusMaster.ReadCoils

Modbus function 1 = Read Coils
Reads binary outputs (coils) from a connected slave. The data is stored in compressed form (8 bit per
byte) starting from address pMemoryAddr.

• ModbusMaster.ReadInputStatus
Modbus function2 = Read Input Status
Reads binary inputs from a connected slave. The data is stored in compressed form (8 bit per byte)
starting from address pMemoryAddr.

• ModbusMaster.ReadRegs
Modbus function 3 = Read Holding Registers
Reads data from a connected slave.

• ModbusMaster.ReadInputRegs
Modbus function 4 = Read Input Registers
Reads inputs registers from a connected slave.

• ModbusMaster.WriteSingleCoil
Modbus function 5 = Write Single Coil
Sends a binary output (Coil) to a connected slave . The data is supposed to be stored in a compressed
form (8 bit pro byte) starting from address pMemoryAddr.

• ModbusMaster.WriteSingleRegister
Modbus function 6 = Write SingleRegister
Sends a single data word to a connected slave

• ModbusMaster.WriteMultipleCoils
Modbus function 15 = Write Multiple Coils
Sends binary outputs (Coils) to a connected slave . The data is supposed to be stored in a compressed
form (8 bit pro byte) starting from address pMemoryAddr.

• ModbusMaster.WriteRegs
Modbus function 16 = Preset Multiple Registers
Sends data to a connected slave

• ModbusMaster.Diagnostics
Modbus function 8 = Diagnostics
Sends a diagnostics request with a user defined subfunction code to a connected slave. The
subfunction code is passed to the function by the MBAddr parameter. Additional data can be passed
by pMemoryAddr.

https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455297291.zip
https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455297291.zip

ModbusRtuMaster_KL6x22B

TS6255-003014 Version: 1.0

VAR_INPUT
VAR_INPUT
 UnitID: : UINT;
 Quantity : WORD;
 MBAddr : WORD;
 cbLength : UINT;
 pMemoryAddr : DWORD;
 Execute : BOOL;
 Timeout : TIME;
END_VAR

UnitID: Modbus Station address (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

Quantity: Number of data words to be read or written for word-oriented Modbus functions. For bit-oriented
Modbus functions, Quantity specifies the number of bits (inputs or coils).

MBAddr: Modbus data address, from which the data are read from the end device (slave). This address is
transferred to the slave unchanged and interpreted as a data address.
MBAddr holds a subfuntion code when the Diagnostics function is used.

cbLength : Size of the data variable used for send or read actions in bytes. cbLength must be greater than
or equal to the transferred data quantity as specified by Quantity. Example for word access: [cbLength >=
Quantity * 2]. cbLength can be calculated via SIZEOF (Modbus data).

pMemoryAddr: Memory address in the PLC, calculated with ADR (Modbus data). For read actions, the read
data are stored in the addressed variable. For send actions, the data are transferred from the addressed
variable to the end device.

Execute : Start signal. The action is initiated via a rising edge at the Execute input.

Timeout : Timeout value for waiting for a response from the addressed slave.

VAR_OUTPUT
VAR_OUTPUT
 BUSY : BOOL;
 Error : BOOL;
 ErrorId : MODBUS_ERRORS;
 cbRead : UINT;
ND_VAR

Busy: Indicates that the function block is active. Busy becomes TRUE with a rising edge at Execute and
becomes FALSE again once the started action is completed. At any one time, only one action can be active.

Error: Indicates that an error occurred during execution of an action.

ErrorId: Indicates an error number in the event of disturbed or faulty communication.

cbRead: Provides the number of read data bytes for a read action

Hardware connection

The data structures required for the link with the communication port are included in the function block. On a
BC bus controller, the I/O addresses must be assigned manually. See Hardware assignment at the BC bus
controller.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT from V2.8 Bus controller BC ModbusRTU.lb6 (Version 2.2 or

higher)

ModbusRtuSlave_KL6x22B

TS6255-0030 15Version: 1.0

6 ModbusRtuSlave_KL6x22B

The function block ModbusRtuSlave_KL6x22B implements a Modbus slave that communicates via a serial
Bus Terminal KL6031 or KL6041. The block is passive until it receives telegrams from a connected Modbus
master.

An example program for a BC bus controller (https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/
Resources/zip/455300235.zip) explains the operating principle.

VAR_INPUT
VAR_INPUT
 UnitID : UINT;
 AdrInputs : POINTER TO BYTE; (* Pointer to the Modbus input area *)
 SizeInputBytes : UINT;
 AdrOutputs : POINTER TO BYTE; (* Pointer to the Modbus output area *)
 SizeOutputBytes : UINT;
 AdrMemory : POINTER TO BYTE; (* Pointer to the Modbus memory area *)
 SizeMemoryBytes : UINT;
END_VAR

UnitID : Modbus station address (1..247). The Modbus slave will only answer if it receives telegrams
containing its own station address. Optionally, collective addresses can be used for replying to any requests.
Address 0 is reserved for broadcast telegrams and is therefore not a valid station address.

AdrInputs: Start address of the Modbus input array. The data array is usually declared as a PLC array, and
the address can be calculated with ADR (input variable).

SizeInputBytes: Size of the Modbus input array in bytes. The size can be calculated with SIZEOF (input
variable).

AdrOutputs : Start address of the Modbus output array [} 18]. The data array is usually declared as a PLC
array, and the address can be calculated with ADR (output variable).

SizeOutputBytes: Size of the Modbus output array in bytes. The size can be calculated with SIZEOF (output
variable.

AdrMemory : Start address of the Modbus memory array [} 19]. The data array is usually declared as a
PLC array, and the address can be calculated with ADR (memory variable).

SizeMemoryBytes : Size of the Modbus memory array in bytes. The size can be calculated with SIZEOF
(memory variable).

VAR_OUTPUT
VAR_OUTPUT
 ErrorId : Modbus_ERRORS;
END_VAR

ErrorId: Indicates an error number in the event of disturbed or faulty communication.

https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455300235.zip
https://infosys.beckhoff.com/content/1033/tcplclibmodbusrtubc/Resources/zip/455300235.zip

ModbusRtuSlave_KL6x22B

TS6255-003016 Version: 1.0

Hardware connection

The data structures required for the link with the communication port are included in the function block. On a
BC bus controller, the I/O addresses must be assigned manually. See Hardware assignment at the BC bus
controller.

Requirements

Development environment Target system type PLC libraries to be linked
TwinCAT from V2.8 PC (i386), CX1000, ModbusRTU.lib
TwinCAT from V2.8 Bus controller BC ModbusRTU.lb6

Modbus station address

TS6255-0030 17Version: 1.0

7 Modbus station address
Modbus defines valid station addresses in the range 1 to 247. A Modbus slave only responds to telegrams
that contain its own address. Address 0 is not a valid station address. It is used for broadcast telegrams to all
stations. These are not answered. Addresses 248 to 255 are reserved.

The ModbusRTU library defines further collective addresses. This enables a station to respond to several
addresses.

TYPE MODBUS_UNITID :
(
 MODBUS_UNITID_BROADCAST := 0,
 MODBUS_UNITID_ALLVALID := 256, (* response on address 1..247 *)
 MODBUS_UNITID_ALLBUTBROADCAST := 257, (* response on address 1..255 *)
 MODBUS_UNITID_ALL := 258 (* response on address 0..255 *)
);
END_TYPE

Modbus address arrays

TS6255-003018 Version: 1.0

8 Modbus address arrays
Modbus defines access functions for different data arrays. These data arrays are declared as variables in a
TwinCAT PLC program, e.g. as word arrays, and transferred to the Modbus slave function block as input
parameters. Each array has a different Modbus start address, so that the arrays can be distinguished
unambiguously. This offset has to be taken account of for addressing.

Inputs

The Inputs data array usually describes the physical input data with read-only access. They can be digital
inputs (bit) or analog inputs (word). The PLC programmer can decide whether or not to grant the
communication partner direct access to the physical inputs. It is also possible to define an input array for
Modbus communication that is not identical with the physical inputs:

• Definition of the Modbus input data as direct image of the physical inputs. Start and size of the data
array can be specified freely. They are limited by the actual size of the input process image of the
controller used.

VAR Inputs AT%IW0 : ARRAY[0..255] OF WORD; END_VAR
• Definition of the Modbus input data as a separate Modbus data array independent of the physical

inputs
VAR Inputs : ARRAY[0..255] OF WORD; END_VAR

Access to the Input array via a Modbus master is possible with the following Modbus functions:
2 : Read input status
 4 : Read Input Registers

Addressing

The Input array is addressed with a 0 offset, i.e. address 0 as transferred in the telegram addresses the first
element in the input data array.

Examples:

PLC variable Access type Address in the Modbus
telegram

Address in the end de-
vice (device-dependant)

Inputs[0] Word 16#0 30001
Inputs[1] Word 16#1 30002
Inputs[0], Bit 0 Bit 16#0 10001
Inputs[1], Bit 14 Bit 16#1E 1001F

Outputs

The Outputs data array usually describes the physical output data with read and write access. Outputs can
be digital outputs (coils) or analog outputs (output registers). Like for the Inputs, the array can be declared as
a physical output variable or as a simple variable.

• Definition of the Modbus output data as direct image of the physical outputs. Start and size of the data
array can be specified freely. They are limited by the actual size of the output process image of the
controller used.

VAR Outputs AT%QW0 : ARRAY[0..255] OF WORD; END_VAR
• Definition of the Modbus output data as a separate Modbus data array independent of the physical

outputs
VAR Outputs : ARRAY[0..255] OF WORD; END_VAR

Access to the Output array via a Modbus master is possible with the following Modbus functions:
1 : Read Coil Status
 3 : Read Holding Registers
 5 : Force Single Coil
 6 : Preset Single Register
 15 : Force Multiple Coils
 16 : Preset Multiple Registers

Modbus address arrays

TS6255-0030 19Version: 1.0

Addressing

The Output array is addressed with a 16#800 offset, i.e. address 16#800 as transferred in the telegram
addresses the first element in the output data array.

Examples:

PLC variable Access type Address in the Modbus
telegram

Address in the end de-
vice (device-dependant)

Outputs[0] Word 16#800 40801
Outputs[1] Word 16#801 40802
Outputs[0], Bit 0 Bit 16#800 00801
Outputs[1], Bit 14 Bit 16#81E 0081F

Memory

The Memory data array describes a PLC variable array without physical I/O assignment.

• Definition of the Modbus memory data as PLC flags. Start and size of the data array can be specified
freely.

VAR Memory AT%MW0 : ARRAY[0..255] OF WORD; END_VAR
• Definition of the Modbus memory data as variable without flag address

VAR Memory : ARRAY[0..255] OF WORD; END_VAR

Access to the Memory array via a Modbus master is possible with the following Modbus functions:
3 : Read Holding Registers
 6 : Preset Single Register
 16 : Preset Multiple Registers

Addressing

The Memory array is addressed with a 16#4000 offset, i.e. address 16#4000 as transferred in the telegram
addresses the first word in the output data array.

Examples:

PLC variable Access type Address in the Modbus
telegram

Address in the end de-
vice (device-dependant)

Memory[0] Word 16#4000 44001
Memory[1] Word 16#4001 44002

Modbus RTU Error Codes

TS6255-003020 Version: 1.0

9 Modbus RTU Error Codes
TYPE MODBUS_ERRORS :
(
 (* Modbus communication errors *)
 MODBUSERROR_NO_ERROR, (* 0 *)
 MODBUSERROR_ILLEGAL_FUNCTION, (* 1 *)
 MODBUSERROR_ILLEGAL_DATA_ADDRESS, (* 2 *)
 MODBUSERROR_ILLEGAL_DATA_VALUE, (* 3 *)
 MODBUSERROR_SLAVE_DEVICE_FAILURE, (* 4 *)
 MODBUSERROR_ACKNOWLEDGE, (* 5 *)
 MODBUSERROR_SLAVE_DEVICE_BUSY, (* 6 *)
 MODBUSERROR_NEGATIVE_ACKNOWLEDGE, (* 7 *)
 MODBUSERROR_MEMORY_PARITY, (* 8 *)
 MODBUSERROR_GATEWAY_PATH_UNAVAILABLE, (* A *)
 MODBUSERROR_GATEWAY_TARGET_DEVICE_FAILED_TO_RESPOND, (* B *)

 (* additional Modbus error definitions *)
 MODBUSERROR_CHARREC_TIMEOUT := 16#20, (* 20 hex *)
 MODBUSERROR_ILLEGAL_DATA_SIZE, (* 21 hex *)
 MODBUSERROR_ILLEGAL_DEVICE_ADDRESS, (* 22 hex *)
 MODBUSERROR_ILLEGAL_DESTINATION_ADDRESS, (* 23 hex *)
 MODBUSERROR_ILLEGAL_DESTINATION_SIZE, (* 24 hex *)
 MODBUSERROR_NO_RESPONSE, (* 25 hex *)

 (* Low level communication errors *)
 MODBUSERROR_TXBUFFOVERRUN := 102, (* 102 *)
 MODBUSERROR_SENDTIMEOUT := 103, (* 103 *)
 MODBUSERROR_DATASIZEOVERRUN := 107, (* 107 *)
 MODBUSERROR_STRINGOVERRUN := 110, (* 110 *)
 MODBUSERROR_INVALIDPOINTER := 120, (* 120 *)
 MODBUSERROR_CRC := 150, (* 150 *)

 (* High level PLC errors *)
 MODBUSERROR_INVALIDMEMORYADDRESS := 232, (* 232 *)
 MODBUSERROR_TRANSMITBUFFERTOOSMALL (* 233 *)
);
END_TYPE

Hardware assignment at the BC bus controller

TS6255-0030 21Version: 1.0

10 Hardware assignment at the BC bus controller
For a PC controller or a CX1000 controller, the serial port used is linked with the Modbus RTU function block
within the TwinCAT System Manager. In contrast, in a program for a BC bus controller, this assignment is
carried out manually directly in the PLC programming environment.

Once an instance of a Modbus RTU function block has been created in the PLC program, the hardware
address of the serial Bus Terminal to be addressed is specified in the variable configuration. To this end, the
menu item Insert - All Instance Paths is selected under Resources in the Variable_Configuration
(VAR_CONFIG) block.

When this menu item is selected, the local I/O addresses used in all function blocks are listed.

Initially, the variables have no address. It has to be assigned manually according to the Bus Terminal
assignment of the bus controller. If the Bus Terminal is the first non-digital terminal at the bus controller, the
address is zero, for example.

Hardware assignment at the BC bus controller

TS6255-003022 Version: 1.0

VAR_CONFIG MAIN.Terminal.com.Port.IO.out AT %QB0 : ModbusKL6outData5B;
 MAIN.Terminal.com.Port.IO.in AT %IB0 : ModbusKL6inData5B;
END_VAR

Terminal configuration

TS6255-0030 23Version: 1.0

11 Terminal configuration
The Bus Terminals KL6001, KL6011, KL6021, KL6031 and KL6041 can be parameterised with the KS2000
configuration software. Alternatively, the system can be configured via PLC blocks included in the serial
communication library ComLib.lib. If the serial communication library is not used in conjunction with the
Modbus RTU library, the basic library KL6Config.lib, which is supplied with the Modbus RTU library, can be
integrated. This library contains the following blocks from the serial communication library.

• KL6configuration
• KL6ReadRegisters
• KL6WriteRegisters
• ComReset

Development environment Target system type PLC libraries to be linked
TwinCAT from V2.8 PC (i386), CX1000 ComLibV2.lib or alternatively

KL6config.lib
TwinCAT from V2.8 Bus controller BC ComLibV2.lb6 or alternatively

KL6config.lb6

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/ts6255

mailto:info@beckhoff.de?subject=TS6255-0030
https://www.beckhoff.com
https://www.beckhoff.com/ts6255

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Overview
	3 ModbusRtuMaster_KL6x5B
	4 ModbusRtuSlave_KL6x5B
	5 ModbusRtuMaster_KL6x22B
	6 ModbusRtuSlave_KL6x22B
	7 Modbus station address
	8 Modbus address arrays
	9 Modbus RTU Error Codes
	10 Hardware assignment at the BC bus controller
	11 Terminal configuration

		documentation@beckhoff.com
	2022-05-09T14:10:07+0200
	Beckhoff Automation, Verl
	Documentation Publishing

